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ABSTRACT

A semi-order can be thought of as a binary relation P for which there is
a utility u representing it in the following sense: xPy iff u(x) - u(y) > 1.

Weak orders (for which indifference is transitive) can not be considered
a successful approximation of semi-orders; for instance, a utility function
representing a semi—order in the manner mentioned above is almost unique, i.e.
cardinal and not only ordinal.

In this paper we deal with semi-orders on a product space and their
relation to given semi-orders on the original spaces. Following the intuition of
Rubinstein we find surprising results: with the appropriate framework, it turns
out that a Savage—type expected utility requires significantly weaker axioms than
it does in the context of weak orders.

Moreover, our axioms provide a conceptual basis for the weighted average
paradigm in general, and, in particular, may be used to justify utilitarianism

in a social choice context.









1. INTRODUCTION

The bulk of economic theory literature assumes that the decision
maker’'s preference relation may be represented by a utility function u(.)
as follows: xPy iff u(x) - u(y) > 0.

All of the axioms P should satisfy in order to allow for such a
representation, as well as the very existence of a binary preference
relation, have been criticized over the years on theoretical and empirical
grounds alike. Yet, it seems that most of the axioms, including the
transitivity of P, are still widely acceptable.

One exception is the transitivity of indifference: a representation as
above, trying to retain this property, leads us to contend that the decision
maker strictly prefers x to y whenever u(x) is -- even slightly -- larger
than u(y). Most theorists would probably not like to take this axiom
literally; it does not seem very plausible that an economic agent strictly
prefers an annual income of $30,000.01 to $30,000.00 or 2,534 grains of
sugar in a cup of coffee to 2,533 grains etc. On the other hand, indiffe-
rence between very close alternatives would lead, in the presence of tran-
sitive indifference, to indefference between any two alternatives, which is
absurd.

Moreover, psychology suggests the Weber-Fechner Law (Weber (1834),
Fechner (1860)) which says, roughly, that human beings cannot discern
between very close objects, and only when the difference in mass,
temperature, length, pressure, etc. exceeds a certain "just noticeable
difference" does a distinction emerge in people’s minds. Weber’'s Law also

says, that for each scale -- mass, for instance,-- there is a certain



constant A > 1 (depending on the individual and possibly also on the
circumstances) such that the individual would discern the difference between
two magnitudes only if their ratio exceeds A (or drops below 1/)). On the
appropriate logarithmic scale, we therefore get the following
representation:

xPy iff u(x) - u(y) > 1. (1)

Semi-orders, defined by Luce (1956), are transitive binary relations
the indifference of which may not be transitive. For the sake of the
discussion one may take the representation (1) as a definition of a semi-
order although it is equivalent to Luce’s definition only if the set of
alternatives is finite. For discussion of representations of semi-orders --
and the more general class of interval orders -- see Fishburn (1970, 1985),
Manders (1981), Gensemer (1987), Bridges (1983), Chateauneuf (1987) and Beja
and Gilboa (1989)1.

From the view point of economic theory it is quite reasonable to argue,
then, that in "reality" people have semi-orders (or even less structured
preferences,) where indifference is intransitive, but weak orders can still
be taken as an approximation, or a mathematical idealization, of reality; an
idealization that simplifies matters just like the continuum is a convenient
representation of very large, though discrete, sets.

The main point of this paper is that this idealization is far from
being innocuous. Surprisingly enough, we have good news: some aspects of
economic theory seem to be conceptually simpler with semi-orders than with
weak orders. Although the weak order idealization simplifies mathematics, it
requires considerably stronger axioms (from a conceptual viewpoint) to deri-

ve such results as the expected utility paradigm.



Let us take as an example the following point, which was noted in Beja
and Gilboa (1989). Suppose P is a semi-order with a representation (1) by u.
Then the function u is almost unique. Should v represent P as well, there
will be an f such that v = f(u), but f cannot be any monotone
transformation. It can be defined arbitrarily (as long as monotonicity is
preserved) on [0, 1], and then one has to extend it in such a way that f(x +
n) = £f(x) + n, for all x € [0, 1] and n € Z.

If we think of the just noticeable difference -- normalized to one --
as relatively small, the utility u is almost unique. It thus makes sense to
discuss properties such as concavity or convexity of the utility function,
properties that the mathematical idealization, namely weak orders, rendered
devoid of meaning.

In fact, there is more information in a semi-order than in a weak
order. Indeed, every semi-order P induces a weak order of indirectly
revealed preferences -- which we will denote by Q -- represented by the same
utility function u in the regular sense, i.e., xQy iff u(x) - u(y) > 0.
However, the semi-order P cannot be reconstructed from its associated Q.

On second thought, this result is not surprising at all: a semi-order
implicitly provides not only rankings of the alternatives but also rankings
of differences between pairs of alternatives, which is the essence of a
cardinal utility functions. The point is that the ranking of differences
implied by the classification to "larger than the just noticeable difference
(jnd)" and "not larger than the jnd" is naturally given in the original
preferences, and it suffices for fixing u almost uniquely, without the
additional artificial assumption that the decision maker can answer

questions like "do you prefer x to y more than you prefer w to z ?"
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In a similar way, this paper shows that when semi-orders are the
primitive preferences, one needs relatively weak axioms to derive expected
utility (or weighted average) representation for preference relation over a
product space of given spaces -- for instance, the space of acts which are
functions from the set of states of nature to consequences. But before we
explain these results we have to digress and describe Rubinstein’s approach.

In Rubinstein (1988) preference orders over simple lotteries are
discussed. A lottery is "simple" if it promises a certain monetary prize x
(say x € [0,1]) with probability p and zero with probability (1 - p). (For
some p € {0,1].)

Rubinstein assumes that there are two "similarity" relations, “x and
"’ defined on the set of monetary prizes and the set of probabilities,
respectively, with the interpretation that two "similar" magnitudes (prizes
or probabilities) are indistinguishable in the decision maker’s mind. He
then considers weak orders on lotteries (which are simply the product space
of prizes and probabilities) and defines the "star" (*) property as follows:
A weak order satisfies the (*) property with respect to (w.r.t.) " and -
if whenever two lotteries are similar in one component but not similar in
another -- the other component determines the preference between the two
lotteries. Rubinstein proves that for given similarity relations there is an
almost unique weak order on lotteries satisfying the (*) property. Conten-
ding that this property is a basic feature of any reasonable decision
process people actually go through while making decisions, he concludes that
there is a basic flaw in axiomatic theories justifying expected utility
maximization (and its generalizations), because this decision rule may well

be inconsistent with the (*) property.



Rubinstein’s similarity relations are, in fact, the indifference
relations induced by some semi-orders. Our original intuition was that his
results hinge on the fact that in the lottery space a weak order is assumed
to be given, while on the more primitive spaces -- only semi-orders. In this
case his conclusions seem to be somewhat dubious since it seems unreasonable
that a decision maker who cannot discern small differences between monetary
prizes as such will have perfect distinction power regarding the more
complicated space of lotteries.

This intuition seems to have been shared by Aizpurua, Nieto and
Urierarte (1988) and Aizpurua, Ichiichi, Nieto and Uriarte (1989). They
allowed the preference order on lotteries to have intransitive indifference
but found that Rubinstein’s results are robust with respect to this
generalization. To cope with the "over-determination problem" they
introduced "correlated similarities" -- allowing for the similarity relation
on the probability space to depend upon the associated monetary prize. Thus,
they found that expected utility maximization was not inconsistent with the
(*) property, though this result (as well as Rubinstein’s) could not be
extended to lotteries involving more than two possible prizes.

Our approach is slightly different. We require the binary relation on
the product space to be a semi-order (which is a stronger requirement than
theirs), and we found that the (*) property -- which we call strong
monotonicity -- is too strong a requirement, and there typically will not be
any semi-orders on the product space which are strongly monotone with given
ones on the original spaces (this is true even for two such spaces.)

We therefore define monotonicity in a weaker form: given two

alternatives in the product space x = (xl,...,xn) and y = (yl,...,yn), if



there is a preference in one component (xiPiyi) and indirectly revealed
preference in all others (ijjyj) then we require that x will be preferred
to y. Lack of preference of yj over xj does not suffice to use this monoto-
nicity axiom. Thus, our monotonicity is weaker than the (*) property, and it
can be thought of as a "stochastic dominance" or "pareto dominance" axiom.

Weakening the (*) property allows for the existence of monotone semi-
orders on the product space, but it also allows for the possibility of the
decision maker being able to discern between alternatives which were indis-
tinguishable in the original spaces. Thus we introduce a consistency
requirement stating that if all other components are held fixed, and in one
component we consider two indistinguishable alternatives Xg and Yio then the
whole vector with Xs is indistinguishable from that with Y-

We proved that -- under some mild technical assumptions -- there is an
almost unique semi-order P on Xlx...xXn which is monotone and consistent
w.r.t. given semi-orders Pi on Xi’ and that each such P has an almost unique
representation. Moreover, if ui represents Pi with a jnd of 1, one of the
monotone and consistent semi-orders will be represented by Zui, namely

xPy iff Zui(xi) - Zui(yi) > 1.

Thus, if all Xi and Pi are the same -- the set of consequences and a
semi-order on it -- we obtain an expected utility representation of a semi-
order on actions, namely functions from the n states of nature to X. More-
over, we get equal probabilities to all states of nature, i.e., the Laplace
criterion is justified with monotonicity and consistency alone. Comparing
these axioms to the main axioms of Savage (1954), the consistency is a very

weak version of the "sure thing principle" (in fact, it corresponds to axiom

P2 restricted to singleton events,) while monotonicity corresponds to axiom



P3 (which is sometimes also considered as a part of the "sure thing
principle".) One need not require the full strength of P2, nor axiom P4
regarding comparability of events, and yet one obtains a stronger result,
namely that all states of nature are equiprobable.

Before carrying on to the axiomatizaton of the general expected
utility representation, we should comment on alternative interpretations.
For instance, if we replace the states of nature by individuals (with
possibly different Xi's and Pi's), our monotonicity and consistency
axiomatize utilitarianism2 (see Harsanyi (1955)). Similar justifications of
utilitarianism were obtained by Goodman and Markowitz (1952) and Ng (1977).
Both models are in quite different frameworks from ours, and we find them
considerably less fundamental and intuitive. In particular, they both use
axioms involving "counting" which, to a certain extent, presupposes the
desired result.

Luce and Raiffa (1957) raise doubts regarding the appropriateness of
this criterion: in fact we resolve here the classical problem of inter-
personal comparison of utility by setting the jnd of all individuals to be a
standard unit of measurement. This means that more sensitive people will get
a higher weight in the social welfare function than less sensitive ones. The
question of whether this is just (or "just noticeable") is beyond the scope
of this paper.

An alternative interpretation will be to consider each space Xi as a
product space of probabilities and prizes, namely of simple lotteries as in
Rubinstein (1988). Regardless of the preference relation one has on Xi’ be
it a non-expected utility one as Rubinstein suggests, or an expected utility

as in Aizpurua et. al. (1989) our results allow a conceptually consistent



extension of the semi-order to general lotteries. If preferences on Xi are
represented by piu(xi) we obtain Zpiu(xi) as a representing functional
(i.e., expected utility as in von Neumann and Morgenstern (1947)). Other
preferences such as g(pi)u(xi) would give rise to prospect theory (Kahneman
and Tversky (1979)) etc. At any rate, Rubinstein-type arguments imply the
additive structure which is at the heart of the expected utility
representation.

It is somewhat ironic that Kahneman-Tversky prospect theory was
strongly criticized for not satisfying (first order) stochastic dominance,
while here we find that a different formulation of the same axiom -- our
monotonicity -- prefers prospect theory over theories such as Quiggin’'s
(1982), Yaari’s (1987) or non-additive probabilities (Schmeidler (1984),
Gilboa(1987)).

However, the Laplace criterion is quite restrictive and may point to a
flaw in our assumptions: indeed, assuming all Xi's are the same is intrinsic
to the problem of decision making under uncertainty, but the assumption that
all Pi’s are also identical may be too strong. Instead, we could assume that
there is another type of "correlated similarities": the decision maker’s
ability to distinguish between alternatives depends on the likelihood of the
associated state of nature. (In a way, this is a complementary approach to
the correlated similarities of Aizpurua et al. (1989).)

We are therefore interested in the following question: given several
semi-orders Pi on the same space X, when is there a single utility function
u: X » R and a constant 6i> 0 corresponding to each Pi’ such that

xPiy iff u(x) - u(y) > 6i ?
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In this paper we restrict our attention to the case of all 6i being
rational, for which we provide a complete axiomatization. Using this result
and the previous ones we obtain an axiomatization of a semi-order P on "
represented by

xPy iff Zpiu(xi) - Zpiu(yi) > 1
for rational probabilities P;-

To sum up, this paper studies semi-orders on product spaces in general,
and on a product of identical spaces in particular. Using axioms motivated
by Rubinstein (1988), we provide a conceptual basis for additive
separability in the general context and for expected utility in the more
specific one. Most importantly, this study shows that with aggregation of
preferences, as in the case of the numerical representations of preferences
on a single space, a lot of information is lost when we choose to work with
weak orders rather than with the more realistic semi-orders.

The rest of this paper is organized as follows. Section 2 presents
preliminary definitions and quotes some results from the literature. Our
main results are stated in section 3. Finally, the proofs and related

analysis are to be found in section 4.
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2. PRELIMINARIES AND BASIC DEFINITIONS
The central issue of this paper is semi-orders. The formal definition
is the following:
A binary relation P on X is a semi-order if for any x,y,z,w in X
1) not xPx (P is irreflexive);
2) if xPy and zPw then xPw or zPy ;
3) if xPy and yPz then xPw or wPz.
For a given semi-order P define binary relations I, Q, E and Qo as
follows: for every x,y in X:
xIy iff not xPy and not yPx;
xQy iff 3 z in X such that either 1) xPz and not yPz
or 2) zPy and not zPx;
xEy iff not xQy and not yQx;
xQoy iff xQy or xEy.
Any superscripts, subscripts etc. of P will be carried over to its associat-
ed I, Q, E and Qo.
Q being such defined is a weak order, i.e., satisfies the set of
conditions below: for any x,y,z in X
1) not xQx (Q is irreflexive);
2) if xQy and yQz then xQz (Q is transitive);
3) if xQy then xQz or zQy.
Scott and Suppes (1958) proved that if X is finite, then there exists a
utility function on X such that
for any x,y in X xPy iff u(x) > u(y) + 1

and xQy iff u(x) > u(y).
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Manders (1981) Beja and Gilboa (1989) showed that for this result to be true
for a countable X an additional axiom is needed saying that for every x in X

and every infinite sequence x in X if XiPX. for i = 1,2,... then

1% i+l

for some n xPx_ and if x, ,Px, for i = 1,2,... then for some n x Px. Beja
n i+1" 71 n

and Gilboa (1989) provide characterization of the jnd representation for a
general (not necessarily countable) X. We will generally assume in this
paper that range(u) = R.

Let us recall the standard definition of concatenation of binary

relations on X: given two binary relations B, and B, let B

1 2 1B2 be defined by:

For any x,y in X xB,B,y iff there exists z in X such that xBlz and

szy.

Note that successive application of this definition render concatena-
tion of more than two relations well-defined.

Let Xl,...,Xn be given sets and let there be semiorders Pi defined on
every Xi’ i=1,...,n. Assume that P is a semi-order on X = Xlx...xXn. For a

generic element x in X, X, will denote its i-th component, x i will stand

for (Xl,...,X .,Xn) and (x .

i—i’xi+1"' l,yi) for (Xl""’xi-l’yi'xi+l""’Xn)'
Further suppose that P and Q are such that there exists a utility
function u from X onto R such that xPy iff u(x) > u(y) + 1 and xQy iff u(x)
> u(x) for all x and y in X. We will say that u represents P and call P
representable. From here on let us assume that every Pi is representable.
Note. ui is defined upto a strictly increasing transformation v = f(u),

where f(a) = f(a-1) + 1 for all a in R.

Now we can define some properties P may possess w.r.t. Pl,.. P :

n

Definition 1. 1) P on X is P-monotone with respect to the semi-orders
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Pl,...,Pn (hereafter P-monotone) if V x,y € X the following holds: if
o . _ .
XiQ Y4 for all i e N = {1,...,n) and 3 j such that Xijyj then xPy.
(As above Qi and Q are the corresponding weak orders.)

2) P is Q-monotone from above with respect to P ,Pn (hereafter Q-

10

monotone from above) if xPy and x'iQoixi v ieN imply x'Py.
3) P is Q-monotone from below with respect to Pl""’Pn (hereafter Q-
monotone from below) if xPy and yiQoiy'i Y ieN imply xPy’.

4) P is Q-monotone with respect to P ,Pn (hereafter Q-monotone) if

10
it is both Q-monotone from above and from below.

5) P is monotone with respect to P .,Pn (hereafter monotone) if it

10

is simultaneously P- and Q-monotone.
Definition 2. P is consistent with Pl""’Pn (hereafter consistent) if

for all i € N and for all Xi’yi € Xi if iniyi then (X-i’xi)I(X—i’yi) for

all X ;= (Xl"' .,xn).

X, X, .

P10 TiHL
Relations between the two types of monotonicity and the consistency

requirements are considered in section 4 (see statements 1 - 5). There one

can also find examples of semi-orders which do and do not satisfy various

subsets of these properties.

Let us define for each semi-order P’ on X' the P’'-topology as follows:
X > X if for every y € X for which yQx, there exists M such that vV m = M
nyrn and for y € X for which xQy there exists M such that mey. The
continuity of P we are about to define means that if a sequence {xik} in Xi
converges to X, in Xi in the Pi-topology (for all i), then {xk} converges to

x in the P-topology. (In the presence of monotonicity and consistency, this
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is tantamount to saying that the P-topology on X is the product topology
defined by the Pi-topologies on Xi’ i=1,...,n.)

Definition 3. 1) P is continuous from above (below) with respect to

{Pi} i=1,...,n 1if for all i, for every sequence {xik} converging to xi in
Xi and for all y in X if (xl,...,xn)P(yl,...,yn) ((yl,...,yn)P(xl,...,xn))
then there exists M such that for every k > M (Xlk""’Xnk)P(yl""'yn)
((yl,...,yn)P(xlk,...,xnk)).

2) P is continuous with respect to P ,Pn (hereafter continuous) if

10

it is continuous both from above and from below.

Finally, the symbol - will stand for negation.
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3. THE MAIN RESULTS
Our main results can be reduced to three theorems.
Theorem A states existence and characterizes monotone, consistent and

continuous semi-orders on a product space.

Theorem A. Let (Pi}. be semi-orders on (X.}

ieN represented by

i'ieN’

{u Let P be a semi-order on X = HieNXi represented by u. Then the

i}ieN'

following are equivalent:

(i) P is consistent, monotone and continuous w.r.t. Pl""’Pn

(ii) There is a strongly monotone and continuous function fu: R R

satisfying
n .
fu(a-i’ai) = fu(a-i’ai+l) -1, YyVae®, Vv i, ( 2)
such that u = fu(ul,...,un).

In particular, there exists such a P defined by u = Zui.

Theorem B gives the notion of "almost uniqueness" of such a semi-order

on the product space.

Theorem B. Let (Pi}ieN be semi-orders on {Xi}ieN represented by {ui}iEN
respectively. Suppose that Pa and P, are two representable semi-orders on X

b

which are both consistent, monotone and continuous with respect to

P.,...,P . Then (P )'C P
n a

n
1 and (Pb) C Pa

b
Theorem C deals with a joint representation of several semi-orders on
the same space. It will need additional axioms. For two semiorders P and P’

on a certain space X' define the following conditions.
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Al. The concatenation of P and P' is commutative, namely, PP’ = P'P.
. k , M ,\m k
A2. For any k,m € N either (P) C (P') or (P') < (P) and for some k,m €

N, we also have (P)k = (P')m.

Theorem C. Given semi-orders Pl""’Pn on a set X such that Pi is
represented by ui(.), i=1,...,n, the following are equivalent:
(i) there exist a function u: X - R with range(u) = R and positive rational
numbers 61,...,5n such that for all i = 1,...,n, and for all x,y in X

xPiy iff u(x) - u(y) > 61, and

xQ;y iff u(x) > u(y);

(ii) for all i and j in {1,...,n} Pi and Pj satisfy Al and A2.

Corollary D applies the previous results to expected utility

representation.

Corollary D. Let X’ be a set and let Pl,...,Pn be semi-orders on it
represented by O EERREA (respectively), where range(ui) = R for all 1i.
Suppose that for every i,j € N Pi and Pj satisfy Al and A2. Define P on X
= (X’)n by u = Z(l/&i)ui for 5i obtained from Theorem C. Then

(i) P is continuous, consistent and monotone w.r.t Pl,...,Pn;

(ii) If P’ is another semi-order on X which is continuous, consistent
and monotone w.r.t Pl,...,Pn then (P')n; P and Png pr.

Proofs of the main theorems and related results are contained in

section 4.
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4. PROOFS AND AUXILIARY RESULTS

Let Xl""'Xn be given sets with semi-orders P

,...,P defined on them
1 n

respectively. Let X = X x...xXn, and let P be a semi-order on X represented

1
by u. We assume these conditions unless otherwise stated.
Let us first show that strong consistency is too binding a requirement

even for n = 2.

We will say that P is strongly consistent with P, and P, if for all x,y

1 2
in X, xiPiyi and ijjyj imply xPy, where {i,j} = {(1,2}. In the next lemma Pi
are assumed to be representable, whence range(ui) = R. However note that it

suffices that range(ui) D> (a,b) for some b > a + 1.

Lemma 4.1. If P1 and P2 are representable semi-orders. Then there does
not exist a representable semi-order P which is strongly consistent with

them.

Proof. Let x,y,z in X be such that ul(yl) = ul(xl) - e+ 1, u2(y2) = u2(x2)
- e -1, ul(zl) = ul(xl) + ¢ + 1, u2(22) = u2(x2) + &€ - 1, where ¢ is a
positive number less than 1. It follows from the definition of strong
consistency that xPy and zPx. By transitivity of P it implies zPy. Moreover,
u(z) - u(y) >2. Denote the interval [(ul(yl),uz(yz)), (ul(zl)'u2(22))] by d.
For any two points v,w in X such that (ul(vl)’uZ(VZ))’ (ul(wl)’UZ(w2)) e d

and ul(vl) > ul(wl) we get u(v) - u(w) > 2, a contradiction. //

The next four results relate to our concepts of monotonicity and

consistency.
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Lemma 4.2. A representable semi-order P which is Q-monotone from above

(from below) is Q-monotone.

Proof. We will show that Q-monotonicity from above imply Q-monotonicity from
below. The second part is proved symmetrically. Let xPy and yiQoiy'i, i-=
1l,...,n. For every z in X such that y’Pz it follows from Q-monotonicity from

above that yPz. As the range of u is R, u(y) = u(y’). Hence, xPy'. //
The three statements below show interrelations between monotonicity and
consistency. In fact, they illustrate that P-monotonicity, Q-monotonicity

and consistency are mutually independent.

Observation 4.3. Consistency and P-monotonicity do not imply Q-

monotonicity.

Proof. Consider the following example. n = 2, X.= X = R.

1 2

ul(xl) = { Xy if xl<0;

0, if Xy is in [0, 1/2];

Xy - 1/2, if Xl>1/2 ),
uz(xz) = X,-

Pl may be also represented by v defined as follows:

v(xl) = x1/2, if Xy is in [0, 3/2[;

xl/2 + k/2, if Xy is in [1/2+k, 3/2+k[;

xl/2 - k/2 - 174, if 3 is in ]-k-1, -kJ;

x1/2 - 1/4, if Xy is in ]-1, O[ , where k is in N.
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Define u(xl,xz) = V(Xl) + u2(x2) and let xPy iff u(x) > u(y) +1l. Since v

P is consistent and P-monotone w.r.t. P

represents P 27 1

1 and u represents P

and P2. However, P is not Q-monotone: let x = (1/2,1), y = (0,1) and z =
(0,1/5). u(x) = 5/4, u(y) =1, u(z) = 1/5. Hence, xPz and not yPz, namely,

xQy. But yiQoiXi’ i=1,2. This violates Q-monotonicity. //

Observation 4.4. Q-monotonicity and consistency do not imply P-

monotonicity.

Proof. Consider the following example: n = 2, X.= R, u,(x,) = x,, x,P.y. iff
i it i i i'i

xi > ¥y + 1, i=1,...,n. Define u(xl,xz) = (xl+ XZ)/Z and xPy iff u(x)>
u(y)+l, i.e. xl+ X, > yl+y2+2. P is obviously Q-monotone and consistent. Let
. o
x1= x2= 1.1, yl— 0, y2= 1. This means that lelyl and x2Q 2o but xl+x2—
2.2 <3 = yl+y2+ 2. Hence, not xPy and P is not P-monotone. //
Observation 4.5. Monotonicity does not imply consistency.
Proof. Consider the following example: n = 2, X.= R, u.(x.) = x., x,P,y, iff
i i1 i i“i’i

X, > y;t 1, i =1,...,n. Define u(xl,xz) = 2*(xl+ XZ) and xPy iff u(x) >
u(y)+1l, i.e. xl+ x2> y1+y2+1/2. P is obviously monotone. Let X = 0.9, X,=
Y= Yo 0. This means that XlIlyl, but x1+x2= 0.9 >1/2 = yl+y2+ 1/2. Hence,

not xIy and P is not consistent. //

Now we show that continuity also has to be explicitly assumed:

Observation 4.6. Monotonicity and consistency do not imply continuity.
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Proof. Consider the following example of a representable semi-order P that
is monotone and consistent w.r.t. given [Pi)ieN but is not continuous w.r.t.
them.

let n = 2, Xl= X2= R, ul(xl) = Xy, uz(xz) = X2, where ui(.) represents
Pi’ i=1,2. P1 admits also another representation Vl(X)= x/2 + k/2, where x
€ [k, k+1), k € Z.

Define u(x) = vl(xl) + u2(x2) and assume that u(.) represents P.

Let x = (0, -0.1), y = (1, 0) and Y = (1-1/k, 0), k € N. u(x) = -0.1,
u(y) = 1. Hence, yPx, but there is no k such that ykPx, since u(yk) < 1/2

for any k. It is easy to see that P is nevertheless monotone and consistent.

//

Now let us proceed from the definitions of section 2.2 to our first
main result, Theorem A.

The following lemma shows that our concepts of monotonicity are indeed
weaker than strong consistency as implied by Rubinstein (1988) and they
allow us to achieve some positive results.

Lemma 4.7. For any representable semi-orders P .,Pn on Xl""‘X

1’ n

respectively there exists a consistent, monotone and continuous represent-

able semi-order P.

Proof. Let ug be such that for all X.,y; € Xi' XiPiyi iff ui(xi) > ui(yi) +

1 and XiQiyi iff ui(xi) > ui(yi), i=1,...,n.
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Define u(x) = Ziui(xi) and xPy iff u(x) > u(y) + 1. Then P is obviously
consistent, monotone and continuous.

Note that this P is representable, by construction. //

Lemma 4.8. Let P be a semi-order which is Q-monotone, and representable
by u, then there exists f : ﬂn -+ R such that u = £f (u,,...,u), i.e. u,(x.)
u u 1 n il

= ui(yi), i=1,...n, imply u(x) = u(y). Moreover, fu is unique

Proof. Suppose that u(x) > u(y), i.e. xQy. Thus, there exists z in X such
that
u(y) < u(z) + 1 and u(x) > u(z) + 1;

o] . P
Note that yiQ ;X i=1,...,n. Hence, by Q-monotonicity from above,

i ’

yPz, which contradicts the condition u(y) < u(z) + 1. //
Now we are in a position to prove Theorem A.

Proof of the Theorem A. Let us first show that (ii) implies (i). Assume,
then, that u = fu(ul""'un) with fu as in (ii). Q-monotonicity of P follows
from monotonicity of fu’ As for P-monotonicity one should only use (2). P
has to be consistent because of (2) and the monotonicity of fu. Finally, let
us show that the continuity of fu implies that of P. Assume that a sequence
(xik} converges to x, as k - «» in the Pi-topology on Xi' Since range(ui) =

R, this implies that ui(xi - ui(xi) as k - «». By continuity of fu’ u(xk)

K

converges to u(x) which implies that x, converges to x in the P-topology.

k

We now wish to show that (i) implies (ii). By Lemma 4.8, we know that
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Q-monotonicity of P implies the existence of a unique fu: "> R such that u

= f (ul,...,un). We will now prove it satisfies all requirements.
u

Strict monotonicity. Let ai'bi € R satisfy ai> bi. We will show that

n-1 .
for every c_ie R fu(c-i’ai) > fu(c_i,bi). Since range(ui) = R, we can

find x,y,z € X such that ui(xi) = a,, ui(yi) = bi and bi- 1 < ui(zi) < a;-

i
1. Similarly, let wje Xj’ (j = i) satisfy ui(wi) =c;. Note that xPiz but
~(yPiz). By P-monotonicity, (w_i,x)P(w_i,z) and, by consistency,
~((w_i,y)P(w_i,z)) whence (w_i,x)Q(w_i,y) and fu(c-i’ai) > fu(c-i’bi)'
Continuity. Assume the contrary, i.e., that fu is not continuous at
some point a € R". Then there is an ¢ > 0 and a sequence {ak) converging to
a as k =+ «» such that fu(ak) > fu(a) + ¢ for all k or fu(ak) < fu(a) + ¢ for
all k. Let us assume the former, i.e., fu(ak) > fu(a) + ¢. Find xke X such
that (ul(xlk)""’un(xnk)) = ak, an x € X for which (ul(xl),...,un(xn)) = a
and a z € X such that fu(a) + e+ 1 >u(z) > fu(a) + 1. Since a, - a as k -

k

o for each i, ui(xik) - ui(xi), which implies that Xip X

Pi-topology on Xi' However, for all k -(zPak) while zPa, so that x

as k - « in the
does no
k not

converge to x in the P-topology. A contradiction to the continuity of P.

P . n . .
Condition (2). Let there be given a vector a € R and an index 1 <= i <

n and consider fu(a—i‘ai+l)' By P-monotonicity, fu(a_i,ai+l+e) > fu(a) + 1
for all ¢ > 0, and consistency implies fu(a_i,ai+l-s) < fu(a) + 1. Strict
monotonicity of fu also implies that the latter inequality is strict, namely
that fu(a_i,ai+1-s) < fu(a) + 1 for all ¢ > 0. The continuity of fu implies

£ (a_,a;+l) = £ (a) + 1. //

Our next objective is to see to what extent semi-orders on product

spaces which are consistent, monotone and continuous with respect to given
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ones on the original spaces are unique. First we want to examine the
possibility of reverse preference: could it happen that two distinct semi-

orders Pa and P, satisfying the conditions of Theorem A rank two

b

alternatives in opposite direction, namely xPay and bex? We first consider

the case n = 2:

Lemma 4.9. Let P be a semi-order on X which is consistent, monotone and

continuous with respect to Pl and P2. And let x,y € X be such that ul(xl) >

ul(yl) and u2(x2) < u2(y2), but ~(x1P1y1) and ~(y2P2x2). Then - (xPy).

Proof. By Theorem A, P may be represented by u = fu(u Suppose xPy.

l’u2)'
Then, by Q-monotonicity, zPy for z in X with ul(zl) = ul(xl) and u2(22) =

u2(y2). But, by consistency, -(zPy), a contradiction. //

Lemma 4.10 generalizes the previous result for n > 2, but falls short
of excluding preference reversal. Note that while the statement of Lemma 4.9
is symmetric with respect to x and y, this is not true of Lemma 4.10, where
x and y play different roles.

Lemma 4.10. Let (Pi}ieN be representable semi-orders on (X and

i}ieN
let P be a representable semi-order on X which is consistent, monotone and

continuous with respect to P P

10 - m > 2. Suppose that x,y in X are such

that for any i=j ui(xi) > ui(yi) and uj(xj) < uj(yj), but for every i,

iniyi. Then - (yPx).

The proof is similar to the proof of Lemma 4.9.
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Corollary 4.11. Suppose that Pa and P, are two semi-orders on X which

b

are both consistent, monotone and continuous with respect to P ,P

n <
1’ n’

4. Then for any x,y € X xPay implies ~(bex).

The proof follows from monotonicity and Lemma 4.10.

However prefernce reversal is possible for large enough n:

Observation 4.12. Suppose that Pa and Pb are two semi-orders on X which

are both consistent, monotone and continuous with respect to Pl""’Pn’ n >
3. Then there may be x,y in X such that xPay and bex.

Proof. Consider the following example. Let n = 4, Xi= R, ui(xi) =X, i=
1,...,4. Define ua(x) = Zui(xi). As usual suppose that all semi-orders are

induced by corresponding utility functions.

Choose another representation of P .,P,. Let

1’ 4

Vi(xi) = { (k-xi)/lOO + k, if X; € [k, k+0.1];
19.96(k-xi) + k - 1.995, if X; € 10.1+k, 0.15+k[;
(k-xi)/850 + k + 849/850, if X, € [0.15+k, k+1[ },
where k is an integer, 1 =1,...,4.
Define ub(x) = Zvi(xi).
By Theorem A, both Pa and Pb are consistent, monotone and continuous

with respect to P,,...,P,. Let x = (0.1, 0.1, 0.95, 0.95) and y = (0.2, 0.2,

1 4

0.3, 0.3). Then ua(x) =2.1, ua(y) = 1. Hence, xPay. But ub(x) < 0.002 + 2 =

2.002 and ub(y) >4 % 0,999 = 3,996. Hence, bex. //
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Hence, we see that "preference reversal" in the sense of xPay but bex

is possible. However, x(Pa)ny and y(Pb)nx is impossible. In fact, our

n n
Theorem B shows that for any such Pa and Pb’ (Pa) C Pb and (Pb) C Pa. Let us

turn to its proof.

Proof of Theorem B. Suppose y(Pa)nx. Let X' be an alternative in X such

that ui(x i) = ui(xi) + 1 for 1 < i < n, so that fu(ul(x l),...,un(x n)) =
fu(ul(xl),...,un(xn)) for every fu that corresponds to a representable semi-
order P on X which is consistent, continuous and monotone w.r.t Pl""‘Pn'

By Theorem A, yEaz and yEbz for any z € X with ui(zi) = ui(yi) + m

where m, € Z and Zmi= 0. For each z € X define dz-(dlz,...,dnz) (S g™ by diz=
ui(z) - ui(x'). One can find a z with the following properties:
(i) yEaz and yEbz
(ii) (a) 4.%2 0 for all 1 <i=<n
or (b) dizs 0 for all 1 < i < n (but not (a))
or (c) ]diz| <1 for all 1 < i < n (but not (a) nor (b))

Such a z would be, for instance, one minimizing 2|diz| over the set ( z |
u,(z) - u,(x) = m,, where m, € Z and Zm.= 0}.
i i i i i
In case (ii)(a) we have ui(z) > ui(x') whence ziQoix'i and, by
.. o n . . . n n
monotonicity zQ bx'(Pb) x, which implies z(Pb) X and y(Pb) X,
33 ’ 0 ’ ’

In case (ii)(b) x iQ i%1 whence x Qaz and x Qay. However,
fu(ul(yl),...,un(yn)) > fu(ul(xl),...,un(xn)) + n whence we also get yEax’
and zEax'. But this is possible only if diz= 0 for all i which boils down to
(ii)(a).

Finally, consider case (ii)(c). Since diz> -1 we know that
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ui(z) > ui(x) for all i. However, we also know that for some i diz> 0 which

means that ui(zi) > ui(xi) + 1. Monotonicity of Pb means szx whence bex

also holds. //

Corollary 4.13. Let {Pi} on {Xi} be representable semi-orders. Suppose
that Pa and Pb are two representable semi-orders on X which are both

consistent, monotone and continuous with respect to P

,...,P . Then I C
1 n a

(1.)™ and I.C (Ia)n.

b) b

The proof follows from Theorem B and the fact that for representable semi-

orders I(Pn) induced by P" coincides with In, where I is induced by P.

Let us turn to the proof of Theorem C. For two given representable

semi-orders P and P’ on the same space X define:

A(P,P') = { k/m : k,me N, PX c ()™ j.

Lemma 4.14. Suppose P and P' are representable semi-orders on a space X

satisfying Al and A2. Then A(P,P’') is homogeneous, i.e., for every t € N Pk

k

c (PHY™ iff PF ¢ (P )™,

Proof. Throughout the proof let u and u' represent P and P’ respectively.
"Only if" part.

Pk

(P’)m means that for any x,y in X u(x) - u(y) > k 1implies u’(x)

N

letht+l

- u'(y) >m. If then there exists a sequence (xl,.‘.,xt) in X such

that x P¥x t! for all i = 1,....t. Then u(xl) - u(x ') > k for all i =
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. . .
1l,...,t. This, in turn, implies u'(xl) - u'(xl l) >m for alli=1,...,t ,
+

or xl(P')tmxt l.

"If" Eart.

tk tm .

Assume, then, that P c (P") for some t > 1. Since A2 holds there

are two possible cases: 1) Pk c (P')m, in which the proof is complete, or 2)

(P’)m C Pk. In this case, by the if part, (P')tm; Ptk. But, by assumption,

PP ¢ (2 )™, Thus, P = (p')™™.

To show that Pk c (P')m, let there be given x,y € X with kay; we will
show that x(P')my has to hold. Suppose not. Then u(x) - u(y) > k but u’(x) -
u’' (y) < m. Choose a sequence yo,...,yte X with Yo= ¥ and u(yi) - u(yi+1) =
k for 0 < i < t-1. This is possible since range(u) = R. Note that u’'(x) -
u’(yl) < m since ley and this is equivalent to le'y.

By our construction, ~(ylPkyl+1) for 0 < 1 < t-1 which implies, since

(P')mg Pk, that “(yl(P’)myl+1). However, for every z satisfying thz we get

-- again, using the fact that range(u) = R, -- thkz. The latter means that
X(P’)tmz.

Considering the u' scale, we obtain u’'(x) - u’(z) > tm for every z
satisfying thz (equivalently, th'z). Hence, u’(x) - u'(yt) > tm. On the
other hand, -(yi(P')myi+1) for 0 = i < t-1 implies u'(yi) - u’(yi+l) <m

whence u’ (x) - u'(yt) < tm. Combining the inequalities one obtains u'(yi) -

u'(yt) = m in contradiction to the choice of yi- //
Lemma 4.15. If two semi-orders P and P’ satisfy A2, then Q = Q’.

Proof. Let k and m satisfy (P)k= (P')m. (P)k is a semi-order on X and so is



27
(P')m. Since they are identical, the weak orders (Q)k and (Q’)m are also

identical. However, (Q)%= Q and (Q")™= Q'. //

We now proceed to our third main result, Theorem C.

Proof of Theorem C. (i) => (ii)
Let us begin with A2, Consider Pi’ Pj and k,m € N. By (i), x(Pi)ky iff
u(x) - u(y) > k6i, whence (Pi)kg (Pj)m iff k&is méj. Hence,
k m m k . . .
(Pi) C (Pj) or (Pj) c (Pi) . Since {61} are rational equality would hold
for some k,m € N.
As for Al, note that x(Pin)y iff u(x) - u(y) > 61+ 6j, which means
that P,P.,= P.P..
ivj ji
ii) => (@{
Let us first introduce some additional definitions. For a semi-order P
* *
on X, let P be the binary relation defined as follows: xP y iff xIy and for
*
every z satisfying zQx we have zPy. Intuitively, xP y means that x is the
"supremum" of { w | wly }. By the usual concatenation of binary relations
* *
(P )k is well-defined for k = 1. Let us also define (P )O to be E (which

k . * k
for k 2 1 as the inverse of (P ) .

Similarly, we will refer to the expressions of the type (P*il)kl"'(P*is)ks’

* -
corresponds to equal u-values) and (P )

where ire {1,...,n } and kre Z for 1 <r < s.
The proof will be simpler to carry out by induction on n. Let us begin
with n = 2.

Choose any point x, in X and set u(xo) = 0. By A2, there are m,t € N

0

such that (Pl)m= (Pz)t. Assume without loss of generality that g.c.d(m,t) =

1, where g.c.d. stands for the greatest common divider. This assumption can
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be made thanks to Lemma 4.14. Define M = t * m. We will construct a function

u such that

u(x) - u(y) > 6lE t iff xPly and ( 3)
u(x) - u(y) > 62= m iff xP2y
For every integer k let us define V(k) = { y € X | there exist sequences
K k_ and i i h th p*. kL @" Ok d3sk s, =k
10Ky an 11,...,15 such that y( il) R is) SX an i = }.

Intuitively, V(k) is the set of all y’'s for which we have to assign the
value u(y) = k. Note that V(k) » @ for every k € Z.
Claim 1. For every k and every y,z € V(k) it is true that yEz.

Proof. For k € Z there are unique a b ¢, such that k = a M+ b t + c,m

k> "k’ Tk k k k
*
with ake 2, 0 = bks m and 0 =< cks t. Note that Al and A2 imply that (P l)m =
* _t * % * %
(P 2) and that P lP 2™ P lP 9 Hence, every y € V(x) satisfies
mak+bk * K
y(P 1) ... (P 2) x, which implies the desired conclusion. //

Claim 2. Suppose y € V(k) and z € V(g) with k > g. Then yQz.

Proof. Since u; represents Pi (i=1, 2), for every w,,w ,t.e X, if

1'¥20 505
* * I3 . 3 >
wlP i and th it2 (i =1,2) then let1 iff WZQtZ' Using this argument

inductively, for every w,,w ,tze X, and every k,h € Z, if

1'¥2 Y

P )" )P, and ¢ (" H)X" )P, iff
wl( l) ( 2) w, an tl( 1) ( 2) t, then letl i WZQtZ'

Consider g = k - 1. There are k and h such that kt + hm = -1. For y €

2

V(k) and z € V(g) choose w € V(g-1). Then y(P*l)k(P*z)hz and
z(P*l)k(P*z)hw. Hence, yQz iff zQw. It turns out that one of the following
is true:

(1) for every k,g, vy € V(k) and z € V(g) with k > g implies yQz.

(ii) for every k,g, vy € V(k) and z € V(g) with k > g implies zQy.

(iii) for every k,g, vy € V(k) and z € V(g) with k > g implies yEz.
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One only needs to know that for k = t and g = 0 y € V(k) and z € V(0)
satisfy yQz to conclude that (i) is the case. //
At this point one can define u on UkeZV(k) by u(y) = k for y € V(k). It

is obvious that u satisfies (3) for x,y € U V(k).

keZ

Next, choose xle V(l). Denote I = { x | lexQxO }. For every x in I

define u(x) = ul(x) / ul(xl). For every k € Z define a set V(x,k) as V(k)
was defined for x = Xq- Note that for y € V(x,k) and z € V(k), w € V(k+l) we
have wQyQz. Furthermore, for every y € X there are x € I and k € Z such that
y € V(x,k). Hence, we define u(y) = k + u(x).
*

It is easy to see that for every x,y € X and i = 1,2 xP Y iff u(x) -
u(y) = 6i.

We now turn to the induction step. Suppose n > 2. We already know that
l""’6n
such that XPiy iff u(x) - wy) = 6i and xQy iff u(x) > u(y). Without loss of

for Pl""’Pn there is a function u and positive rational numbers §

generality assume that 5i€ N. Define P’ by xP'y 1iff u(x) - u(y) > 1, so that
Pi= (P’)gi for 1 < i < n-1. Let u’, §’' and S’u represent P and Pu’ namely,
u’' (x) - u'(y) > §' iff xP'y;
u’'(x) - u'(y) > 6u iff xPuy;
and u'(x) - u'(y) >0 1iff xQy,
for every x,y € X (The existence of those is guaranteed by the proof for the
case n = 2.). Furthermore, §' and 6'u may be assumed to be integer w.l.o.g.

Hence, u’' also satisfies u’'(x) - u’'(y) > 6’is 6i* §' iff xPiy for 1 < i < n.

this completes the proof of the theorem. //

Next we note that axioms Al and A2 are independent.
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Observation 4.16. A2 does not imply Al.

I

Proof. Consider the following example: n 2, X =R, ul(x) = X,
u2(x) = { 2k + 5/8(x - 3k), 3k = x < 3k+2, k e Z;
2k + 5/4 + 3/4(x - 3k - 2), 3k+2 <= x < 3k+3, ke Z.)
Define xPly <=> ul(x) - ul(y) > 1 and xP2y <=> uz(x) - u2(y) > 1.
Pl and P2 satisfy A2: (Pl)3 = (P2)2 and for every k,1 € N k = (3/2)1 implies
(Pl)k - (Pz)l. However, to see that Al fails to hold take x =1, z = 3.45.

szPlx but -(zPlex). //

Observation 4.17. Al does not imply A2.
Proof. Again consider an example with n = 2, X = R, ul(x) = X. For 0 < x < 2

define

A
"

A
o

uz(x) = { (1/2)x, 0 .1;

0.05 + 2(x - 0.1), 0.1

A
kS
N

0.2;
0.25 + (x - 0.2)/2, 0.2 = x < 0.3;
X, 0.3 = x = 2. }

Extend u, to R in the unique way that will satisfy

u,(x + 1) + 1= uz(u‘lz[u'lz(x) + 1] + 1)

(it is easy to see that there exists a unique continuous and strongly

monotone u2 which satisfies this condition).

Finally, define P. and P2 by uy and u, respectively with a just-

1 2

noticeable difference of 1.

By definition, P1P2= P2P1. However, A2 does not hold: for x = 0.1 and y

= 1.12 we have yP,x but ~(szx) while for z = 0.2 and w = 0.76 zP,w holds

while zle does not. //



FOOTNOTES

1. Interval order is an irreflexive binary relation R such that xRy and zRw imply
either xRw or zRy. It is easy to see that any semi-order is an interval order but
not vice versa. Viewing semi-orders as particular interval orders we may suggest
another interpretation of semi-orders.

Suppose that X is a set of signals about real quality of alternatives
(like test score signals about students’ knowledge). When decision maker observes
x he/she does not know for sure that the true quality is x, but he/she may have
in mind for every x a range of qualities that can generate the signal x. Suppose
further that a decision maker prefers x to y if and only if he prefers any true
quality that can generate X to any true quality that can produce y. Then if
ranges above are the same for all x in X such a model induces a semi-order on X.

For instance, in many cases one may assume a fixed error rate of measured
quantity (with respect to the true one.) On a logarithmic scale we thus get a
fixed range length.

Furthermore, in Lapson, Lugachev (1983) there are several sectors to each
of which there corresponds an "error rate" induced by applied technology. Thus,
it may serve as an example of "correlated semi-orders".

In these examples semi-ordered structures arise not as a result of
psychological peculiarities but rather as a result of imprecise measurement or
lack of information.

2. This observation is due to David Schmeidler.
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