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1. Introduction

It is common in the analysis of economic environments to consider the
effects of making contingent plans. Typically, the ability to formulate a
contingent strategy before a particular state of Nature is realized enhances
an agent’'s choice set and, if it does not strictly improve welfare, usually
does not reduce it. We analyze a game situation in which two agents may
interact strategically either before or after a random move of Nature.

Since the strategy choices may be contingent on the state, players do not,
by moving earlier, lose any ability to exploit the information that
knowledge of the state may impart. The standard analysis, in the context of
expected utility maximizing agents, suggests that offering the players the
opportunity to decide earlier has no welfare effects. Alternatively stated,
if agents can make contingent plans in an expected utility framework, the
act of waiting to observe the state of Nature provides no value to the
players.

The objective of this paper is to demonstrate that such a result is
highly dependent on the assumption of expected utility agents. Expected
utility requires strong restrictions on the form of preferences over
lotteries, restrictions which in effect imply the irrelevance of the order
of moves described above. Since a change in the order of moves induces a
change in the character of the lotteries which face an agent, a more general
class of p?eferences may suggest that such a change will not be innocuous
(for a recent survey, see Machina, 1987). 1In particular, if preferences
under uncertainty are such that a player strictly prefers to wait until

Nature moves before he makes his move, even if players are impatient, that
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is, even in the presence of economic reasons which encourage an earlier
rather than a later agreement, we may witness an incentive for a player to
delay coming to an agreement.

The paper describes a strategic situation in which players may play a
simultaneous move game either before or after a move of Nature. The
structure is such that if the players were expected utility maximizers, they
would be indifferent over the order of play.1 However, if at least one of
the players is a non-expected utility maximizer, for example, if player one
has preferences over lotteries which exhibit Allais paradox type of behavior
(Allais, 1953), such a player may strictly prefer to wait before playing the
game. It is known that the Allais paradox violates the independence axiom
and therefore affects evaluation over compound lotteries. Since our example
contains a component game with a Nash equilibrium in mixed strategies--
different compound lotteries are created by different strategy choices. The
general form of the Allais paradox known as the common consequence effect
has the feature that if the possibility of a bad common outcome can be
eliminated, a non-expected utility maximizer will become less willing to
bear risk. By waiting until after Nature moves, before playing the
component game, player one forces himself into a position of lower risk
tolerance. In equilibrium, then, player two is forced to offer a more
attractive equilibrium mixing.

The result has implications for both non-expected utility theory and
for economic'game theory. 1In one-person decision problems with non-expected

utility, the problem of time consistency often suggests that decision-makers

lOther papers that examine the integration of game theory and non-
expected utility include Crawford (1988), Karni and Safra (1986),(1989), and
Dekel, Segal, and Safra (1989).
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have a strict preference to be able to commit themselves earlier rather than
later.2 This example shows that in a strategic setting, such a preference
may be reversed. In economic games, specifically dynamic games, it is of
interest to determine when players may agree to participate in a trade. 1In
labor economics the reason for occurrence of strikes and delays in reaching
agreements is still unclear. This problem is often referred to in the
literature as the Hicks’ paradox (Hicks, 1953) (see also Kennan (1986) and
Hart (1989)). The general question of why we witness delays in bargaining
is a characteristic problem. While our framework is different from a
standard dynamic bargaining game, the result may shed some light on the

issue of timing of agreements.

2. The Case of Expected Utility Maximizer

Consider the strategic situations in Figures la and 1b. In la, Nature
moves left (with probability pl) or right, after which two players
participate in a simultaneous move game. The payoffs depend on the move of
nature: if nature moves left, they play game Gl; otherwise they play G2. It
is assumed that both G1 and G2 possess a unique Nash equilibrium. Figdre 1b
describes an alternative situation in which players may meet before Nature

moves and play, instead, a simultaneous game, G, in contingent strategies.

A strategy choice of a player commits him to a play in each state of Nature.

For more on the time consistency problem of a non-expected utility,
see Karni and Safra (1989), Machina (1989).
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Figure 1

The two structures can be integrated by the following extensive form
game. In period one, players decide independently whether to meet before
Nature moves and to play the simultaneous game G or to postpone play until
after the state is realized. If both agree to meet, G is played and players
are committed to their strategy choices--Nature moves and payoffs are
realized according to these strategies. If either or both decide not to
meet, then Nature moves and players are forced to play either G1 or G2. We
will refer to this outcome as ‘'delay’ to agreement.

It is well-known that if players are expected utility maximizers, the
outcome of the game does not depend on which situation the players are in.
In either case, the unique Nash equilibrium of each subgame determines the
ex ante distribution of outcomes. If the players do meet earlier rather

than later the unique equilibrium in contingent strategies simply reproduces

the Nash equilibrium strategies of each component game. Obviously, with
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expected utility preferences, players are indifferent between being able to
contract (i.e., play the contingent strategies) earlier or being forced to
wait until after the move of Nature. And, if there are economic reasons for
coming to an agreement earlier, players will strictly prefer to do so. For
example, suppose that players’ payoffs are discounted from the time of
agreement. In such a situation, both players, if they are expected utility
maximizers, will strictly prefer the opportunity to play the contingent

strategy game.

3. Some Remarks on Non:linear Utilities’

Since the original presentation of the Allais paradox (Allais,1953) the
expected utility framework has been extensively challenged by economists as
well as researchers from other disciplines. The expected utility framework
assumes linearity in the probabilities, that is, the utility from a lottery
(X,p) can be represented by a functional V(x,p) = Z piU(xi). However, the
Allais paradox as well as other experimental evidence suggests that agents
making decisions under uncertainty exhibit a systematic violation of this
linearity.

The linearity in probabilities can be represented graphically by
considering the set of all possible lotteries on the fixed payoffs x, < x, <

1 2
Xy Observe that every such lottery can be described by a pair (pl,p3)
(with P, = 1 - Py - p3). The set of all such lotteries is just the unit

simplex in Figure 2. Since the prizes of these lotteries are fixed the

individual preferences are a map of upward sloping indifference curves; an

This section relies heavily on Machina's (1987) survey. We present
here only the technique that is essential for the understanding of our
analysis in the next section.
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increase of p; must be offset by an increase of Py A northwestern movement

Pl ¥ Pl

(2a) Expected Utiilty (2b) Indifference curves
indifference curves with "fanning out"

Figure 2

in this triangle represents a move towards stochastically dominating
lotteries. It is generally assumed that such a move is always preferred by
any decision-maker--whether or not she is an expected utility maximizer.
When an individual maximizes expected utility, her preferences in the
(pl,p3) plane are linear with slope [U(xz)-U(xl)]/[U(x3)-U(x2)]. Notice
that expected utility implies not just linear indifference curves but
parallel curves as shown in Figure 2a.

A deviation from the expected utility framework implies that the
indifference curves may no longer be either parallel or straight lines. The
Allais paradox itself can be explained simply by relaxing the assumption of

parallel indifference curves and allowing them to "fan out" as in Figure 2b,
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that is, higher level indifference curves are also steeper.

4., Non-éxgected Utility Players--An Example of Delay

Let us now reconsider the problem presented in Section 2 to illustrate
that a delay in such games may occur when at least one of the players is a
non-expected utility maximizer. For simplicity, we analyze the example with
specific numerical entries. It will be clear that the argument holds for
any similar class of prizes.

Fix G, to be the trivial game, Gl = (0,0) and G, to be the bi-matrix

1

game in Figure 3

2

Player Two
| 2 r
u 5,0 0,3
G2 = Player One
d 0,3 3,0
Figure 3

Thus, if Nature chooses left, then both players get 0. If right, then they
play the game G2. The outcomes in the matrix can be considered as monetary
payoffs.

If the players decide on their strategies before nature moves, then
they face the 2 X 2 matrix as in Figure Four. If player 1 plays up and
player 2 plays left, then player 1 faces the lottery that gives him 0 with

probability Py and 5 with probability Py Player 2 gets O with probability



one.

Plaver 2
l £ r
u (0,pl;5,p2), 0 0, (0,p1;3,p2)
G = Player 1
d 0, (0,p1;3,p2) (O,pl;3,p2), 0
Figure 4

We assume that both players have a preference relation in the space of
lotteries (or probability distributions) that are represented by continuous
functions Vi (1 =1,2), which are also monotone with respect to the order
induced by first order stochastic dominance. Let player 2 be an expected
utility maximizer, which implies that V2 is "linear in the probabilities"
(this assumption is not necessary).

It is clear that in both games G and G there is no Nash equilibrium

97
in pure strategies. It is also clear that in both games if player 1 plays a
mixed strategy (v, 1 - v) in which the weight vy of playing up is larger than
1/2, then player 2 will choose to play right. Similarly, if y < 1/2, then
player 2 will play left. Hence, equilibrium requires that player 1 play
(1/2,1/2).%

Consider now the equilibrium mixed strategies of player 2. For this we

need to specify more precisely the shape of Vl' We assume that Vl satisfies

aObserve that the argument for vy = 1/2 holds whether or not player two
is an expected utility maximizer.
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the betweeness property (Chew (1981l), Dekel (1986), Fishburn (1983)): Vl(A)
= Vl(B) => Vl(AA + (1 - XM)B) = Vl(B), for all lotteries A, B and X € [0,1]},
where XA + (1 - ))B is the lottery that yields the outcome of A with the
probabilities of A, multiplied by X, and the outcomes of B with B's
probabilities, multiplied by (1 - A). This implies that in the triangle
representation (described in Section 3) player 1's indifference curves are
straight lines (not necessarily parallel to each other). We further assume
that player 1l’'s indifference curves "fan out." The betweeness property
clearly implies that player 1 will choose to mix exactly when he is
indifferent between his pure strategies (assuming, as stated above, that he
uses the usual reduction method to evaluate mixed strategies (see Dekel,
Safra and Segal (1989)and Segal (1989)).

Consider the game G,. If player 2 plays the mixed strategy (§, 1 - §)

2
(6 for left, 1 - § for right), then player 1 has the choice between the
lotteries Al(5) = (5,6;0, 1 - §), if he plays up, and A2(6) =

(0,6;3, 1 - 6§), if he plays bottom. Let a be the equilibrium mixing of the

second player such that a mixing of a makes the first player indifferent

between Al(a) and Az(a). That is,
Al(a) =- (O>l'a;5’a) ~]. (O,G; 3v l'a) - A2<a) (l)

When § < a we have Vl(A2(6)) > Vl(Az(a)) = Vl(Al(a)) > Vl(Al(S))
(inequalities follow from the monotonicity of Vl), hence bottom is chosen,.
If 6§ > a then, similarly, Vl(A1(6)) > Vl(A2(6)), and hence top is chosen.
This implies that the unique equilibrium in G2 has player 1 play the mixed

strategy v = 1/2 and player 2 play the mixed strategy § = a. With these
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strategies, the game yields player one the lottery
which reduces to

Da = (0, Py + (1 - a)p2/2 + ap2/2; 3, (1 - a)p2/2; 5,ap2/2)

= (0,<1+pl>/2; 3.(l-a)p2/2;5,ap2/2) (2)

Now consider the game, G. If player two plays the mixed strategy (§,1-
§), then player one faces the lottery 81(6) if he plays up or B2(5) if he

plays down. Let B be the equilibrium mixing of player two such that

B (B) = (0,1-8+p18;5,0,8) ~ (0,8+(1-B)p; 3, p,(1-8)) = B,(H) (3)

As before, G has a unique Nash equilibrium in which player 1 plays y = 1/2
and player 2 plays § = B.Given these strategies, player one is faced with

the lottery,
(Bl(ﬁ),l/2; Bz(ﬁ),l/Z),
which reduces to

D, = (0, Bpy/2 + (1 - B)/2 + 8/2 + (1 - F)py/2; 3,(1 - B)D,/2,5,60,/2)

= (0, (1+p})/2;3,(1-8)P,/2;5,8p,/2) “)
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The question now arises about the relationship between a and 8. It is

clear that if player one is also an expected utility maximizer, then o = ﬁ.s

Proposition 1: When the preferences of player one exhibit fanning out, 8 <

a and a < ﬁ+(l-ﬁ)pl.

Proof: Suppose that a < . Compare the indifference curves of player one

through Bz(ﬂ) and Az(a) respectively.

A, (a)=a l-a 1
2 / (l-ﬁﬂvlﬁ
B,

(B)=+(1-£)p,

Figure 5

5One can easily prove this claim by showing that a = 8 is derived by
equating the slopes of the indifference curves.
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Since a < 8, (1) and (3) imply that Vl(AZ(a)) > Vl(B2(ﬂ)). The slope of the
indifference‘curve through Az(a) is a/(1-2a) while the slope of the curve
through Bz(ﬂ) is B/(1-28). Fanning out implies that higher utility

indifference curves are steeper. Thus,

a/(1-2a) > B/(1-28) (3)

Simplifying yields a contradiction--a > f. Similarly, one can prove that a <

B+(1-B)py //

Proposition 2: If the indifference curves of player one exhibit fanning
out, there is a delay in reaching agreement as the first player strictly

prefers to wait until the realization of the move of nature.

Proof: Comparing the lotteries Da and Db ((2) and (4)) yields that since

a > 8, Da stochastically dominates Db and thus, Vl(Da) > Vl(Db)' //

Remark: Since the inequality is strict, it is clear that even when player
one is impatient--that is, even if his utility is defined both on the
equilibrium lotteries and on the date in which the strategies are decided
upon, then as long as his impatience is sufficiently small, the above result
continues to hold and he prefers to wait to the second period.

In the context of decision theory and non-expected utility, this result
is interesting since, typically, in one person decision problems, it is
advantageous to be able to commit to decisions earlier rather than later.

This preference generally arises because of time consistency problems.
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Suppose that an individual realizes that the actions that maximize his
utility today are such that at some future point he would like to change
them. Unless the player can commit himself to a sequence of actions, the
requirement that his own decisions be time consistent enters into the
problem as a constraint, thus reducing the possibility set. A non-expected
utility maximizing player would generally wish to commit to an original plan
and not to wait for the realization of the state of nature. The example
above illustrates that this intuition does not carry over to a game context.

Observe that in both G and G2, the first player plays the mixed
strategy(.5,.5). Thus there is no issue of time consistency on his part
even though he is the non-expected utility maximizer. It is the second
player (the expected utility maximizer) who changes his equilibrium strategy
between G and G2. The change of strategy occurs however because some of the
uncertainty is resolved and there is now a different mixing that makes the
first player indifferent between playing up and down. In particular, once
the game G2 is played the uncertainty regarding the state of nature is
resolved and the possibility of getting (0,0) is eliminated. Our
assumptions regarding player one’s preferences imply that the possibility of
being at G affects his evaluation of lotteries associated with the game G2.
Thus the mixing that makes him indifferent between up and down are no longer

the same. Once the uncertainty concerning game G, is resolved, player one

1

(in accordance with behaviour observed in tests of the Allais paradox)

becomes more reluctant to bear the risk embodied in game G Player two is

9
thus obliged to offer a more favorable gamble in the equilibrium of that

game .

It is important to note however that once we compare the games before
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and after the revelation of the state of nature we do so by analyzing the
way the player evaluates these alternatives at the outset of the game, that
is, period zero. Thus even if we consider the case of waiting for the move
of nature before playing, the evaluation of this possibility takes into
account the choice of Gl’ (0,0). But in evaluating the equilibrium outcome,
player one realizes that from the point of view of period zero, the
equilibrium mixing a (in G2) implies a lottery that stochastically dominates
the equilibrium lottery of the game, G (that is, the mixing B). He thus
decides to wait another period in order to force the second player to play

the mixed strategy, a.

5. Concluding Remarks

The timing of agreements is important in many economic environments --
an earlier agreement frequently means that gains from trade may be enjoyed
sooner or for a longer period. Nevertheless, we often observe apparently
costly delays to agreement. The explanation for such delays typically
encounters a paradox. Hicks articulated the puzzle with respect to strikes
-- if a theory can predict the outcome of a strike which is costly to both
parties, how can the theory also explain the failure of the parties to agree
to the same outcome before incurring these costs (Kennan (1986)7? The example
in this paper illustrates that even when there are no asymmetries of
information, if agents are not expected utility maximizers but behave in
accordance with preferences commonly observed in tests of the Allais
paradox, they may exhibit a strict preference for delaying agreement. The

Allais paradox may help to shed light on the Hicks paradox.
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