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Abstract

The purpose of this paper is to question the presumption that route
guidance and information systems necessarily reduce traffic congestion, and to
point out the need to consider the general equilibrium effects of information.
A simple model of the morning rush hour is adopted in which commuters choose a
departure time and one of two routes to work. While expected travel costs are
reduced by perfectly informing all drivers about route capacities, this is not
necessarily the case if imperfect information is provided. Furthermore, if
-the number of drivers is random, both perfect and noisy information can raise
expected costs. A heuristic explanation is that, absent tolls, congestion is
an uninternalized externality. Information can cause drivers to change their

departure times in such a way as to exacerbate congestion.









Introduction

Funds for highway investment have long failed to keep pace.with growing
traffic volumes and congestion. Traffic engineers and operations researchers
have been redirecting attention to other measures for congestion relief.
Experiments with route guidance and information systems are under way in
several countries. Systems like LISB in Berlin and Autoguide in London are
intended to provide on-line up-to-date information to drivers. Such
information can influence route and departure time decisions as well as
driving speed. A majority of experts believe guidance systems will be in use
by the mid-1990s (see the survey of Bieder (1987), and overviews of Boyce
(1988) and Ben-Akiva and de Palma (1989)).

In the few pilot studies of route guidance and information systems a
small fraction of drivers has been equipped with in-vehicle communications
devices. Preliminary results suggesting that the information aids drivers
give the impression that information necessarily improves traffic conditions.
What this overlooks are the general equilibrium effects of information. When
drivers with communication devices receive information and alter their
behavior, they affect driving cénditions for others, both those with devices
and those without. Moreover, if uninformed drivers know that informed drivers
are out there they may adjust their behavior too, albeit on a routine rather
than daily basis since they lack day-specific information. This may cause
informed drivers to make further adjustments, and so on.

In equilibrium, it is conceivable that uninformed drivers could
experience an increase in costs that more than offsets the gains to informed
drivers.1 A heuristic explanation for this is that, with unpriced congestion,
drivers ignore the effects of their actions on other drivers. In economic

parlance, there is an uninternalized externality. There is no reason to



believe that in such an environment more information is necessarily
better, even if all drivers receive the same information.

The purpose of this paper is to examine analytically the effect of
information on drivers’ travel costs when congestion is underpriced: that is,
no road tolls or parking fees are levied. Tsuji et al. (1985) haye also
investigated this topic at the analytic level. They focus on the benefits
from route guidance systems in reduced travel time costs for guided vehicles.
Our work goes further in three respects: (1) we allow for schedule delay as
well as travel time costs, (2) we model congestion explicitly, and (3) we
consider departure time as well as route choice.
| Since a general analysis of this extended problem would be very
difficult, and since our objective is to exposit some basic ildeas, we adopt a
simple model of the most severely congested environment: the rush hour.
Drivers are assumed to commute each morning from a common origin to a common
destination connected by two routes. Drivers receive any information early
encugh that they can adjust both their departure time and route. Adjustments
to information on these two margins are shown to affect congestion quite
differently.

The focus of this paper is on one potential source of inefficiency from
information systems: drivers who receive common information may tend to make
similar route and departure time decisions, thereby increasing congestion.
Ben-Akiva and de Palma (1989) call this behavior "concentration". Drivers
may also fail to predict how others will react on any given day to
information, the possible result again being convergence in actions and
greater congestion. This problem, which Ben-Akiva and de Palma (1989) call
“overreaction", is not studied here. Also sidestepped are how the response

of informed drivers to information affects uninformed drivers, and what



fraction of drivers it is optimal to inform, an issue addressed

experimentally by Mahmassani and Herman (1988).2 We do however consider the
case where a single driver is informed in order to measure the benefit derived
from proprietary information. This may approximate the benefit participating
drivers experience in pilot studies of route guidance and information systems,
in which only a small fraction of vehicles on the roadway are guided.

In the next section of the paper we outline the model and describe user
equilibrium in a nonstochastic environment. Section 2 describes the various
sources of uncertainty facing automobile drivers. Section 3 considers user
equilibrium with stochastic road capacity and zero information. Section 4
measures the benefits accruing to a single individual from proprietary
information, and then examines the case where all drivers are fully informed
about capacity. Expected travel costs in equilibrium under zero information
are compared with expected costs under full information. Imperfect
information is considered in Section 5, correlation in route capacities in
Section 6, and demand variability in Section 7. Section 8 summarizes and

discusses policy implications.

1. A Nonstochastic Environment

Our model derives from a seminal paper by Vickrey (1969) that has been
extended by Hendrickson and Kocur (1981), Fargier (1983), Newell (1988) and
Arnott et al. (1988, 1989) inter alios. Each morning N identical commuters
travel from a common origin (home) to a common destination (work downtown)
using one of two routes. Individuals are assumed to have a common preferred
arrival time (e.g. their official work start time), t‘. The cost of arriving
early is taken to be B per unit of time early, and the cost of arriving late 7

per unit of time late. The unit cost of in-vehicle travel time (including



vehicle operating cost and the opportunity cost of time) is a. The trip cost
of a commuter departing at time t and using route j, j = 1,2, is thus

C,(t) =« T (t) + B max [0, t'-(t+TJ(t))] + 7 max [0, t+TJ(t)—t'], (1)
where Tj(t) is travel time on route j for a driver departing at time t.

Travel on route j is assumed to be uncongested except at a bottleneck
with flow capacity SJ. If the arrival rate at the bottleneck exceeds
capacity, a queue develops behind it. Free-flow travel time between home and
the tail of the queue at the bottleneck, and after clearing the bottleneck and
reaching work, are taken to be the same on the two routes; without loss of
generality they can then be set to zero.3 Travel time is thus simply

T (t) =D (t)/s,

J j ]

where Dj(t) is the number of vehicles in the queue on route j. If rj(t) is

the departure rate from home along route j at time t then
t
D (t) = f r (Wdu - s (t-t ),
J J J aj
t
q]
where tqj is the time at which queuing starts on route j.
Drivers are assumed to know the daily departure rate on each route. In
equilibrium, no driver can reduce travel cost by changing route or departure

time. Equilibrium on route j, with capacity sj and Nj drivers, is shown in

Figure 1. The number of vehicles in the queue 1s measured by the vertical

|Insert Figure 1]

distance between the cumulative departures and cumulative arrivals curves.
Travel time is measured by the horizontal distance. From the beginning of the
rush hour at time t the queue builds up to a maximum for the driver

aj

departing at time tnJ and arriving on time at t’. The queue decreases

v N
thereafter, reaching zero at time tqJ + gl when the last driver departs.

J



Total travel time costs are given by a times the area ABCA in the figure,
early arrival costs by BoAEFA, and late arrival costs by ¥oEGCE.
Equilibrium travel cost per driver is derived as follows. The first

»
driver incurs a cost of early arrival B(t —tq)) and no queuing time cost. The
N »
last driver incurs a cost of late arrival of 7(t 5 + gi - t ) and again no
d 3
queuing time cost. Equating the two drivers’ costs, one obtains t ; = t’ -
q

N,
¥ 3 and cost per driver C = & J , Where & = Br_ is half the harmonic
B+y 5, J 5, B+y

=

=

mean of B and ¥. With two routes, equilibrium dictates C1 = C2, or 8 gl =
1

N s
8§ -2 . With N + N = N, the solution is N = —— N and C =C =C =
S 1 2 1 S +s 1 2
2 1 2
N
3 Total costs are
s +S
1 2
2
e N
TC® = &5 — - (2)

In the nonstochastic equilibrium, total travel costs thus depend only on
aggregate capacity, not on how it is allocated between routes. Costs are also

independent of the unit cost of travel time, a.

2. A Stochastic‘Envifonment

2.1 Sources of uncertainty

The nonstochastic setting of Section 1 ignores fluctuations of various
sorts that affect traffic. Some are predictable weekly and seasonal
fluctuations in commuting patterns. Others are unpredictable (accidents and
signal failures), or only imperfectly predictable (bad weather and transit
strikes). Since drivers can adapt to predictable fluctuations without the
help of information systems, only unpredictable fluctuations are considered

in this paper.4 For simplicity, random factors that affect traffic conditions



are assumed to be day-specific, i.e. unchanging over the course of the day.5

Probably the greatest uncertainty facing drivers 1is road capacity.

Poor visibility, precipitation and other adverse weather conditions reduce
safe driving speed and affect flow capacity in a continuous manner. Accidents
and road repairs that block traffic lanes impact capacity discretely.

In addition to these disruptions, transit strikes, gasoline rationing and
other shocks may induce commuters to change their mode of travel. Variations
in the mix of commercial and noncommercial vehicles, and commuting and
noncommuting traffic also affect congestion and so on. These shocks can be
viewed as unpredictable demand fluctuations. As shown in Section 7, the
impact of information can be quite different where there are demand, rather

than capacity, fluctuations.

2.2 Information and quality of information
Two polar information regimes are considered in subsequent sections:
zerc information and full information.

With zero information, users learn nothing about road capacities or
demand on a given day. Departure time and route decisions, which must then be
based on unconditional probability distributions, are the same each day.

Users are assumed to have rational expectations, perhaps acquired with long
experience, so that the probabilities they perceive coincide with the true
unconditional probabilities.

With full information, users learn capacity and demand each day.6
Information is assumed available sufficiently early that users can adjust
their departure time and route.7 Equilibrium each day is thus given by the

deterministic solution (2) of Section 1 with the values of S1’ s2 and N

realized on that day.



Zero and full information are extremes. Frequently, individuals receive
imperfect day-specific information. Imperfect information can mean one of two
things: either partial information, i.e. information about traffic conditions
on only part of the road network, or noisy information, which reduces but does
not eliminate uncertainty about part or all of the network.

We characterize partial information in tbe case of two routes with
stochastic capacity and nonstochastic demand by assuming a signal concerning
capacity is received for one of the two routes. With complete information, a
signal is received for both routes.8 We characterize noisy information by a

quality index, Q, ranging from 0 (no information) to 1 (full information).

3. Equilibrium with Stochastic Capacity and Zero Information

3.1 The zero information setting for one route

We begin by considering one route with a daily capacity s, where s = s
with probability (1-w) and s = s, < S, with probability n.9 In the zero
information setting, drivers are assumed to know the probabilities of high and
low capacity, but nothing further about capacity on a given day. We assume
drivers are risk neutral, so that each minimizes expected cost.10 In
equilibrium, expected costs are thus constant during the departure period.

The analytical solution for the zero information regime, which is rather
tedious even for this simple case, is derived in Arnott et al. (1988). For
clarity of exposition we adopt the numerical values given in Table 1. The

cost parameters a, B and y are taken from Small (1982). (The value of t" is

immaterial.)

[Insert Table 1]

Expected costs per driver under zero information, Co, are plotted against the

probability of low capacity in Figure 2 (the CF and Cf curves are discussed



[Insert Figure 2|

below). Observe that Co increases monotonically with w, a property that can
be shown to hold for all parameter values. While this is intuitive, it is not
logically obvious because the possibility of low capacity has a damping effect
on the departure rate, and hence congestion. But this turns out to be
insufficient to offset the direct effect of lower capacity in increasing
congestion.

Another characteristic of Co, central to later results, is that it bulges
upward for intermediate values of w. While it is difficult to elucidate
without going into the derivation, this behavior is central, and hence worth
an attempt at explanation. In equilibrium, all drivers incur the same
expected cost, so it suffices to consider one, say the last driver to depart.
With n=0, capacity is high with certainty: the last driver arrives late but
never encounters a queue, as in Figure 1. As m rises, the last driver faces a
growing probability of a longer trip and greater lateness. To preserve
equilibrium, departure times shift earlier, including that of the last driver,
which partially offsets his increase in costs. This continues until the last
driver is departing at t*. Further increases in m do not shift the last
departure any earlier. (Proof: If they did, the last driver (or any other
driver) could delay departure until t*, which would decrease his schedule
delay cost and/or his travel time cost.) The last driver thus bears the full
brunt of the increase in expected late time cost, and c® rises more rapidly
with n. As w continues to increase, however, and departures begin ever
earlier, the increase in cost suffered by the last driver when low capacity

occurs becomes smaller, and Co flattens out.11



3.2 The zero information selting for two routes

The zero information equilibrium on two routes can be solved in two
simple steps. First, equilibrium on each route is computed analytically with
an arbitrary number of drivers. Let C?(NJ) denote expected travel cost on
route j when Nj drivers use it. N1 and N2 can then be determined by the
condition that costs are the same on the routes:

c®,

0 _ A0 .
Cz(N1) Cz(Nz) z C (N)
where N1 + N2 = N. Total expected costs are simply TC0 = NCO(N). With zero
information, N1 and N2 of course cannot depend on the actual capacities
realized on a given day, and hence on whether or not capacities are

statistically independent.

4. Stochastic Capacity: Zero Information versus Full Information

4.1 The value of private information

Before considering public information, it is useful to assume a single
driver learns about capacity before the rush hour begins, and compute the
expected benefit to him. With all other drivers uninformed, the numbers of
drivers taking each route are independent of day-specific capacities. In
general, the route chosen by the informed driver does depend on the capacity.
But is is easler to assume the driver sticks to one route. While this
provides only a lower bound on his benefits, it suffices to make our point.

It is easy to see that if the driver learns capacity is high, he travels
in the middle of the rush hour, since the queue will be relatively small.
Conversely, if capacity is low, he departs early. In either case, he incurs a
lower cost than the average informed driver; hence his expected travel cost,
CF, is less than CO, as shown for the numerical example in Figure 2. Witﬁ =

O or t = 1, the informed driver is no better off than other drivers since
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there is nothing to learn. But for intermediate values of mw, the expected
savings are quite high. For example, with w = 0.1 the informed driver’s
expected travel cost (not including free-flow travel time) is $3.20 per
trip, compared to $7.09 for other drivers. More striking is the fact that the
informed driver is actually better off over a wide range of positive values of
nt than at m = 0, despite the fact that expected capacity is 1ower.12

Of course, these cost savings accrue to just one driver. Most
information sources, such as radio reports on accidents and weather are
publicly available. Indeed, collecting and disseminating information is
cost-effective only if many drivers use it. As more drivers take advantage of
the information by altering their departure time or route, benefits per person
are likely to decrease. Moreover, informed drivers could gain at the expense
of the uninformed. Whether information confers benefits in the aggregate is

considered next.

4.2 Full information
We turn now to a situation in which all drivers know road capacities each
day before departure; we call this full information. Equilibrium is then as
described in Section 2 for whatever values of s, and s, are realized on the
given day. Total expected travel costs are simply
Fo_ e
C = J jp(si,sz)TC (sl,sz)dszdsi, (3)
s s
172

where p(s1’sz) is the joint probability distribution of s, and S, TCe(sl,sz)

is given by equation (2), and the superscript F denotes full information.
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4.3 Relative efficiency of zero and fulllinformation

Since the number of drivers is assumed given (i.e. nonstochastic and
independent of travel costs) the efficiency of the zero and full information
regimes can be ranked by comparing their respective total travel costs. It
turns out to be possible to do so for any joint probability distribution of s,
and s, for example, those entailing correlation in capacity or mass points.
The result is given in:
THEOREM 1

If road capacities are stochastic, but the number of drivers is

deterministic, then total costs with full information are lower

than with zero information: that is, TC' < TCC.

Proof: The proof, which is lengthy, is in an appendix available on request.
Theorem 1 is illustrated in Figure 2, where CF < C0 for 0 < m <1, and

hence ¢t = NcF < 1c° = NCO. Theorem 1 suggests that, despite the caveats

raised earlier, public infeormation is in fact welfare-improving. As will be

seen, however, this is not necessarily true if demand is stochastic, or if

only imperfect information is available: the subject of the next section.

5. Stochastic Capacity and Imperfect Information

The full information regime just considered is an abstraction rarely
approached in real life. Information about some routes may be available
irregularly, if at all. Drivers can miss information bulletins, or simply
choose not to listen. Traffic conditions can change during the rush hour,
putting earlier information out of date. These remarks apply to route
guidance systems in the foreseeable future as well as everyday radio news

reports. In this section we examine how imperfect information affects travel
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costs, and in particular whether it is preferable to no information at all.

5.1 Modeling imperfect information

To avoid unnecessary complexity we resume the assumption of two-point
capacity distributions on each route. We characterize imperfect information
about sj by a signal, oj. A signal 01 = 0JL indicates that sj is likely to be
low, and a signal 05 = OJH that it is likely high. The ex post probability of

low capacity, conditional on oj, is specified in Table 2, where QJ e [0, 1] is

[Insert Table 2]

an index of signal quality. If QJ = 0, the signal conveys no information:
the conditional probability distribution of capacity equals the unconditional
distribution. At the other extreme, QJ = 1 means the signal is perfectly
accurate.

For all values of QJ the signal is assumed unbiased in the sense that
forecasts are made with the same frequency that they occur in reality. Thus,
the expected ex post probability of low capacity is from Table 2:

(1—nj)nj(1-Qj) + nj[l—(l—nj)(l—Qj)] =
We further assume that the signals on the two routes are independent.

After receiving o, and T, drivers face the same problem as under zero
information, but with the conditional probability distributions of capacity
instead of the unconditional ones. Expected costs with imperfect information,
denoted TCi, are

i _ 0,* -
¢ =) ] p,(c)p, () ICI (0), 1)), (4)
o0
12
where pj(oj) is the probability that signal 05 is received about route j,
ﬁj(oj) is the probability of low capacity on j conditional on signal 0;’ and

TCo is expected cost under zero information for the given probabilities.
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Given unbiasedness of the signals, (¢ ) =n and c =1-n.
g pJ jL J pJ( JH) b]
The efficiency of imperfect information in reducing expected total
travel costs relative to full information can be measured with the
index

1c® - 1t

= ——. ' (s)
TC™ - TC
(Recall from Theorem 1 that TCO - TCF > 0.) As TCi ranges from TC0 to TCF, w
ranges from 0 to 1. Yet values of TCi greater than TCO, or smaller than TCF,
are also possible as will be seen.

In the next two subsections we compute TCi, first when signals are
received for both routes (complete information), and second when a signal is
received only for one route (partial infermation). For ease of comparison
with previous sections, we continue with the numerical example specified in
Table 1. To highlight results we assume LA 0. 1805, where the zero
information cost curve c® is kinked: see Figure 2. (The importance of the
kink is explained below.) If commuters encounter an accident or bad weather

on average one day a workweek, which is plausible for some cities, then n =

0.2, close to the values chosen.

5.2 Complete buf noisy information
Under complete information, signals are received for both routes. To
begin, assume that the signals are of equal quality. This is shown as Case
A in Table 3 (the column labelled ’'Capacity Correlation’ can be ignored
F

until Section 6) and in Figure 3. Consistent with Theorem 1, C = cle=1) <

c'(q=0) = c°.

|Insert Table 3|

[Insert Figure 3]
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is thus negative in this range, attaininé a minimum value of about -0.15.
This illustrates strikingly that low-quality information can have perverse
efficiency effects.

The reason for the perversity is that the probability of low capacity on
each route is revised when information is received, upward or downward
depending on the signals. Because the unconditional probabilities (0.1805)
were chosen at the kink in the cost curve (Figure 2), expected costs are
increased when the revisions are not too large, i.e. the signals are of low
quality. This follows from Jensen’s inequality, since expected costs are
{locally) a convex function of mn, and the signals generate a mean preserving
spread in the distribution of m.

It might appear that the informational perversity is an artifact of the
assumption that the unconditional probabilities coincide with the kink in the
cost function. In fact, the perversity is rather extensive, as shown in

Figure 4 by the range of Q and m values (with n1=n2) over which it occurs.

|Insert Figure 4|

In Case B of Table 3, Q1 = 1. Expected costs are plotted against 02 in
Figure 3. As in Case A, low quality information (small values of Q2) raises

costs. The minimum w is -0.14, similar to Case A.

5.3 Partial and noisy information

A situation of partial information (Q1= 0) is considered in Case C. TC'
behaves similarly to Case B, with the same minimum w value. The similarity
suggests that perversity of low~-quality information on one route is
insensitive to quality of information elsewhere in the network. Of course,

further analysis on a more general network will be necessary to test the

robustness of this result.
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5.4 Discussion

The results here demonstrate that Theorem 1 is misleading from a
practical standpoint: low-quality information can be counter-productive.
Furthermore, high-quality information may be difficult to achieve, either
because weather forecasts or accident reporting are intrinsically imprecise,
or because accurate information cannot be conveyed intelligibly and/or with
sufficient dispatch to drivers. Given these limitations, the possibility that
imperfect information reduces welfare (raises travel costs) should not be

taken lightly.

6. Correlation in Capacity

So far it has been assumed that s, and s, are statistically independent.
This may be reasonable for fluctuations caused by accidents and unscheduled
road maintenance, but is implausible for bad weather, which is likely to have
similar effects on capacities. Correlation in capacities might appear to be
an exogenous factor, and hence of no policy interest. However, situations may
exist where some control can be exerted. For example, the allocation of snow
removal equipment, police surveillance and towing services between routes
affect correlation. Also, there may be a choice between constructing two
routes that are similarly affected by weather, or making one relatively
impervious to the elements (say at equal total cost).

Correlation in road capacities could thus be a tool for improving traffic
flow under stochastic conditions. And whether it is or not, it is a
significant feature of road networks that deserves attention. In this section
the analysis is generalized to investigate the effect of correlation on system

performance.
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6.1 Modeling correlation
The simple correlation coefficient between s1 and Sz’ p, is given by the
standard formula
E(sl-sl)(sz—sz)

p = ’
[Var (s )Var(s,)] 172

where E is the expectations operator, sj is mean capacity of route j and

Var(sj) is its variance. The joint probability distribution of s, and s, is

then as given in Table 4.

[Insert Table 4|

Information on route capacities can be considered along with correlation;
for simplicity, a signal is assumed available on only one route. The joint
probability density of capacities, conditional on the signal, is specified in

Table 5, where Q is the quality of one signal.

[Insert Table 5|

6.2 Robustness of previous results

To test the robustness of the results derived with zero correlation, we
begin with the polar case of perfect correlation. Information about capacity
on one route is then equally applicable to the other route; in effect Q1= Q2
and the two routes are equivalent to a single route with capacity s, + Sz'
This puts us back in Case A except for the correlation, hence the label A°
in Table 3 and Figure 3.

First, note from Figure 3 that for any Q > 0, expected costs are greater
than in Case A. As earlier, this follows from Jensen’s inequality since total
costs are a convex function of S1+Sz and correlation creates a mean preserving
spread in total capacity.

Second, observe that low-quality information has a more detrimental

effect than with no correlation: the minimum w is -0.39 compared to -0.14.
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This reinforces the conclusion that imperfect information can be worse than no
information. Moreover, the range of Q over which the informational perversity

occurs is considerably greater than with zero correlation: compare Figure 5

|Insert Figure 5|

with Figure 4. This suggests that information has a beneficial effect on
route choice that partially offsets the adverse effect on the departure rate.
Both effects are present in Figure 4, whereas in Figure 5 only the departure
rate is relevant, since with perfect capacity correlation route split is
invariant to the signal.

The effect of partial correlation on travel costs is examined in cases
B° and D° over the range p € [0, 1]. (Negative correlation is a theoretical
possibility, but we suspect rare in reality, and hence not considered.)
Case B° is similar to case B in that full information is available about route
1, and partial information about route 2. But in case Bc, information on
route 2 is obtained indirectly through correlation, whereas in case B it is
obtained directly from a separate signal. In Case D°, which has no
counterpart, capacity on both routes is assumed to be known exactly. Case D°
isolates the effect of correlation on expected costs, since there is no
informational effect.

As shown in Figure 6, expected costs in Case D° increase monotonically

with p, as expected. But in case B®, costs increase with p initially. This

|Insert Figure 6]

behavior is the result of two opposing forces. On the one hand, correlation
increases the variance of total capacity, which tends to increase costs. This
is the only effect at work in case D°. On the other hand, the quality of
information about s, contained in o, increases with p. For small values of p,

the quality of this indirect information is low. From Section 5 we know that
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low quality information increases costs. The informational effect of
correlation thus reinforces the capacity effect. But at higher values of p,
the informational effect becomes negative, and eventually dominates the

capacity effect, so that total costs fall.

6.3 Discussion

Earlier, the possibility was raised that correlation between road
capacities can be controlled, perhaps through highway design, or the mixture
of bridges and tunnels running in parallel into major cities. For the most
part, the results of this section indicate that correlation should be
minimized. But in case B®, both high and low correlation are preferable
to intermediate correlation. Thus, if correlation is naturally high to begin
with, it may be simpler to reduce costs by increasing correlation further
than reducing it a lot.

Overall, the conclusion of this section is that correlation in capacities
does not alter qualitatively the findings of Section S. Partial information
can affect efficiency perversely, though full information is preferable to no
information. In the next section, we examine whether these findings hold up

when the number of drivers is random.

7. Fluctuations in Demand

Until now the analysis has been limited to capacity fluctuations. But, as
argued earlier, the number of drivers, even on commuting routes, can be
affected by such events as transit strikes and gasoline rationing. For
clarity it is now assumed that road capacities are constant and only the
number of drivers is subject to fluctuations. Zero information thus means

that only the unconditional probability distribution of N is known. Full
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information means that the actual value of N is learned each day.

With constant capacities, two (or more) routes are equivalent to one
with the same total capacity, and a theorem in Arnott et al. (1988) is
applicable; we restate it here without proof as a counterpart to Theorem 1:
THEOREM 2

If the number of drivers is stochastic, but road capacities are

deterministic then, depending on parameter values, total costs

with full information may be higher or lower than with zero

information: TC" £ TC°,

Theorem 2 casts further doubt on the conclusion suggested by Theorem 1 that
traffic flow is improved by providing drivers with information. Furthermore,
by continuity of expected costs in parameters, full information may still

be inferior to zero information when capacities are random as well as

demand, and whether or not they are statistically independent.

8. Conclusions

Pilot studies of route guidance and information systems indicate that
drivers can benefit from information about driving conditions. The purpose of
this paper is to question the presumption that such information is necessarily
beneficial for traffic as a whole. While a single driver can benefit from
proprietary information, when all drivers are informed they may end up worse
off. If only road capacity is random, expected travel costs are lower when
individuals are fully informed than when uninformed. But this need not be the
case if the number of drivers is also random. Moreover, if only imperfect
information is available, drivers may be worse off than without information

even when only capacity is variable. The adverse impact on welfare would be
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enhanced if costs of collecting and processing information were taken into
account.

Our findings suggest caution against undiscerning use of information
systems. Pilot studies in which a few vehicles are equipped with
communications devices do no measure the overall welfare effects of
information. Rather than conducting small-scale studies, effort might be
better directed at a large-scale experiment in which the general equilibrium
effects of driver adjustment to information can be assessed.

We hasten to note that the model we have used is very simple and the
analysis exploratory. There are several directions in which extensions could
be fruitfully pursued. First, the analysis was limited to one route or two
routes in parallel. It should be extended to more complex networks, as Tsuji
et al. (1985) have done.

Second, we have only considered information available to drivers before
they depart. Road guidance systems are also intended to supply in-vehicle
information and advise drivers on route changes while they are in transit. To
analyze this it will be necessary to enrich the time dimension of the model,
and allow for changes in the state of the system (e.g. removal of a traffic
obstruction) during the travel period. In addition, it would be useful to
consider the effects of lags in getting information to drivers, and the
implications of under- or over-reaction of drivers in the aggregate to new
information.13

Third, traffic information rarely reaches everyone. An interesting
question is whether traffic flow conditions are optimized when all drivers are
informed, or whether information should be provided to only some. Mahmassani

and Herman (1988) and Mahmassani and Jayakrishnan have considered this by

using special-purpose simulation programs.
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Finally, the analysis has been static in the sense that drivers are
assumed to utilize information available to them. However, rather than
adjusting instantaneously to temporary or permanent changes in their driving
environment, drivers often react with lags. Models incorporating the
day-to-day adjustment of drivers may capture more accurately the ways
individuals react to changes.

One of the challenges for designers of road guidance systems is to
determine what type of information to provide, when to provide it, to whom and
in how much detail. We hope that this paper has shed some light on these

problems, or at least raised questions that deserve further investigation.



FOOTNOTES

Financial support from the Natural Science and Engineering Research Council
of Canada and from NATO is gratefully acknowledged.

Hirshleifer (1971) has shown that the private benefits from proprietary
information can be more than offset by the losses of other agents in the
econony.

Haltiwanger and Waldman (1985) have considered the implications of
informational heterogeneity for abstract environments in which individuals
impose either negative externalities on each other (e.g. congestion) or
positive externalities.

Computations in later sections were also done with different free-flow
travel times, but the results of interest were little affected. To
economize on space they are not reported.

A study of Greater London found unpredictable incidents occur about twice as
frequently as predictable ones (Jeffrey and Russam (1984)). CALTRANS has
reported that nonrecurring congestion accounts for 57% of delays on Los
Angeles freeways (Ju et al. (1987)). And incident delay contributes over
60% of urban freeway delay in the U.S. (Lindley (1987)).

Admittedly, this is not true of most traffic incidents; see Giuliano
(1989). 1t is not obvious what effect relaxing this assumption would have
on the results.

Information reports are usually couched in terms of travel times or delay,
rather than capacity and demand. At least in our model, however, the
duration of a trip for any given departure time and route can be computed
from capacity and demand; we assume drivers have learned to do this through
experience. From the perspective of decision-making, the two types of
information are equivalent, and since capacity and demand are assumed to be
the source of uncertainty, it is convenient to speak in terms of them
directly.



7

All drivers need not adjust, just enough for the departure rate on each
route to change from day to day consistent with the equilibria derived
below. Ben-Akiva et al. (1986) have described for a nonstochastic
environment a day-to-day adjustment process for drivers by which their
decisions converge from starting conditions in the neighborhood of
equilibrium.

Since commuting trips are made regularly, it is reasonable to assume that,
except perhaps for rare circumstances, equilibrium in the sense of equal
expected travel costs obtains each day. If drivers adopt pure decision
strategies, each will stick to a given departure time and route when
presented with the same information. If drivers adopt mixed strategies,
stochastic queuing will occur, but if individual randomizations are
statistically independent these perturbations are likely to be
insignificant.

8 We use the term complete information in a different sense from that of game

10

11

12

13

theory.

Except if indicated otherwise, two-point capacity distributions are used
throughout the paper. The analysis can be extended to more complicated
distributions, but we believe this would not alter the qualitative results.

Since the combined monetary, schedule delay and travel time cost of one
commute is a tiny fraction of wealth, this is unobjectionable. Extreme
aversion to, say, arriving late could be captured with a nonlinear schedule
delay cost function.

It may appear from this explanation that the gonvexity in C0 arises from the
kink in the schedule delay cost function at t . It can be shown, however,
that convexity also occurs with a quadratic schedule delay cost function -
which is everywhere differentiable.

This result would be strengthened if the informed driver were allowed to
choose his route.

For example, in the recent strike by bus, railway and underground workers in
London England, road traffic was abnormally light. Anticipating massive
traffic jams, many commuters apparently departed for work earlier than
usual, walked, or stayed home (Globe and Mail (1989, p. A4)).
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Table 1

Parameter Values for Numerical Example

Unit cost of travel time o #$6.40/hr.
Unit cost of early arrival B $3.90/hr.
Unit cost of late arrival ¥ $15.21/hr.
Number of commuters N 8,000

One route
High capacity s 4,000
Low capacity s 2,000
Two routes

High capacity on s 2,000
either route

Low capacity on S 1,000
either route

Values of «, B and y from Small (1982, Table 2, model (1)).



Table 2

Conditional Probability Distribution of Capacity

Signal Probability of low
capacity on route 1

None ni

Indicates high capacity ni(l-Qi)

Indicates low capacity 1 - (1—n1)(1-Q1)



Table 3

Effect of Information on Expected Travel Costs

Minimum Efficiency

Case Quality of Signal Capacity Correlation of Information
Q1 Q2 P w

A Q1=Q2 €[0,1] 0 -0.15

B 1 €[0,1] 0 -0.14

C 0 €[0,1] 0 ~-0.14

A° Q,=q, «[0,1] 1 -0.39

B® 1 0 el0,1] N/A

D° 1 1 el0,1] N/A

no=n, = 0.1805. Other parameter values given in Table 1.



Table

I

Joint Probability Distribution p(sl,sz)
with Capacity Correlation

=

2
High Low
High p 1—n1-p
Low 1—n2-p n1+n2+p—1

p = (1—n1)(1—n2) +p V/nl(l—nl)nz(l—nz).



Table 5

Joint Probability Distribution of Capacity

with Correlation and Partial Information

(a): If signal indicates high capacity

s
2
High Low
_ P 1-m -p
High T:E: (1-n (1-Q)] T, [1-n (1-Q)1
Low (1—n2—p)(1-Q) (n1+n2+p—1)(1—Q)

(b): If signal indicates low capacity

s
2
High Low
High p(1-Q) (l-nl—p)(l—Q)
(l-nz—p) (n1+n2+p-1)
Low __—EI_—_ [1—(1—n1)(1-Q)] —_—_E:___—— [1—(1—n1)(1—Q)]

p= (1-m)(1-m) + p /n1(1-n1)n2(1-n2).
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Expected Cost per Driver

0
C : Expected cost with zero information
C: : Expected cost with all drivers informed

Cf : Expected cost for single driver with
proprietary information

Probability of Low Capacity



Expected Travel Cost per Driver
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Probabilties of low capacity = 0. 1805
Other parameter values given in Table 1
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Quality of Information Q;

0.5

0.4

Signal of equal quality on two routes
Capacities uncorrelated
Parameter values given in Table 1

Probability of Low Capacity



Qualty of Information Q;

0.8— Signal on one route
Capacities perfectly correlated
Parameter values given in Table 1

0.00 0.05 0.10 0.15 0.20

Probability of Low Capacity
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APPENDIX: Proof of Theorem 1

THEOREM 1
If road capacities are stochastic, but the number of drivers is
deterministic, then total costs with full information are lower

than with zero information: that is, ’I'CF < TCO.

PROOF

Full information

Substitution of equation (2) in the text into equation (3) gives

N2

F—
TC = I I p(sl, SZ) S Sl+ s, dszdsl.

S S
1 2

With the number of drivers, N, nonstochastic, and GjE 1/sj this can be

written:

F 2 0‘10‘2
TCT = oN° E , (A1)
0‘1+0‘2

where E is the expectations operator.

Zero information

Whatever the actual values of s1 and 32 on a given day, the travel cost

incurred by the first driver on route j is nonstochastic, and equal to

(s} *
C.=pB -t ). (A2)
j qj
We need to express T tqj in a convenient form. Let Hj(@j) be the CDF
of Gj. Define

o = H -2},
J J ety

and the mean of GJ for values greater than this fractile:
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T (¢ qd (o).
3T Ty 3 0y

9>
1l

92

J

Arnott et al. (1988, Lemma 1) show that if

~

7 ~
GJ > Br7 oj (A3)

then the last driver on route j departs after t*, and

t -t =L No. (A4)
qj B+y 3}
If (A3) does not hold then (Arnott et al. (1988, Lemma 2)) the last
driver departs at t*, and
» .
t - tqj = Njoj, (AS)
where &J_ is defined implicitly by
. . ® oa+B+y .
o, BG) + [0 dlie) - ——5 =0 (A6)
GJ
Denote the combined solution of (A4) and (AS)
t -t =L No, (A7)
qj By 33
- B+y ~

where o: = oj or ~ oj, depending on whether or not condition (A3) holds.

In equilibrium CS =C_ = Co, or given (A2) and (A7)

o

2

* *

C =8No = 38No._. (A8)
11 22

Let fj be the fraction of drivers taking route j. (A8) can be rewritten
»* »*
C = 8f Noo. = &f No_,
11 2 2

which can be solved for the route splits

* *
0‘2 0‘1
f =2 | f = ,
1 »*  » 2 »* W
o +0 o +C
1 2 1 2

and total expected costs



L
0 2 %1%
TC™ = oN° —/—— (A9)
o +0
2
Given (Al) and (A9):
* »
0 ~F 2 %1% 172
TC'-TC = &N [ T " E{Z v } ]
o +o 12
1
We show this is positive by establishing the dual inequality
* » —- =
7%, 717, T1%2
el ZE{O- o }’ (A10)
o +c o +o 12
1 1
where Ej is the mean of 0). The second inequality in (A10) follows from
7%,
Jensen’s inequality since P is a concave function of o, and o,
2
To establish the first inequality we shall show
»* -
o > 0. (A11)

A

If (A3) is satisfied, then 0; = 0). Since 0j is a mean of 0j with the

left-hand tail truncated, (A11l) follows immediately. If (A3) is not

satisfied, then 0: = E;Z &j, with &J defined by (A6). To establish (A1l) we

need to show

~ 7 -_—
C > — 0 . Al2
i By ( )

Denote Ej by o for short, and call the LHS of (A6) Y(e¢). We have

dY(c)/de = H(e) - $BY g,
aty

(A12) then follows if Y(=2— &) > 0. But

B+y
[oe]
¥ =y - ¥ = T - _ B T =
Y &) = Z o HEE o) + [ edite) [1 = )B__W 5. (A13)

y -
_—
B+y



[*n
2]

Now I cdH(c) = o -

3
+ |
«

cdH(e) > o - 20— & H(=— a). (A14)

B+y B+y

O ey

y —

=

B+y
Substitute (A14) into (A13) to get

¥ = _ la#B+y)y =
v o > o g |7 >0 w.

This establishes that (A11) holds whether (A3) is satisfied or not, and
hence that it holds for both routes. This in turn establishes (A10) and that

1c® > 1ct. QED.



