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1. Introduction

Informational efficiency has been a subject of extensive study in the theory of economic
mechanisms originated in Hurwicz(1960). In Hurwicz’s formal model of decentralized mechanisms,
the informational efficiency is characterized by the size of the message space as is further elaborated
by Mount and Reiter(1974) et al. When euclidean spaces are taken as the message spaces, the
notion of the size coincides with that of dimensionality. A mechanism that realizes a given allocation
rule is informationally efficient if it has the smallest possible message space. In this framework, it
has been proved that the price mechanism is informationally efficient for realizing the Walrasian

allocation [see, for example, Mount and Reiter(1974), Hurwicz(1977), Osana(1978)].

For a more general study of allocation rules and realizing mechanisms, it is important to
determine or at least to characterize the minimal dimension of the message space of the mechanisms
that realize a given allocation rule. This problem has been studied extensively in the literature [see,
for example, Mount and Reiter(1974), Hurwicz, Reiter and Saari(1978, 1980)]. Perhaps the only
available general strategy for dealing with this problem is the so-called single-valuedness lemma,
which is developed by Mount and Reiter(1974), Hurwicz(1977), Osana(1978), et al. The strategy
is a state of art technique for obtaining a lower bound of the size of the message spaces that realize
a given allocation rule. But it also leaves something to be desired. Besides that it is subject to
several regularity conditions that are usually hard to verify, the main weakness is that its successful
use depends on identification of a subset of environments that satisfies the uniqueness property;
and this often requires considerable ingenuity and luck. Also since the dimension of the subset of
environments is the lower bound according to the theory, it is usually far from being tight unless

a subset of relatively large dimension can be found.

Our purpose in this paper is to provide another general method for obtaining a lower bound
of the dimension of the message spaces. Our approach is analytic and requires differentiability
assumption. In this setting , an explicit, straightforward lower bound is given. The lower bound
is expressed in terms of certain differential property of the allocation function. In particular, for
economies consisting of two agents the lower bound can be further expressed by the rank of the

“bordered Hessian”of the allocation function.

The rest of the paper is organized as follows. In section 2, we briefly describe the model and
specify the terminologies to be used. In section 3, some preliminary results are presented which
will be used in section 4 and 5. We derive a lower bound for two-agent economies in section 4 and

then generalize it to general economies in section 5.



2. The Model

Consider [-agent economies that are finitely characterized, i.e., each agent is characterized by
finitely many (real) parameters. Let x; = (zgi), cees :E%‘)) characterize the i-agent, then (x1,...,x;)
characterizes the economic environment. Let U be the set consisting of all admissible economic

environments, then U C R¥ x ... x R¥. We assume that U is an open subset in R** x ... x R¥,

A goal function (or social goal) on the class of economies U is a function P : U — R™,
where P(x1,...,%;) € R™ specifies certain social goal (e.g., desired resource allocation, social
choice, etc) associated with the given economic environment (x,...,x;). We assume that P is a
C? function. Also we often write P : R¥t x ... x R®f — R™ with the understanding that P is

defined only on U.
A mechanism II is a triple (G,R™, k), where G = (g1,...,g) and g; : R% x R* —
R™,i=1,...,l, h: R* — R™ are C? functions. R”, g;, h are called the message space, the

equilibrium function, the outcome function, respectively, of the mechanism II.

Definition A mechanism II = (G,R",h) is said to realize the goal function P if the following

Mount-Reiter diagram [see Mount and Reiter(1974)] commutes

Rk x...x R" L, Rm
g=0N - \g=0 h
R’n
The working of a mechanism is to be understood as follows. For each economic environment
(x1,...,%;) € U, through certain dynamic process of information exchange among the agents or

of information verification with a central agency (which we are not concerned with in this paper),

an equilibrium message m € R™ is reached, which is characterized by the equilibrium equations

gi(x1,m) =0
(1)
gl(xl, m) =0
That each equation involves only one of x1, ..., x; reflects the idea of informational decentralization,

i.e., each agent acts, responds or communicates basing only on his own characteristics and public
messages; he has no access to the others’ characteristics. This is called privacy-preserving in the
literature. Once an equilibrium message m is reached, the outcome function h determines the
outcome h(m) for the economy (xy,...,x;). If II realizes P then h(m) = P(xy,...,x%;), i.e., the
outcome is precisely the social goal. This is a static picture of Hurwicz’s model of decentralized
economic mechanisms. For more detailed description of this model and its general theory, especially

its informational properties, see Hurwicz(1986).



An important aspect of this theory concerns the evaluation of mechanisms with respect to
informational efficiency, as captured by, besides other things, the dimension of the message space
[see, for example, Mount and Reiter(1974), Hurwicz(1986)]. The dimension of the message space
can be thought as the number of information channels that the mechanism needs to operate. Given
a goal function P : R¥ x ... x R® — R™, an important problem is to determine the minimal
dimension of the message space that permits the existence of some mechanism to realize P. The
minimal dimensionality is clearly an attribute of the function P. So reasonably it or its lower

bound should be determined by certain characteristic of function P.

3. Preliminaries

From now on we assume that the mechanisms IT = (G, R", h) satisfy following two condi-

tions:

(a) the dimension of the message space R"™ agrees with the number of component functions

in G, i.e, n = Ei’:l ni;
(b) the Jacobian of G with respect to m € R™ is nonsingular.

Making these assumptions loses no generality. Since the (equilibrium) message m is
determined in (1) for all given (x3,...,%x;) € U, it is expected that the number of component
functions in G is no greater than the number of variables m so that solutions in (1) always exist.
On the other hand, the number of variables m should not exceed the number of component functions
in G also, for otherwise the equilibrium messages m determined by (1) will usually form a manifold
of positive dimension in R™. In that case, the original message space R™ can be replaced by one

with smaller dimension. So the original dimension can not be the minimum.

Definition A mechanism II = ({g,...,&},R" h) is said to be efficient if the Jacobians
Vx: 8, t =1,...,[, are all of maximal rank.
The following proposition shows that a mechanism that is not efficient does not achieve

optimality in the dimension of the message space in realizing P.

Proposition 1 If P can be realized by a mechanism which is not efficient with the message
space of dimension n, then P can be realized by an efficient mechanism with the message space of

dimension < n.

Proof Suppose ({g1,--..,8i},R™, h) is the mechanism that realizes P and is not efficient. Let
m(Xy,...,X;) be the solution for m in (1). Differentiating (1) yields

<8m(x1,...,xz)) - _ (a(gla'-'agl))m1 (a(gh'“?gl))
8(x1,...,X1) nle‘_l ki Om nxn a(xh""xl) 'nle.=1 k;




om(xy,...,X1) = : : (g1, 1) i
So oy 1 not of maximal rank since Ty 18 not. Hence the component functions

m1(X1yeeeyXt)yeeo,Mu(X1,...,%1) of m(xy,...,%;) are functionally dependent. Suppose that their

rank is 7 < n. W.L.0.G., we can assume that
mi(xX1,...,x1) = vi(mi(X1,...,X1), ..., mp(X1,. .., X)), i=r+1,...,n
for some functions v,41,...,7s. Let h:R™ — R™ and 91,...,9; be defined as
fz(ml,...,mr) =h(ma,...,mp,Yrg1(Ma,...ymp), .o oy Yn(ma, ..., my))

Yi(xizma, .., my) = gi(Xiyma, e oy My Yrg1(May ooy M)y ooy Yn(ma, .oy M), i1=1,...,1

then
Os, s ) _ Ognyo8) | 01 8)  (tritse )

o(my,...,m;) O(mi,...,m;)  O(mpy1,...,my) O(ma,...,m;)

So 21 s of maximal rank since ~oc8L=8)_ is Therefore we can delete some components in
(my yeurymy (1M1 yeooyMy, 3 .
each of ¥1,...,9; to get g, ..., & such that the r X r square matrix 665511 ""’fn’) is of maximal rank.
yerey iy

It is easily checked that the mechanism ({gi,...,&},R", k) is efficient and realizes P. Q.E.D.

For a local characterization of the efficient mechanisms and the dimension of their message
spaces, we have an important theorem due to Hurwicz, Reiter and Saari(1978, 1980) and its
generalized version by Saari(1984). The following is Saari’s formulation of the theorem in terms of

differential ideals.

Proposition 2 Let P : R*1 x ... x R¥ — R™ be a C? goal function. The following are sufficient
and necessary conditions for the (local) existence of an efficient privacy-preserving mechanism that
. realizes P with a message space of dimension »

(a) there exist differential one-forms w},...,w™, i =1,...,l, with ny +---+n; = n such that

L= (wl,...,wl; {d:cgcj) | 7 #i,k=1,...,k;})is a differential ideal of dimension ni+s k4, 1=
1,...,1

(b) I = ni_,I is a differential ideal of dimension ny +---+4 n; and dP € I.

4. Lower Bound for Two-Agent Economies

In this section we consider two-agent economies and derive a lower bound for the dimension
of the message spaces when the goal function is a scaler function P : R*1 x R*¥2 — R. To this end,

the following lemmas will be needed.

Lemma 1 If (wq,...,wy) is a differential ideal generated by k linearly independent one-forms

Wiy nn, Wk, then vy A+ Awpyy =0, for all vq,..., 0641 € {wn,..., Wk, dws,...,dwi}.

5



Proof By definition of the differntial ideals, there exist one-forms af such that
k
dwy =Y ejAw;, 1=1,...,k
=1

It is clear that v; A --- A vgy1 is a sum of terms like f A dw; A wy A - - - A wg, which equals zero.
Q.E.D.

Let A = (@ij)pxq be a p X ¢ matrix. Let D(iy---ir; 1 -+ jr) denote the determinant of its
r X r submatrix formed by rows 7,...,¢, and columns j,...,J., wheret; < -+ < ¥4y, j1 < -+ - < Jp,

and r < min{p, ¢}.

Lemma 2
(a) D(iy++ir;f1-+"Jr) = Z(—l)“’kai,jkl}(il RN TERE TR RERT MY SRRy Y ARy &
k=1
(0) D(iy--+ir;gi--dr) = D (=1 *ay 5, D(iy - +iryizgr - +ini J1 -+ Joo1frsr - Jr)
=1

Proof (a) This is a cofactor expansion along row 7;. (b) This is a cofactor expansion along column

Jk- Q.E.D.
Let w=37_, 3%, aijdzdy;.
Lemma 3
7 times
 ourenhmrenn r(r= . .. .
WA Aw= (—1)'(2_1)7" Z D(ll"’zr;Jl“']r)de?il"'dfl?i,dyjl"'dyj,
i<y
J1< < Jr

Proof By induction on r. It is clear that the formula is valid for » = 1. Suppose that the formula

is valid for r — 1, i.e.,

r—1 times

s e (r=1)}r—2) . . . .
WA Aw= (=0T (r=1! Y D(ir-ecip_1idiec Geo)deg oo dai_dy, - -dyj

1<t
1< <Jroa
then
r r—1
U —— P
wA- - Aw=wA|lwA---Aw ]| =c(r)S

(r—1)r—2)

where ¢(r) = (=1)" =z (r—1)! and



§ = Z Z aijD(iy - ~ir—1; J1+ + + Jr-1)dTidy;dz;, - - -dai,_, dyj, - -dy;,
4J f1<<ir
S1<<dr—1

;
= Y D (-1 D(isy jog)day, - - dag, dy;, - - dy;,
11 <<y k=1
1< <y

= (=1 > D(ia--irieeedo)des, - das,dyj, - dy;,

1< <y
J1 << Jr

where D(i_;;75-%) = D(31---%i—1%41 - - Tp3 J1 - - - Jk—1Jk+1 - - Jr)- The last equality follows from
Lemma 2. Q.E.D.

Let P:RF x R*¥ — R be a C? function, and let

Pl‘lyl Pl‘lyQ Pl‘lyk2 be‘l
Pl‘2y1 Pl‘2y2 e T2Yk, P-’UQ
BH(P) = :
ka,yl chyz kalyk2 kal
Y1 Pyz Pyk2 0 (k1+1)x(k2+1)

kl k2
Wy = ZPz‘d:Bi, Wy = ZPy].dyj
=1

i=1
then dP = w; + w,, and
ki ko
dwy = —dwy = Y Y Pryy, deidy;
i=1 j=1

Lemma 4 Let D(iy-+4r;J1-+-Jr) as above with A = BH(P), then we have

r—1

(@) dwy A--- A dwy Awg A w,

= c1(r) > D(iy -+ ip, (k1 + 1); 510+« Jpy (ko + 1))dy, - - - dzs dy;, - - - dy;,
11 <<t <(k1+1)
J1< < gy <(k2+1)

where ¢1(r) = (—l)r(r;l)“('r —-1)!
(b) dwg A -+ A dwy Awg
= CZ(T) Z D(il"'ir+1;j1 "‘jra(kZ + 1))dzi1 "'dzir+1dyj1 "'dyjr

11 < <tpgp1 <(k1+1)
1< <Jr <(k2+1)

where c¢(r) = (-—1)r(r2+1) r!



al
.

(€) dwg A+ A dwy ANwy

= c3(7) Z D(iy---ir, (k1 + 1); 51+ - Jrga )iy - - -dzi dyj, - - - dyj,
i1< iy <(k1+1)
1< < r 1 <(k2+1)

where ¢3(r) = (—1)rg'_rl)"r!

r+1

(d) dwg A---Adw,

= (:4(7') Z D(l] . 'iT+l;jl M 'jT-}-l)dQ:il . 'dzi,-+1 dy_h o 'dyj,-+1
1< <tpt1 <(k1+1)
1< <Grgr <(k2+1)
r(r4+1)

where ¢4(r) = (=1)"z (r+1)!

Proof Part (d) follows from Lemma 3 with w = dw,, and a;; = Py,,,. Now we prove (b); the

proofs of (a) and (c) are similar. In (d) change r 4+ 1 to r then

r
A

lez/\ ---/\dw;/\wx

k1
C(T)Z Z Pa:,-D(il ceipi g1 "’j’r)dzidzil "'divi,dy_h "'dyj,
1=1 4;<---<ip, < (k1 +1)
1< <Gr < (k2 +1)

e(r)(~1)" > D(iy+++ipg1; 51+ -~ Gy (B2 + 1))das, - - das , dys, -+ - dy;,
i <o <tp g1 <(k1+1)
J1< - <Jpr<(k2+1)

r(r—1)

by Lemma 2(b). where ¢(r) = (—=1)" = rl. Q.E.D.

r—1

Lemma 5 If dwy A - - - A dwg Awg A wy = 0 in an open set U C R*¥ x R*2_ then rankBH(P) < r
inU.

Proof We show that

r—1
le,,/\---/\dw,;/\wz/\wy:O in U (2)
implies

-
dwg A -+ A dwg Awg = 0 in U, (3)

T
awz/\---/\dw;/\wy:O in U, (4)

41

dwg A -+ Adwg =0 in U. (5)

Then, by Lemma 4, we can conclude that all (r 4+ 1)-subdeterminants of BH(P) are equal to zero.
To establish (3), (4) and (5), differentiate (2) to yield
7—1

0 = d(dwz A - A dwy Awg A wy)

8



r—1 r—1

=dwg A+ A dwy Adwg A wy — dwg A -+ - A dwy Awy A dw,

T T
A A

=dwg A A dwg Mg + dwg A - - - A dwg Awy,

T
e

since dw, = —dw,. Note that bases for dwg A -+ A dw, Aw, consist of » + 1 dz;'s and 7 dy;'s
T

—

while bases for dwy A -+ - A dwz‘/\wy consist of r dz;'s and r + 1 dy;'s, so

T T
A M

:iw,,/\---/\dw,,‘/\wxyé—ziw,,/\---/\dw,:/\wy

unless
T T

Eiwz/\---/\dw;/\wx:O and :iw,,/\---/\dw;/\wy:O

This establishes (3) and (4). To get (5), just differentiate (3). Q.E.D.
Now we are ready to prove our main theorem.

Theorem 1 Let P : RF x RF2 — R be a C? function. If P can be realized in an open set
U C RF x R*2 by an efficient privacy-preserving mechanism with a message space of dimension
n, then rankBH(P) <n in U.

Proof Let II = (G, M, h) be the realizing mechanism with dim M = n. According to Proposition

2, there exist differential one-forms w,...,w™, wgll, ..., wy? such that
L = (wl,...,wM;dy,...,dy,) is a differential ideal of dimension n; + ks,
L = (wgll, ey WS dz1,...,dzy,) is a differential ideal of dimension ng + k1,

dP €I =1 NI, and I is a differential ideal of dimension n; + ny = n.

Without loss of generality, we can assume that wt is a linear combination of dzy,...,dz, only,
1=1,...,ny; similarly w{; is a linear combination of dy;,...,dyx, only, j = 1,...,ny. For otherwise,

wi = of + o, wl = B]+ ], where o, 3] are linear combinations of dz1,...,dz, only and o, 8]
| are linear combinations of dyy,...,dyg, only, s = 1,...,n1;5 = 1,...,n5. Then just replace w’,
by ot and w{; by ﬁg. Recall that dP = w; + wy. Since dP € I N Iy, i.e., wy + wy € Iy, and

Wg + wy € Iy, there exist differentiable functions a;,b;,¢=1,...,n1;5 = 1,...,ng such that

ny 1y

— i — j

Wy = E a;w, Wy = E bjw{/
i=1 j=1

then
nq nq
dwg = Z da; N wi, + Z a;dw},
i=1 i=1

9



Note that I = Iy N I, = (w,...,wi;wy,..., wi2) is a differential ideal of dimension n, so
n:l
;iw_,c/\---/\dw;/\wx/\wy
n—1
" m n ~ n n ) n na
= (Z da; A wt + Z a,~dwi> /\ X /\ (Z da; A wl, + Za,—dwi) /\ (Z a,-w;) /\ ijwg
i=1 i=1 i=1 i=1 i=1 j=1

=0

by Lemma 1, since by cross wedging out, the above expression reduces to a sum of terms like
fAVL A+ Avyyy in the lemma, which are equal to zero by the lemma. Finally by Lemma 5,
rankBH(P) <n in U. Q.E.D.

Let min¢p ) dim M denote the minimal dimension of the message spaces in the privacy-
preserving mechanisms realizing P on set U, and let maxy rank BH(P) denote the maximal rank of
the “bordered Hessian” BH(P) in set U. Then we have the following as a corollary of Proposition
1 and Theorem 1.

Corollary Let P and U be as in Theorem 1, then

min dim M > maxrankBH(P)
(PU) U

Remark The corollary is stronger than a result of Williams(1982) where he proved that P can
be realized by a privacy-preserving mechanism with the dimension of the message space less than
that of the parameter transfer process, i.e., min{k, k2} + 1, only if BH(P) is not of full rank. It

is clear that this conclusion follows from our theorem.

While it is still an open question whether min p ) dim M = maxy rank BH(P) in general,

we know that it is true if either one of them equals two, as the following theorem shows.
Theorem 2 Let P:RF x R¥» — R be a C? function.

(a) mingpyydim M < 2 iff rankBH(P) <2 in U;

(b) If maxy rankBH(P) = 2 then min(p ) dim M = 2;

(c) Suppose U is connected and dP # 0in U. If min(py) dim M = 2 then maxy rankBH(P) =
2.

Proof (a) It follows from Theorem 1 that min p ¢y dim M < 2 implies rankBH(P) < 2in U. So
suppose that rankBH(P) < 2 in U. Define ideals

Il = (wx; dyl,...,dykz), Ig = (wy;dzl,...,dzkl)

Let I = I N I, then I = (wg,w,). It is easy to see that I, I; are both differential ideals. By

Lemma 4, dw, A wy A wy = 0, and dwy A wy A wy = 0, so I is also a differential ideal. It is clear

10



that dP € I. Hence by Proposition 2, P can be realized in U by a 2-dimensional message space,

hence min(p ) dim M < 2.

(b) By (a) we must have that min(p,;) dim M < 2. But mincp ¢y dim M = 1 only when P is
a function of x or y alone in U. In that case, rankBH(P) <1in U.

(c) By (2) we must have that rank BH(P) < 2in U. Therefore to show that maxy rankBH (P)
= 2 it suffices to show that rankBH (P) = 2 at some (x¢,yo) € U. In turn it suffices to show that
Wy A wy # 0 at some (Xg,y0) € U. But this must hold under the assumptions made in (c). For
otherwise, w, Awy, =0in U, or P, Py, =0in U,i=1,...,k;;5=1,...,k;. Hence

ki ks ki ko
(Z Pg') Yor2 =YY (P,P,)"=0 in U
i=1 j=1 i=1 j=1
ie, Yok P2 =0 or Efil Py =0inU. Let Uy = {(x,y) € U 1w, = 0}, 0> = {(x,y) € U :
Wy = 0}, then U = Uy U U;. Note that Uy, U, are relatively close in U. Since U is connected, it
follows that either U; N U; # 0 or one of them is empty. The former case violates the assumption
that dP # 0in U; while in the latter case, P is a function of x or y alone, hence minp ¢ dim M = 1,

violating the assumption that min(p ) dim M = 2. Q.E.D.

Remark (1) The theorem above is an extension of a theorem of Hurwicz, Reiter and Saari(1978,

- 1980) [or see Hurwicz(1986)] which only concerns with the special case with k; = kp = 2.

(2) Theorem 2 essentially states that under reasonably mild regularity conditions
min p,ry dim M = 2 iff maxy rankBH(P) = 2.

5. Lower Bound for General Economies

In this section we extend Theorem 1 firstly to the vector-valued goal function P of two-agent
economies and then further to the goal function P of the general /-agent economies. In both cases
a necessary condition is obtained for P to be realized by an efficient privacy-preserving mechanism
with a message space of dimension n. The necessary condition characterizes a lower bound for the

dimension of the message spaces.

First of all, two-agent case with the goal function P : R¥1 x R*¥*> — R™. Let P!,...,P™

denote the component functions of P, and let
k) ko
QE =) Prds;, QF=) Pkdy;, k=1,....m
i=1 i=1

then dP* = QF + Q’; and
k1 ko

dQ = —dQE =Y "N Pk dvdy;

i=1 j=1

11



Theorem 3 Let P = (P!,...,P™) : RF* x RF> — R™ be a C? function, m > 1. If P can
be realized in an open set U C R¥ x R*2 by an efficient privacy-preserving mechanism with a

message space of dimension =, then the following condition must be satisfied in U

A AV =0, for all vy,...,vn41 € {Q,...,Q™, ;,...,Q;",in,...,dQZ‘}

Proof As in the proof of Theorem 1, by using Proposition 2 we have

dPfeI=0LnI = (wi,...,wzl;w}/,...,w;‘?), k=1,...,m
So there exist differentiable functions af,b?, i=1,...,m;5=1,...,n0;k=1,...,m, such that

n1 ng

k_ ki k _ k. j —

Q= E a; w, Q= E bjwy, k=1,...,m
i=1 j=1

. Then
ni ni
dQE = daf Awi+) dFdwi, k=1,...,m
=1 =1
Now it is clear that the condition stated in the theorem follows from Lemma 1. Q.E.D.

Remark For m = 1, the condition in Theorem 3 reduces to the equivalent of the rank condition
in Theorem 1. For m > 1, however, I know no neat representation of this condition. The condition
is already complicated when n = 2, which, after omitting obvious redundancy, can be written

explicitly as follows

QY AQZ AQy =0
QF ANQPAQy =
QF NQP AdQp =

Qz' A dQZ A dQF =0
QY A dQY AdQY =

dQ% AdQL A dQY =0

For vy,vz,v3 = 1,...,m. Assuming Q% # 0, Q}, # 0, i = 1,...,m, and after further eliminating
non-independent equations, the above can be written as the following in terms of partial derivatives
of P.

Py P
; z: | _ . . _

Pf/'z PVJQ =0, 1< J, v,v2=1,...,m
g x;

P P .

Pyl/l2 PZ{/JQ =0, 1< J,v,re=1,...,m
Y Y5

12
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v v . . . .
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Tiz¥iy ZTizYjg Tig Tiz Y5y TizYsg Tig
va PY2 Pr2 Pys Pvs Pvs
v sYi v vV pop ¥ Vi 1 <12, 51 < J2 < Js,
Ti¥iy L Tig¥ip, T @iy || Teinvn oy, Lwiny | =0, Vo, vs = 1 m
1. 1. 1. Pl_ Pl_ Pl. 9 9
Y54 Ys5o Yss Yiy Yjq Yi3
01 O3 o3
a’(;_ill Y5 %‘21 Yo :f;"sl Yis . . .. . .
E ZinYi; Tiy Yy Tiy¥iz | 07 1 <2 <3,n <J2<73V,V,V3= 17- cey M
( 71 g2 Pos3
0'1'0'2a0'3) Tiz¥Yj, TizYjo TizYja

where (01, 03,03) are permutations of (v, s, v3).

Now we deal with the general [-agent case.
Theorem 4 Let P : R¥ x ... x R® — R™ be a C? function. If P can be realized in an open
set U C R* x ... x R¥ by an efficient privacy-preserving mechanism with a message space of

dimension n, then the following condition must be satisfied in U

Vg1 €{QF,dQF i=1,.. ., Lk=1,...,m}

Ul/\"'/\’l]n+1:0, fora,]lvl,..
where
k; .
QF = pr(_,.)dxg’), i=1,...Lbk=1,....m
=t 7

Proof Let II = (G,R™, k) be the realizing mechanism, then II satisfies the conditions stated in
Proposition 2. As in the proof of Theorem 1 and 3, without loss of generality, we can assume that
() 5= 1,...,1. Hence

_ . L i
one-forms w},...,w? are linear combinations of dwg ), e dzy’,
3

I=niLi=(w!|j=1,...,n5i=1,...,1)

Since dP* ¢ I, and dP* = Zizl QF, k= 1,...,m, there exist differentiable functions afj, j=

1,...,n5:=1,...,;k=1,...,m, such that
g .
Qf:Zafjwf, i=1,....Lk=1,...,m
=1

13



Then
in Zda”/\w —}-Za dw =1,....,Lk=1,...,m

Now it is clear that the condition stated in the theorem follows from Lemma 1. Q.E.D.

Corollary Let P: R x ... x R® — R™ and U be as in Theorem 4, then

Irr)ligdimM >min{t | vy A---Avgpr =0, forall vy,...,v441 € W}
or equivalently

Irt)lilljld‘l'mM > max{t| vy A---A v # 0, for some vy,...,v: € W}
where W denotes {QF,dQF |i=1,...,;k=1,...,m}.
Proof This follows from Proposition 1 and Theorem 4. Q.E.D.

14
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Abstract

The dimension of the message space is an important indicator of the
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