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1. Introduction

Some recent progress in game theory has been made on characterizing the set of
outcomes which follow from the common knowledge of rationality of players.
Aumann (1974, 1987) first explained that there exist plausible equilibria of
nonstochastic games which are not Nash equilibria. Players may rationally base
their actions on a correlation device, which is a set of signals not defined a priori as
part of the game. If the signals of different players are correlated, then their
resulting actions may also be correlated, leading to outcomes which are not Nash
equilibria. A correlated equilibrium is then a set of beliefs about the actions of
players which can be sustained by some correlation device.

The use of a correlation device can be extended to games with uncertainty and
asymmetric information about payoffs. Since the information of players is generally
a source of correlation of actions, which is permitted in a Bayesian-Nash
equilibrium, the focus is on equilibria which relies on an additional correlation
device. One question which arises is to what extent this correlation device may
depend on the prior information of players. Two extreme cases have been studied
previously by this author. An equilibrium which relies only on an additional
correlation device that is independent of the prior information of players is known
as a strategy correlated equilibrium [Cotter (1989a)], while permitting the use of any
correlation device leads to an action correlated equilibrium [Cotter (1989¢)].

In this paper an equilibrium concept which falls between strategy and action
correlated equilibrium is constructed. A communication equilibrium relies on a
correlation device which depends only on the information of players which is freely
and rationally provided by them. This equilibrium allows for all possible forms of
direct and noisy communication between players, and generalizes communication

equilibrium as defined in the mechanism design literature [e.g., Myerson (1983)] by



allowing players to have an arbitrary [rather than finite] set of possible states of
information. One of the most important results in mechanism design, the
revelation principle, is proven for this more general model. In addition, any
strategy correlated equilibrium is shown to be a communication equilibrium with a
“deaf” mediator, and any communication equilibrium is an action correlated
equilibrium.

The model in this paper is presented in Section 2, along with a brief review of
equilibrium concepts which depend on correlation but not communication. The
definition of communication equilibrium, along with a proof of the revelation
principle, is given in Section 3, and an alternate model with parallel results is
presented in Section 4. Section 5 compares communication equilibria with other
equilibrium concepts. The continuity of the communication equilibrium

correspondence is examined in Section 6.

2. The model
Consider a game with uncertainty and a finite set of players I= {1,...,I}. To
economize notation I denotes both the set and the number of players, and i € [is a

generic player. Each player i has the following characteristics.

action space A, a compact metric space.
privately observed type t; € T, a complete separable metric space.

payoff function u:TxA — RN, where A = z‘IeII A;and T = I.I;II T.

For any metric space X, let A(X) be the set of probability! measures on X with the

usual topology of weak convergence. By Theorems I11.6.2 and 11.6.4 of Parthasarathy

1When no other qualification is stated, all measures are Borel, and measurability

of sets and functions refers to Borel measurability.



(1967), A(X) is a compact [resp. separable[ metric space if and only if X is compact
[resp. separable]. The information of players about the types of others is given by an
information structure v € A(T). Let v, be the marginal of v on T,. The assumptions

about the payoff function are straightforward.

Assumption 2.1: For each i,
(a) the mapping ¢t — u.(-4) is measurable for each s € A,
(b) the mapping a — ul.(t,-) is continuous for each t € T,

(c) the mapping t — sup, | ul.(~,a)| is integrable.
a

The standard method for defining an equilibrium for this game has been to
transform the game into a nonstochastic game in behavioral [or distributional]
strategies. Let S, = {s:T, = A(A)) |s; is measurable} be the set of player i’s behavioral
strategies and S¥ = z‘I_eII S;. Using the convention that for any s € SP [resp.a € A, t € T,
s_; [resp.a_, t_[ is the profile of strategies [resp. actions, types] of players other than i,
player i’s payoff function in the transformed game is the expected payoff function

Ui:Sp—v N, where
Uy(s,s ;) = IT[A ’J‘A.ui(ti,t_i,ai,a_i)si(ti)(dai)s_l.(t_l.)(da_i)v(dt). (1)

Most definitions of equilibrium for Bayesian games have been constructed by
applying standard equilibrium concepts to the transformed game. A Bayesian-Nash
equilibrium (BNE) [Milgrom and Weber (1985), Radner and Rosenthal (1982)] is a
Nash equilibrium for the transformed game, i.e., s* € SP such that for each i and s; €
S Ul.(s*) 2 Ui(si,s*_i). A strategy correlated equilibrium (SCE) [Cotter (1989b)] is a
correlated equilibrium [Aumann (1987)] for the transformed game, i.e., a probability

distribution n € A(S”) such that for each i and measurable 61.151. - Si’

5P Ui(s)ﬂ(ds) 2 Isp ui(6i(5i),s_i)ﬂ(ds). (2)



As explained by Cotter (1989¢), an SCE only allows correlation based on devices
or signals which are independent of the type space T. Let S = {s:T — A(A)ls is
measurable} be the set of joint strategies. Permitting correlation based on arbitrary
leads to an action correlated equilibrium (ACE), which is a joint behavioral strategy s €

S such that for each i and measurable function aiTz.XAI. — Ai'
I u (t,a)s(t)(da)o(dw) Zf u(t,o(t.a.),a_)s(t)dav(dw). 3)
TxA 1 TxA ! 11U

An ACE wuses the correlation device s which “knows” t. The device
recommends an action to each player, with the profile of recommendations to all
players following the probability distribution s(t). Each player i optimally chooses to
follow the recommendation given t, his own recommended action, and the belief
that all other players will follow their recommendations.

Note that any BNE or SCE generates a joint behavioral strategy, so they are also
ACEs.

3. Representation of communication strategies and equilibria

The problem with the definition of an ACE is that it does not explain how the
correlation device comes to “know” t. Such a correlation device is best interpreted
as a profile of common beliefs about the behavior of players. If, however, the
correlation device is interpreted as an explicit mechanism, then it should also satisfy
the condition that it somehow receives t from the players. Imposing such a
condition leads to a communication equilibrium, which is defined below.

According to Myerson (1983), a mediator is a device which collects information
about the state of nature via confidential messages from each player, then transmits
a recommended action to each player based on the messages. Each player then takes
an action based on the mediator's suggestion. There is no mechanism to insure that

players will transmit all of their information correctly or follow the mediator's



recommendation. Therefore an equilibrium must satisfy incentive compatibility
conditions which takes account of the players’ ability to deceive or disobey the
mediator.

In this section Myerson’s definition is extended to games for which the type and
action spaces of players need not be finite, and the mediator and players may
transmit arbitrary messages to each other. Define a communication game to be
profiles of message spaces X = (X,...,X;) and M = M,...,M,), with each X; and M,
complete separable metric spaces, and a measurable communication function
rX = A(M). In a communication game, player i observes ¢; and sends a message x; €
X; to the communication function, following the distribution ¢.() € A(X)). The
communication function receives the messages x = (xl,...,xl) and sends a profile of
messages m = (m 1,...,mI) € M to the players, following the distribution r(x) € A(M).
Player i then receives the message m, and chooses a mixed strategy d,(t,m.) € A(A).
Let Zi(Xi) = {ol.:Tl.—> A(Xl.)l 0, is measurable} and Di = {61.:Tl. x Ml.—> A(Ai)| ZSl.is
measurable} be the sets of messages functions and reaction functions for player i
respectively.

Note that the above definition of communication equilibrium permits arbitrary
forms of communication. Special cases include noiseless as well as noisy
communication between individual players and groups of players.

The following technical result will be needed.

Lemma 3.1: Let Y be a complete separable metric space and let :T — A(Y) be
measurable. Then for any measurable function b:Y — R, the function t — be(ykb(t)(dy) is

measurable.

Proof: Let {b") be a sequence of simple functions on Y which increase to b. For

each n, the function t — be”(y)d)(t)(dy) is measurable by Theorem 3.2(b) of Cotter



(1989¢). For each t, the sequence {be"(y)(b(t)(dy)} converges to be(y)(b(t)(dy) by the

monotone convergence theorem, proving the result.

The next result states that the combination of messages, recommendations, and

reactions is mathematically tractable.

Theorem 3.2: For each ilet (6,0, € X(X,) x D,. Then there exists a unique profile of
players’ actions s € S that is the outcome of the communication game, such that for any

T x A — R satisfying Assumption 2.1,
[ fems@@ao@n

= foM [ fwad ym )day)...Btm )(dapr()dm)ay ¢ )dxy)...ot)dxpod. &)

Proof: The first step is to show that the right-hand side of (4) is defined. The
function (¢,m) — IAf(t,a)Bl(tl,m1)(da1)...61(t1,m1)(da1) is measurable since each Bi is
measurable. By Lemma 3.1, (t.x) — [ [ f(La)8;(ty,m )(day)...8,(tp,m ) (dapr(o)(dm) is

measurable, so the right-hand side of (4) is defined by repeated use of Lemma 3.1.
The right-hand side of (4) defines a real function $:L[C(A)] — R, where L[C(A)] =
T - C(A)l f is measurable with respect to the supremum norm on C(A)}, and ¢ is
easily verified to be linear and continuous with respect to the norm topology on
L[C(A)]. Letting M(A) be the space of signed measures on A with the weak
convergence topology, ¢ € LICA)] = {s:T — M(A)| s is measurable with respect to the
weak topology on M(A)}. Therefore there exists s:T — M (A) satisfying (4). To show s

maps into A(A), note that (4) is nonnegative for nonnegative f, and for a.e. t,
| IAf(t,a)s(t)(da)l

= ‘ I XIMIAf(t,a)Bl(tl,m PUay)..d,(t,m ) (da)r(0dm)o, (t)dx))...0 () (dx)



< ffo [\ sup | ft.a)| &t m ) (day)...By(t,m )(da)r(x)(dm)o, () (dx,)...0)(t) dx)

=asg£| fit,a)| (%)
proving the result.

Corollary 3.3: Equation (4) holds for any Borel-measurable function f.T x A — R.

Proof: Follows from Lemmas 3.1 and 3.2. ..

Replacing f with u in (4) yields the payoff function Vi:gl (}:i(Xi) x Di)—> R. A
communication equilibrium (CE) is a communication game {(Xl,...,XI),(Ml,...,MI),r*}
and a profile of messages and reactions ((0;,6;),...,(@*,6;)) € 1131 (Zi(Xi) x Di) which is a
Nash equilibrium for the game where each player’s payoff function is V; and strategy
set is }:i(xi) x Di‘

One well-known problem with this definition of CE is that permitting arbitrary
messages and reactions creates an intractably large set of possible equilibria. For any
CE there exist a continuum of communication games with equilibria which differ
only in the message structure used by the players, though the information conveyed
by the players’ messages is the same. The solution to this problem is the well-
known revelation principle, which states that for any CE, there exists an equivalent
CE in which each player accurately transmits her information to the
communication function and obeys its recommendation. Define a direct revelation
game to be a communication game for which X, =T, and M, = A, for each i. For each
i define the truthful message function 3, € Zi(Tl.) such that for a.e. t. Gi(ti) is the point
mass on ti, and the obedience function 81‘ € Di such that Si(ti’ai) is the point mass on
a, for a.e. t; and all a.

Earlier proofs of the revelation principle have assumed a finite number of

player types and a finite action space for each player.



Theorem 3.4: For any CE which yields the joint behavioral strategy s'e S, the

direct revelation game with communication function s has the CE ((81,(_11),...,(—61,(—11)).

Proof: Let ((6;,0;),...,(6;,0;)) be a CE for the communication game re S be the
joint behavioral strategy generated by 5,0 as given in Theorem 3.2. Consider
the direct revelation game for which the communication function is 7 Suppose
player i were to play (5,0, while every other player j played (6_]..6].). Without loss of
generality suppose 8:TxA.— A and 0:T; — T, The resulting payoff to player i

would be

[f 1Bt a)a ) (@ () )dayvlan (6)
which equals, by Corollary 3.3,
[l g2it3:e20.0 )8 (6, )(da )8t m ) da Jr()(dm)o (0 eV @) (¢ ) (dx o (e

This is the payoff that would result in the original game if player i chose the message
function o’; (0,()) and the reaction function induced by the composition of d; and 6*1..

Since the original game is a CE, (7) is dominated by
[ o[ it tm )(da)s (e ym )da )r' (0" (0 ,(6), 07 P dm)ver)
=[] ear” O (®)

which is the payoff in the direct revelation game if player i chooses (6:.,0:.). This

completes the proof.

A consequence of the revelation principle is that every CE can be identified with
the joint strategy it generates, as given by Lemma 3.2. Therefore the set of CE is a

subset of S.

(7)



4. Communication equilibria and the partition model

The results of the previous section are now stated in terms of the partition
model of a game with incomplete information. In the partition model a single
underlying probability space (Q,Fu) models all prior uncertainty in the game, where
Q is a complete separable metric space and ¥ its Borel sets. Each player has the

following characteristics:

action space A, a compact metric space. Let A = HIAi'
i€
information field G, a sub-o-field of ¥.

payoff function uQdxA— R
The assumptions regarding u; are analogous to Assumption 2.1.

Assumption 4.1: For each i,
(a) the mapping w — u,(w,a) is measurable for each 4 € 4,
(b) the mapping 4 — u;(w,4) is continuous for each w € Q,

(c) the mapping w — sup | ui(w,a)| is integrable.
a

The advantage of the partition model over the type model described previously
is that each player’s information is a parameter §G; which is distinct from the
underlying uncertainty in the game. Given a communication game {(X,...,X}),
(Ml""'MI)'r}' player i chooses a message function ;€ Zi(gi;Xi) = {oi:Q — A(Xi)l o is
gi—measurable} and a deviation function 61. € Di(gi) = {61.:Q x Mi — A(AI.)| 61. is gi x
M -measurable}. A communication equilibrium for this game is a profile of
messages and deviations ((0;,6;),...,(0*,6;)) € 1€H{ (X,(G; X)) x D(G)) such that for any i
and any (0,8) € L(G;X)) x D.(G),

[l i@ m ) @) w,m_)da_)r () dm)o; (@) (dx)o () dx Ju(de)



> IQJ‘XJ‘M IAui(w,a)éi(w,m )da)d (wm_)da_)r (0)(dm)o(w)(dx)o (w)(dx Julde) (9)

The expressions in Equation (9) are defined by Theorem 3.2.

With respect to a partition model, a direct revelation game is a communication
game for which X, =Q and M, = A, for eachi. For each i define the truthful message
function 616.1‘ € £.(G;Q) such that for a.e. o‘lgi(oo) = P[-| gl.](w)Z, and obedience Slg.i €
Dl.(gi) such that Slgi(ti,ai) is the point mass on o for a.e. w and all o

For any partition model there exists an equivalent type model. For each i let
(Tl.,‘Il.) be a copy of (Q,gi), and Z = iIeII Zi' Assume without loss of generality that ¥ =
}e/l g}., the smallest o-field containing each G;. By Lemma 4.1 of Cotter (1989Db), there
j
exists a unique measure v on (T, and a set isomorphism ®:G — 7such that v(B) =
u(CIJ'l(G)) for G € G and for each i and Gi € gl., CID(Glﬂ ...ﬂGI) = GIX...XGI. There does
not generally exists a corresponding point function from € to T, but there do exist
[Cotter (1989b, Lemma 4.2, Corollary 4.3, Lemma 4.4, Theorem 4.5)] isomorphisms
T:LIQ;C(A)] — LIT;C(A)], T:zi(gi,-xi) — Zi(Xz’)' and T:Di(gi) — Di which preserve
players’ expected payoff functions. It is also easy to verify that T(6lgi) =0 and T(Slgi) =

d. Therefore Theorem 3.4, the revelation principle, applies to the partition model.

5. Comparisons with other equilibria
The sets of BNE, ACE, and CE are subsets of the joint behavioral strategy space S.
While an SCE is not an element in S, it does generate a joint strategy. This mapping

from SCEs to joint strategies is many-to-one [Cotter (1989b), Example 2.2].

2Since Q is a complete separable metric space, regular conditional probabilities

such as the latter expression exist [Parthasarathy (1967, Theorem V.8.1)].
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In this section the sets of joint behavioral strategies generated by these four

equilibrium concepts are compared.

Theorem 5.1: Define the sets BNE, CE, and ACE C S to be the sets of BNEs, CEs, and
ACEs respectively, and let SCE C S be the set of joint behavioral strategies generated by the set
of SCEs. Then BNE € SCE € CE < ACE.

Proof: By Theorem 4.4 of Cotter (1989c), BNE < SCE < ACE. In addition, CE C
ACE since by Lemma 6.2 of Cotter (1989c), any ACE is a CE without the
communication of types to the communication function. It remains only to be
shown that SCE < CE.

Let r]* € A(SP) be an SCE generating s €S. Consider the communication game
with Mi = Si and r*(x) = r]* for all x. Since the mediation function does not depend
on x, the communication of players is irrelevant. Let 6; be defined by 6:(ti'mi) =
mi(ti)' The profile ((0_1,6;),...,(6 ,6;)) generates the joint behavioral strategy 5.
Suppose player i were to choose any other (0,8,). Then it would be choosing a
strategy outside the profile r]*, while the profiles of other players would be unaffected
since 7~ does not respond to players’ messages. Therefore player i’s payoff would be

reduced since r1’b is an SCE. This completes the proof.

The proof of Theorem 5.1 shows that an SCE is a CE with a “deaf” mediator, i.e,
a communication function r which does not depend on x. Conversely, if r is a CE

which does not depend on x, then the definition of CE reduces to that of SCE.
Corollary 5.2: The set of CE is nonempty.

Proof: The set of SCE is nonempty by Corollary 4.9 of Cotter (1989a), so the result

follows from Theorem 5.1.
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5. Continuity of the equilibrium correspondence

It is useful to know the extent to which the equilibria of the game depends on its
underlying characteristics. Let G be the set of parameters of the game, and A(TxA)
the set of possible outcomes, where each (s,u) € S x A(T) is identified with the
corresponding measure on TxA [Cotter (1989¢c, Theorem 3.2)]. The dependence of
the game on its parameters can be posed in terms of the equilibrium correspondence
£:G »— A(TxA). The most important such properties are upperhemicontinuity and
nonempty-valuedness. Though many possible definitions of G exist, in this section
attention will be restricted to G = A(T), the set of information structures p on T, with
the weak topology. Consider a sequence {u") € A(T). The action equilibrium
correspondence was shown to be continuous [Cotter (1989¢c, Theorem 5.2)] provided
each player’s payoff function is continuous on TxA. Unfortunately, this result does

not hold for communication equilibria.

Example 5.1: Consider a two person game. Their action sets are A; = {U,D} and
A, ={L,R}, and type spaces are T, =T, = [0,1]. The payoff functions, which does not

depend on the type space, is

=
h
=

ul 4an (0,0)
D] (0,0 (2,2)

Lets € Sbe given by

WL ift =t

s(tl,tz) =

L(D,R) if ¢, ¢t

1 "2

Given the profile of signals received by the communication device, the messages

sent to the players are always obeyed regardless of the probability distribution on T.

12



If player 1 receives U, she knows that player 2 received L and should optimally play
U, while if player 1 receives D, she knows that player 2 received R and should
optimally play D. Similarly, player 2 will always optimally choose to obey the
communication device’s recommendation.

Now let {u"} be a sequence of probability distributions on T, where p” is given by
the density function f"(tl,tz) = 1/[(t1—t2)"(1-n)(1-2n)]. It is easily verified that p"
converges weakly to u, which is the uniform distribution on the diagonal of T. For
each n and any t; observed by player i, the conditional probability that player -i will
transmit T, =t; is zero. Therefore s € E(u™). However, s ¢ E(u), since if player i
observes ti’ the conditional probability that player -i will transmit T, = tz. is one, so
player i should transmit anything but ¢, Therefore with the weak topology on A(T),

€ is not upperhemicontinuous for any topology on S. .-.

13
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