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1 Introduction

’

In recent work, Khan-Rustichini (1989) extend Mas-Colell’s (1984) formulation of Cournot-Nash equi-
libria of “large” anonymous games to a setting with uncertainty and imperfect information. However,
they assume that the imperfect information is commonly (publicly) held. In this paper, we show that
their results extend to a version of one-shot games in which each agent is allowed to possess information
which is particular to him or her.

There are two essential ideas underlying this extension. The first is to make information part
of the characteristics of each agent. This is, of course, the motivation for the work of Allen (1983)
and Cotter (1986) on the study of topologies on information. The second idea is to make essential and
intensive use of the topology of convergence in measure. Since we assume that the set of actions has no
linear structure, we are naturally led to this topology on the set of strategies. We also work with this
topology on the set of payoffs; in particular, in our treatment of state dependent felicity functions.

The basic conceptual difficulty in our work is that in the presence of differential information each
player’s maximization problem must be phrased in terms of her information and, in particular, each
player’s optimal strategy ought to be measurable in terms of this particular information. However, the
lack of a linear, and therefore convex, structure on the action set and hence on the space of strategies
does not allow us to take conditional expectations of these strategies. We respond to this difficulty
by exploiting the fact that the action set, being compact metric, is homeomorphic to a subset of the
Hilbert cube. This allows us to work there whenever linear operations are required. We also condition
the payoffs with respect to individual information but since these are assumed to be continuous functions
on the action set, we can rely on the theory of conditional expectations of Banach space valued random
variables.

In contrast to the earlier work of Khan-Rustichini (1989), we work with an uncertainty space
whose cardinality is not necessarily countably infinite. This leads to deeper results from a measure-
theoretic point of view. However, this generalization is obtained at the cost of restricting a player’s
payoff to be one generated by expected utility with respect to a common prior. Since our primary
motivation is differential information in the context of games with, in principle, a continuum of traders,
such a trade-off in terms of formulation seems a reasonable one. However, we leave it to the reader to
use the techniques of this paper and extend for herself our results to the set-up of Khan-Rustichini with
more general payoffs but with a countably infinite set of states of nature.

In terms of technicalities, our results involve the following considerations. Firstly, we assume
compact strategy spaces in the topology of convergence in measure. This is unlike Khan-Rustichini

for whom this followed as a consequence on account of their reliance on the topology of pointwise



convergence. Secondly, we rely on the observation that Cotter’s (1986) pointwise topology on the space
of sub-o-algebras is metrizable when the basic uncertainty space is one for which its corresponding space
of random variables with finite mean is norm separable. It may be worth stating in this context that
we make essential use of metric structures throughout our work. Thirdly, we make no equicontinuity
type assumptions on the payoffs; in particular, on the space from which the felicity functions are chosen.
This is in contrast to the work of Milgrom-Weber (1985). Indeed, the fact that our existence theorem
could be proved without such a similarity assumption on the space of felicity functions is somewhat
surprising and leads to considerable additional complication in the analysis.

Section 2 presents the model and results, Section 3 collects some mathematical preliminaries
relating principally to the topology of convergence in measure and Section 4 is devoted to the proofs.
It may be worth making the general remark that our proofs, as indeed the formulation of the problem,
bring together topology and measure in a way that all the hypotheses of the Fan-Glicksberg 1952 fixed

point theorem are satisfied.

2 The Model and Results

We begin with a broad overview of our results. In our formulation of a “large,” anonymous game, a
player is viewed as a pair consisting of a sub-o-algebra and a random variable; a game as a probability
distribution over this product space of sub-o-algebras and random variables; and an equilibrium of
this game as a suitable probability distribution over the joint space of players and players’ strategies.
We show the exstence of such an equilibrium and furthermore, that the equilibrium correspondence
is upper hemicontinuous (upper semicontinuous in the terminology of Berge (1963)) with respect to
perturbations in the game. In the remainder of this section, we make these ideas precise.

Let (Q, 7, Pr) be an abstract probability space. It formalizes uncertainty. Q is the space of
(countable or uncountable) states of nature, with a particular state of nature being denoted by w. F
formalizes full information and the probability measure Pr on F will do triple duty: it is used to
define the metric underlying the topology of convergence in measure as well as that underlying Cotter’s
topology on sub-o-algebras; to calculate expected utilities; and to formalize our assumption of uniformly

bounded payoffs. We shall make the following assumption on (2, F, Pr).
Assumption 1 The Banach space L,{Pr,R) is separable.

It is well known that a sufficient condition for this is that the o-algebra is countably generated.
Let A be a compact metric space with metric d4. A4 is the basic space of actions available to each

of the agents. It is assumed to be common to all agents and, in particular, not assumed to be convex.



Let F be the set of equivalence classes of sub-c-algebras of F and any particular sub-c-algebra
G € F denotes incomplete information. We endow the set F with a topology proposed by Cotter (1986)

under which

F* — F <> Exvf — Exfforall f € L;(Pr,R),

where {F*} is a net chosen from F. A different topology on information has been proposed by Allen
(1983) but Cotter shows that his topology of “pointwise convergence” is coarser and hence by working
with it, our results also apply to Allen’s topology. Cotter shows that his topology is metrizable under
Assumption 1.

Let Meas(Q,Pr; A) be the space of measurable functions from (2, 7, Pr) to A and endowed
with the topology of convergence in measure. We shall be working throughout with an equivalence
class of such functions; this should be particularly kept in mind when we deal with almost-everywhere
convergence. Note, for example from Choquet (1969, p. 35), that the metrizability of A implies the
metrizability of Meas(Q, Pr; A) with metric given by

d(f,g) =inf{reB, :Pr{w € Q:d4s(f,g) >r} <}

We assume that each player is constrained to choose her strategy (a measurable A-valued function)
from a compact subset of this space, to be denoted .A. The fact that every player is constrained to .A
is common knowledge. Let A = AN Meas(Q, Pr; A). Since A is compact, certainly A% is compact.

However, for emphasis we shall state this as an assumption on A%.
Assumption 2 The set A is compact in the topology of convergence in measure.

A player also faces another set of constraints derived from the extent of her imperfect information G.
When we consider a subset of G-measurable functions, G € F, of A7 we shall abbreviate this set to AY.
Since A9 is a closed subset of Meas(Q, Pr; A) and hence of A7, it is also compact.

Since we are formulating Cournot-Nash equilibria, we need to specify how the response of any
particular agent depends on the actions of the others. Towards this end, we shall assume that each
player responds to the distribution over the space of strategies. Let M1 (A%) be the space of Borel
probability measures on A” endowed with the weak*topology. Since A” is a compact metric space, so
is the space M1 (A%).

Next, we turn to the space of payoffs. Let C(A x M%(A%)) be the space of continuous functions
from A x ML (A%) to the real line R and endowed with the sup-norm topology. This specification
takes into account the fact that the individual payoffs depend on actions and externalities. It does not

take into account the uncertainty and the extent of imperfect information. Towards this end, we let



Meas(Q, Pr; C(Ax M} (A%))) be the space of measurable functions from (2, F, Pr) to C(A x ML (AT))
and endowed with the topology of convergence in measure. We shall abbreviate this space to 4. Here

again the metrizability of C(A x ML (A%)) implies the metrizability of U4 with metric given by

d(f,g) =inf{r Ry :Pr{|| f-g|>r} <}

for all f, g in U, and with || - || denoting the norm on C(A x M1 (4%)).

All that remains to be discussed is conditioning due to imperfect information ¢ € F which is
available to an individual player. We simply assume that each player takes the conditional expectation
with respect to G of u in 4 and maximizes expected utility of the resulting random variable with
respect to the common probability measure Pr. In other words, we assume that a player with payoff u
and imperfect information G chooses as her strategy set G-measurable functions a € A9 and maximizes,

for a given p € ML (A7) for the other players, the function
I:4%7 xUy x F x ML (AT) — R with I(a,u,G,p) = /(Egu)(w)(a(w),p)dPr.
a

A player then is an element (u,G) of the space (U, x F). We shall denote this space by P,,, m
for measurable functions. From what has been said so far, certainly the space of players is a topological
space.

A game is a distribution on the space of players. This formalizes that we are in a set-up with
such a “large” number of agents that their individual identities are of no consequence but only the
distribution of these identities. More formally, we can now present our formulation of an anonymous

game with uncertainty and imperfect and differential information.

Definition 1 A game p with imperfect and differential information is a Borel probability measure on

Pm.

A Cournot-Nash equilibrium of such a game is a distribution on the joint space of strategies and

characteristics such that
(i) the marginal of this distribution on players is identical to the given distribution of players;

(1) it gives full measure to payoff maximizing strategies when the payoffs are conditioned by the

marginal of the distribution on strategies and by the extent of imperfect information.

The first requirement simply forces us to restrict attention to the particular game that is given. The
second requirement is the essence of Cournot’s original idea that one acts on the basis of one’s prediction
of others’ actions and this act leads to the fulfillment of the prediction.

We can now present



Definition 2 A Borel probability measure 7 on A x P, is a Cournot-Nash equilibrium distribution of

a game p if (i) Tp, = p and (i) T(B;) = 1, where subscripts on t denote marginals and where
B. = {(a,(v,G)) € A% x P,, : I(a,u,G,745) > I(a',u,G, m47) Va' € A9}.

Assumption 8 A game u is said to have uniformly bounded payoffs if there ezists a real valued Lebesgue

integrable function g on (Q, F, Pr) such that for any u € supp y,,
|| w(w) || < g(w) almost every w € Q.
We can now present our first result.
Theorem 1 For any game satisfying Assumptions I to 3, there ezists a Cournot-Nash equilibrium.

Remark 1: Theorem 1 is valid if we imbed each player’s strategies in a smaller space derived from
a suitable union of the variety of information available in a given game; i.e., in the smallest space of
information containing all individual information. In terms of a formal treatment, for any game u, let
supp 3 p be the projection of the support of 4 on the second coordinate of (U4 x F), namely on F. Let H
be the smallest o-algebra that contains UGEmpp a9 certainly it belongs to F. Now modify Definition
2 by substituting A™ in place of A”. The payoffs are defined, in part, on M},,(A}') but a player can be
more specific and focus on elements of M} (4%). Since M} (4%) C M} (47), eve‘rything is well-defined
and Theorem 2 is true with this modification.
Remark 2: Note that the earlier work of Khan (1986) and Khan-Sun (1987) is deterministic in an
essential way. In that work, purely topological structures, in particular the property of complete regu-
larity of the set of players, drive the proofs. This is no longer the case in the existence result presented
here; Assumptions 1 to 3all involve measure-theoretic structures.
Remark 3: We do not assume any linear structure on the action set A but if such a structure is available,
then we have available to us several topologies, other than the topology of convergence in measure, with
which we can conduct the analysis. An investigation of these structures may be of interest but is outside
our scope here.

We now turn to the behavior of the set of equilibria with respect to changes in the underlying
game. Towards this end, we define the correspondence I' which associates to every game the set of its

Cournot-Nash equilibria. Formally, we have
r: M:,('Pm) N 2M;(A’xum(n,Pr;cuxM;(H))))
where for any game p, I'(i) is its Cournot-Nash equilibrium. We can now present

Theorem 2 For any net (p*, ) tending to (u, 7) with ¥ € T'(p¥), 7 € T'(u). Moreover, if Meas(Q, Pr; C(Ax

M?L (AT))) is restricted to be compact, then T' is upper hemicontinuous.



3 Mathematical Preliminaries

In this section, we collect some results which constitute essential steps in the proofs of our Theorems 1
and 2. Since these results may have independent interest, we state them in a form that is self-contained
and in somewhat more generality that is needed for our purposes.

We begin with a result which shows that convergence of a measure on a product space implies
convergence of the marginals. Khan (1986, Theorem 2.5) states this theorem for a measure defined on

the product of two completely regular spaces but the following more general statement is true.

Lemma 1 Let S and T be two regular spaces and {r"} be a net chosen from M) (S x T) and such that

it converges to T in ML(S x T); then 1 converges to r;, fori =S, T.
Our next result is a alternative characterization of Cotter’s topology of pointwise convergence.

Lemma 2 For any Banach space,
G — G &= Egvf — Egf forall f € L,(Pr, X),
where {G*} is a net chosen from F.

Our next six lemmata concern the properties of the topology of convergence in measure. Note
that when we consider a product of some or all of these spaces we shall endow this product with the

product topology.

Lemma 8 Let {u™,G"} be a sequence chosen from Uy x F and converging to (u,G). Then there ezists a
subsequence {u*, G*} of {u™,G"} such that Egau* converges pointwise Pr-almost everywhere, and hence

in measure, to Egu.

Our next lemma is a far-reaching generalization of Exercise 4.1 in Chung (1968, Chapter 10). Y
is a separable metric space with metric dy; C(A;Y) is the space of continuous functions from A to Y

and endowed with the compact-open topology; and Meas(fl, Pr; C(A;Y)) has the obvious meaning.

Lemma 4 Let {a"} be a sequence chosen from Meas(Q, Pr; A) and converging to a and u an element
of Meas(Q,Pr;C(A;Y)). Then the function f* : Q@ — Y with f*(w) = u(w,a™(w)) is a measurable

function for each n and the sequence of functions {f™} converges in measure to f.

Lemma 5 Let {a™, u™, p"} be a sequence chosen from A% x Uy x M:_(A’) and converging to (a,u, p).
Then the function f™ : @ — R with f*(w) = u™(w)(a™(w),p") is a real random variable for each n and

the sequence of random variables {f™} converges in measure to f.



Lemma 8 For any (u,G,p) in Us x F x M} (47),

I: A7 xUy x F x M2 (AT) — R with I(a,u,G,p) = /(Egu)(w)(a(w),p)dpr
a

is an upper semicontinuous function on A%,

Lemma 7 For any sequence {a™, u™,G", p"} chosen from A” x Uy x F x M:_(Af) and converging to

(a,u,G, p), there ezists a subsequence {a*,u*,G* p*¥} such that

I(a*, u*,G*, ) =/

(Egru*)(w)(a* (@), p*)dPT — I(a,v,G,p) = / (Egu)(w)(a(w), p)dPr.
1] O

Lemma 8 A is a lower-hemicontinuous correspondence of G.

We shall also need a result that shows that pointwise convergence of functions measurable with
respect to differing o-algebras implies measurability of the limit function with respect to the limit

o-algebra.

Lemma 9 Let {a,,G"}n=1 be a sequence chosen from A% x F with a, € A" and with a, converging

pointwise Pr-almost everywhere to a G™ converging to G in Cotter’s topology. Then a is G— measurable.

Finally, we shall need the following theorem in the proof of upper hemicontinuity of the equilib-

rium correspondence.

Lemma 10 Let I and = be two topological spaces and T : I — 2% and Q(x) : T(x) — 27(%) be two

correspondences. For each x, let T'(x) be the set of fized points of Q(x), i.e.,
I(x)={reZ:r€Q(x)(n)}

If the correspondences T and Q have closed graphs, the latter in the space (Il x = x Z), then the corre-

spondence I' has a closed graph.

4 Proofs

The proofs of Theorems 1 and 2 are modelled after those in Khan-Rustichini (1989), but unlike them, our
uncertainty space £ is not countably infinite. This necessitates the use of the topology of convergence

in measure and of the measurable selection theorem in the proof of Theorem 1.



4.1 Proofs of Lemmata

Proof of Lemma 1: The proof relies on Lemma 5.1 in Hoffman-Jorgenson (1970) which is stated for
completely regular spaces but is easily seen to hold for regular spaces. .
Proof of Lemma 2: (<=). For any a € X,a # 0, consider the map T, : L,(Pr,R) — L,(Pr, X)
such that for any f € L,(Pr,R), and any w € Q, T, f(w) = af(w). It is easy to check that T, is a
well-defined, continuous, linear operator.

For any f € L,(Pr,R), we want to show that Ega f "2% Egf. Under our hypothesis, we know
that Egn(T,f) == Eg(T,f). Since T, is a closed, linear operator, we can apply Diestel-Uhl (1977;
Theorem 6, page 47) to assert that Ega(T,f) = To(Egn f). But now, on writing out the norms and on

noting the linearity of the operator T, we obtain

| Egn(Taf) — Eg(Taf) |l | Ta(Egn f — Egf) ||

/n | Tu(Bgnf - Egf) | (w)dPr

il

I

/n el |(Bgnf - Egf)(w)| dPr

uan/ |(Eg~f — Eg f)(w)| dPr
A _
la|lll Egnf - Eof |-

Since the left hand side converges to zero, the proof is complete.

(=) Suppose ¥ — G. We have to show that
feLi(Pr,X) = Egnf =5 Egf.

We first consider the case when f is a simple function. In this case, there exists an integer k, and
(zs, A:) € (X,G), i=1,---,k, such that f = Ele Z;XA;, XA, the characteristic function of the set A;.

But now it is easy to see that

k k
| Egnf—Egf || = |l Egn(d_ zixa,) — E¢(D_zixai) |l
=1 =1
k
= | Y zi(Egnxa, — Egxa) |
=1
k
< Szl Bgnxa, ~ Eoxa |l -
=1

Since under our hypothesis, the last term converges to zero, we are done.
Next, we turn to the general case when f is not a simple function. Pick any arbitrary € > 0. Since

f € Li(Pr, X), there exists a simple function f, such that || f — f, ||< ¢/3; see, for example Diestel-Uhl



(1977; page 44). From the argument above, we can find a ng such that
|| Egnfe — Egfe ||< €/3 for all n > ny.

Using the fact that the conditional expectation operator is a contraction (see, for example, Diestel-Uhl

(1977; Lemma 3, page 122)), we can now write

| Egnf — Egf|| = | Egnf— Egnfe+ Egnfe— Egfe+ Egfe— Egf ||
= [[Egn [I| f—fell+ | Egnf —Egf ||+ || Eg || || f - fe |
< ZHf_fe ||+|I EG“fe_EGfeHS €.
Since € was chosen arbitrarily, we are done. .

Proof of Lemma 3: We can now assert that Eg.u™ — Egu. To see this, note

|| Eg»u™ — Egul| = || Egru” — Egou+ Egou — Egu ||
< I Egr [ 1" —ull +]| Egru— Egu||
< v —ull+ 1l Egru— Egull.

The last line follows from the fact that the conditional expectation operator is a contraction (see, for

example, Diestel-Uhl (1977; Lemma 3, page 122)). But now the proof of our assertion can be completed

by using Proposition 1. .

Proof of Lemma 4: We first show that for any n, f™ is a F — B(Y') measurable function. Towards

this end, let

ev: (A x C(4;Y)) — Y with ev(a,u) = u(a)

" = (a"u): Q — (4 x C(4;Y) with ¥*(w) = (a"(w), u(w)).

It is clear that f® = ev o ¥™. Certainly, ¥" is measurable by hypothesis. Furthermore, since the

evaluation map ev is jointly continuous when C(4;Y’) is endowed with the compact- open topology

(see, for example, Dugundji (1966; Chapter XII, Theorem 2.4, p. 60)), we have proved our claim.
Next, we show that f™ converges to f in measure. Towards this end, we shall work with a

function A : 2 x R — R such that for each w €2 and ¢ > 0
A(w,€) = sup{6 : ds(§,a(w)) < § = dy(u(w,§), u(w,a(w)) < €}.

The fact that A(w,e) > 0 follows from the continuity of u and of dy. The fact that it is bounded follows
from the compactness of A. We shall also show that for every ¢ > 0, w — A(w,€) is a measurable

function.



Let {z.} be a dense subset of A and define for each integer n, the function Z, : @ — A4 as

< _f za ifdg(zn,a(w))<é
Za(w) = { a(w) ifdg(zn,a(w))>6

Since a is measurable and d4 is continuous, Z, is a measurable function. This allows us to deduce that
for any integer n, the function w — dy (u(w, Z,(w)), u(w,a(w))) is 8 measurable function of w.

Next, consider for any positive § and any w €  the following set

G(w,$) = sup{dy (v(w,§), u(w,a(w)) : d4(§,a(w) < 6}.

It is now easy to check that

G(w, 8) = supnpdy (u(w, Za(w)), u(w,a(w)))

and therefore for any fixed §, G(-,6) is measurable.

Let {6} be the sequence of rationals in (0, 1). For each integer n, let

s b HGw,8,)<e
‘5"(“’)—{0 if G(w,6,) > €

Since G(+,8,) is a measurable function, so is ba(+). It is now easy to check that
A €)= 3“Pﬂ{5n(')}'

But this allows us to assert that A(-,¢) is a measurable function.

Now we shall show that for any positive real numbers ¢, 7, there exists an integer n, such that
Pr{v € Q:dy(f"(), f(©) > €} < nforall n > n,.
Note that for any integer i,
{w € Q1 ds(a"(@),a(w)) < Alw, )}
2 {{w € 0:d4(a"(w),a(w)) < 1/i} [ {w € Q: A(w,€) > 1/i}}
and hence
Pr{w € 0: da(a"(v), a(w)) > A, )}
< Pr{({w €0 da(a"(w),a(w)) < 1/i} [\ {w € 0 : A(w,€) > 1/i})}
< Pr{iw € N:dy(a"(w),a(w)) > 1/i} + Pr{w € Q: A(w,€) < 1/i}. (1)
Let Q; = {w € Q : I'(w,€) € ]1/(i + 1],1/3)}. Since T(-,€) is measurable function, Q; is a

measurable set for each integer i. Furthermore, @ = {J; Q;. Since (Q, F, Pr) is a probability space, we

can find an integer i, such that

Pr(|J @) < n/3. (2)

i=i,

10



Since a™ converges in measure to a, we can find an integer n, such that
Pr{w € Q:d4(a"(w),a(w)) > 1/i,} < n/3 for all n > n,. (3)

On substituting (2) and (3) in (1) and given the definition of T, we have a proof of our claim. .
Proof of Lemma 5: To show that for any n, f™ is a measurable real valued function, simply note that
the sup-norm topology coincides with the compact-open topology and follow the proof of the first claim
of Lemma 4.

Next, we show that f™ converges to f in measure. Observe that we can ignore the dependence
of u™(w) on p* without any loss of generality. Choose an arbitrary ¢ > 0 and consider for any integer n

the set
{w € Qv (w)(a™(w)) — u(w)(a(w)) [> €}
={w € 0| v (w)(a"(w)) - u(w)(a"(w)) + v(w)(a"(w)) ~ u(w)(a(w)) |> €}
C{w e Qv (w)(a"(w)) — u(w)(a"(w)) | + | w(w)(a™(w)) — w(w)(a(w)) |> €}
C{w € Q| v (w)(a*(w)) — u(w)(a*(w)) |> e} |J {w € 0] u(w)(a"(w)) — u(w)(a(w)) |> €}.
By the definition of the topology of convergence in measure, there exists an integer n, such that

for all n > n,,
Pr{w € Q:| " (w)(a™(w)) — u(w)(a™(w)) |> €} < €/2.

Since a™ converges to a in the topology of convergence in measure, we can appeal to Lemma 4 and

assert the existence of an integer n3 such that for all n > nj,
Pr{w € 0 u(w)(a™(©)) - u(w)(a(w)) [> €} < ¢/2.

On putting these facts together, we have shown the existence of an integer # = Maz(n;, n;) such that
for all n > 7,
Pr{w € :| u"(v)(a"(v)) — u(w)(a(w)) |> €} < €.

Since ¢ was chosen arbitrarily, we are done. ]
Proof of Lemma 6: We have to show that H = {(a,a) € A7 xR : I(a,u.G,p) > a} is a closed set.
Towards this end, pick any sequence {a",a"} from H and converging to (a,a). We have to show that
(a,a) € H. Since a™ converges to a in the topology of convergence in measure, we can extract a subse-
quence {a*} of {a"} which converges pointwise Pr-almost everywhere to a. Since u € Uy, u(w)(a*(w,p))
converges to u(w)(a(w,p)) for Pr-almost every w € Q. On appealing to the uniform integrability hy-

pothesis in Assumption 3, we can invoke the dominated convergence theorem to assert that

I(a*,u,0,p) = /O(Egu)(w)(ah(w),p)dPr — I(a,u,G,p) = ‘/‘;(Egu)(w)(a(w),p)dPr.

11



The proof is complete. .
Proof of Lemma T: This is now a straightforward consequence of Lemmata 2, 3, 4 and 5. L]
Proof of Lemma 8: Let {G"} be a sequence chosen from F converging to G and a € A9. We have to
manufacture a sequence {a,}, a, € A" which converges in measure to a.

Since A is a compact metric space, we can appeal to Dugundji (1966; p.195; Cor.3.2) to assert
the existence of a subset A of the Hilbert cube I, and a homeomorphism h: A — A. Let {zn} be a
countable dense subset of A, || - ||;s the I, norm and dgs (-, ) the metric based on this norm.

Certainly, w — h o a(w) is a G-measurable function taking values in I,. We can now appeal
to Diestel-Uhl (1977; Chapter V.1) to assert the existence of w — Egn(h o a)(w). Since we are not

guaranteed that the values of this function lie in A, consider the real valued function
w — dg3(Egn(hoa)(w), 4) = inf,.ill Egn(hoa)(w)—a|l=infoeizy || Egn(hoa)(w)—z||.

This function is G"-measurable for every integer n because infima of a countable set of measurable

functions are measurable. Furthermore, since h o a takes values in A4,
dp2(Egn(hoa)(w), 4) <|| Ega(hoa)(w) — hoa(w) [lo Pra.e.w.
Nowdeﬁne&,,:ﬂ—»A"as
dn(w) = {ze € A: 21 € A(w), 2; & A(w) for j < k},

Aw) = {z € {z:} || Egn(hoa)(w) — z ||s< dpz(Egn(h 0 a)(w), A) + 1/n}.

On appealing to Castaing-Valadier (1977; Theorem II1.14), we can assert that A(-) is a correspondence
with a g7 ®B(/i) measurable graph. This implies that a is also G"-measurable. To see this, observe that
@n = 34 TkXqr Where QF = ﬂ\(uk;1 ), k>2,and Q! = {w € Q:2, € A(w)}. Now for Pr-almost

2

every w
(@) ~hoa(@) ko < || &n(w) = Egn(hoa)(w) s + || Egn(hoa)w) — hoa(w) [l
< dp(Egn(hoa)(w), ) + 1/n+ || Bgn(hoa)(w) — hoa(w) [l

< 1/n+2]| Egn(hoa)w) —hoa(w) |l -

Since g™ converges to G, Egnf — Egf in Li(Pr,£?), and hence we obtain for Pr-almost every

w, Egn f(w) — Egf(w)in || -|lz2 norm. Thus we can conclude that
l| @n(w) — h o a{w) ||;2— 0 for P-almost every w.

Certainly, h~'a, is a G™-measurable function taking values in 4 and converging pointwise, and hence

by Schwartz (1973; Proposition 1, p. 248) in measure, to a. =
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Proof of Lemma 8: Consider an arbitrary open subset U of A. We want to show that a™! = E € G.
On recalling that A is a metric space, we can write U as U = |J._, Fin with F,, closed and F,, C Fpny,y
for every integer m. Then E = U:=1 U:°=1 ﬂ:ozk(a“)'l(Fm). From this it follows that E € ¢™ for
every n. Equivalently, that xg is a G™-measurable function for every n. Now from the assumption that
g™ — G in Cotter’s topology, we have that xg = Egnxg — Egxg in Li(Pr,R). This leads us to
conclude that Egxg = xg, i.e., E € G as claimed. a
Proof of Lemma 10: Straightforward. A net {x*,7*} in the graph of T and converging to (x, ) will
satisfy 7 € T(x") and ¥ € Q(x¥)(¥), and therefore 7 € T(x) and 7 € Q(x)(7). By the definition of
T, r € I'(x). .

4.2 Proof of Theorem 1

Let B, be the same as in Definition 2. Furthermore, let
T ={re M (AT x Pp):7p,, = u};
Q:T — 27 such that Q(r) = {p € T : p(B,) = 1}.

The proof consists of three main steps: 7 is nonempty, convex and compact; the correspondence
T — B, is nonempty valued and has a closed graph; the correspondence Q is nonempty and convex
valued and has a closed graph. The proof is then completed by an application of the Fan (1952)
Glicksberg (1952) fixed point theorem to the correspondence Q defined above. We shall use Glicksberg’s
version of the fixed point theorem. We now turn to the proofs of the three steps.
Step 1: That 7 is nonempty follows from Schwartz (1973, Theorem 17, p. 63) as described in Khan
(1986). Also see Khan (1986) for the proof that T is compact. T is clearly convex.
Step 2: We begin with the claim that for any 7 € T, B, # 0. For any 7, and any pair (u,G), we
need to show the existence of an & € A” which maximizes the function I(-,u,G, 74). This follows from
Assumption 2 on the compactness of A% and from the Lemma 6 on the upper semicontinuity of I on
A%

Next we turn to the fact that the correspondence r — B, has a closed graph. But this follows
directly from Berge’s (1963) Maximum theorem once we have Lemmata 1, 7, 8 and 9.

Step 8: We first prove that for any 7 € T, Q(7) # 8. Towards this end, consider the correspondence
&(u,G)={a€ A7 : (a,(1,9)) € B, }.

From the upper semicontinuity of I(-,u,G,7,7) and the compactness of A* &(u,G) # 8 for every
pair (u,G). Since B, is a closed subset of A* x P,,, & has a measurable graph. We can now apply

Aumann’s measurable selection theorem (see Castaing-Valadier (1977, Theorem 3.22)), to obtain a
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measurable selection h : P, — A”. Now define f : Pm — A% x P by f((4,G)) = (h(x,G), (u,9)).

On letting p = fu, we complete the demonstration by checking that p € T, p(B,) = 1, and pp,, = u.
The second assertion that Q has a closed graph follows as in the proof of Claim 8 in the Proof of

Theorem 3.1 in Khan (1986). "

4.3 Proof of Theorem 2

We first prove that the equilibrium correspondence I' has a closed graph. We define the two correspon-
dences:

T : MY (Pm) — ML (AT x Pp) with T(x) = {r € ML (AT x Pp) : 7p,, = v}, 7 € ML (Pn),

Q(x) : T(x) — 270" with Q(x)(r) = {p € T(x) : o(B) = 1}.

Note that these correspondences differ from the constant correspondences 7 and Q previously defined
only in their explicit dependence on the measure x which is now a changing parameter. Thanks to
Lemma 8, we have only to prove that 7 and Q have closed graphs.

We first consider the correspondence Q. Consider a net {x*, 7¥; p*} in the graph of Q and which
tends to (x,7;p). By definition of Q and the fact that p¥ € Q(x¥)(r¥), we obtain that p*(B,.) =
1 for every v. From the proof of Theorem 1, we can derive limsup, B,» C B,. Now, as in Lemma 2 in
the proof of Theorem 3.1 in Khan (1986), we obtain p(limsup, B,+) > p*(B,+). From the monotonicity
properties of the measure p, p(limsup, B,.) < p(B,), and hence p(B,) = 1. This proves that p € Q(x)(7)
and our claim.

We next turn to the correspondence 7. Let {x¥, 7"} be a net in the graph of 7 and let it converge
to (x, 7). Consider any « continuity subset V'; see Topsoe (1970, p.40) for a definition. Recall that both
A% and P,, are metric spaces and hence completely regular. By convergence of {x*, 7}, n*(V) —
x(V), and hence

(AT xV)=r_(V) — (47 x V) = (V).

Hence, we obtain that 7p_ (V) = x(V). On applying Topsoe (1970, Theorem 8.1), we conclude x = 7p_,
and that therefore 7 has a closed graph.

The proof of the theorem is complete. a
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