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At the outset, if a person in custody is to be
subjected to interrogation, he must first be informed
in clear and unequivocal terms that he has the right
to remain silent. ... The warning of the right to
remain silent must be accompanied by the explanation
that anything said can and will be used against the
individual in court. This warning is needed in order
to make him aware not only of the privilege, but also
of the consequences of forgoing it. It is only
through an awareness of these consequences that there
can be any assurance of real understanding and
intelligent exercise of the privilege. Moreover, this
warning may serve to make the individual more acutely
aware that he is faced with a phase of the adversary
system -- that he is not in the presence of persons
acting solely in his interest.

--Chief Justice Earl Warren,
United States Supreme
Court, June 13, 1966, in
Miranda v. Arizona, 384
U.S. 436, 467-469.

1. Introduction

The negotiation process transmits information in at least two ways.
First, any time that an informed party responds (positively or negatively) to
an existing offer on the bargaining table, he may reveal some of his private
information to his partners in the negotiations. Second, whenever that party
places his own new counteroffer on the table (or refrains from doing so), the
form of the proposal potentially conveys some information. Together, these
two vehicles for information transmission may result in the rapid disclosure
of the informed party’s information.

Consider a bilateral bargaining situation where one of the parties
possesses private information which the other party wishes to learn. It is
reasonable to think that the first channel ("passive revelation") can be more
readily exploited to expose the informed agent’s information than can the

second channel ("active revelation"). The uninformed agent obtains
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information via passive revelation by making an offer which the informed agent
finds either attractive or unattractive, depending on his private information,
and merely waiting for the informed agent's response. In contrast, active
revelation relies on the informed party's willingness to voluntarily choose to
frame a proposal which reveals his information. The uninformed party can
utilize the first device to force the informed party to disclose; however, the
informed party has the option of refraining from making counteroffers, and
thus can avoid the second means of information transmission.

In this article, we formally derive a result of this type. Consider the

(k,L)-alternating-offer bargaining game!

of one-sided incomplete information.
Restrict attention to the set of sequential equilibria which satisfy the
additional restrictions of stationarity, monotonicity, pure strategies and no
free screening.? Our main result then is the Silence Theorem: there exists a
sufficiently short (but still positive) time interval between successive
offers such that the informed party never makes any serious counteroffers in
any of these equilibria. All information revelation then occurs only through
passive responses by the informed party to offers of the uninformed party.

Our result thus provides a justification for studying the bargaining
game of one-sided incomplete information in which only the uninformed party is

permitted to make offers. This game, while extensively and successfully

studied in earlier papers,’® has also been criticized for artificially

1We introduced this terminology in Ausubel and Deneckere (1989b): k offers by the uninformed agent are
followed by £ counteroffers by the informed agent, whereupon the game repeats until agreement is reached.
The (1,1) extensive form is the standard alternating-offer game introduced by Rubinstein (1982).

2The assumptions of stationarity, monotonicity, pure strategies and no free screening were introduced
by Gul and Sonnenschein (1988).

3Papers on the bargaining game with one-sided incomplete information where the uninformed party makes
all the offers, and the related problem of durable goods monopoly, include: Bulow (1982); Stokey (1981);
Fudenberg and Tirole (1983); Sobel and Takahashi (1983); Fudenberg, Levine and Tirole (1985); Gul,
Sonnenschein and Wilson (1986); and Ausubel and Deneckere (1989a,b).



restricting the actions of the informed party.® In contrast, our current
result establishes that, for an interesting class of equilibria, the outcome
of an alternating-offer game is as if the extensive form permitted offers only
by the uninformed party. Exogenously, both traders are permitted to make
offers; endogenously, equilibrium counteroffers by the informed party
degenerate to null moves.

The intuition for the Silence Theorem is at once simple and compelling.
Our restrictions on sequential equilibrium mandate that, at each of his moves
in the game, the informed agent partitions the interval of remaining possible
valuations into two subintervals (one possibly degenerate).5 In particular,
at times when it is the informed agent’s turn to make an offer, the remaining
valuations partition into a high subinterval (who speak by making a serious
offer) and a low subinterval (who effectively remain silent by making a
nonserious offer). Now suppose you are the informed party: you have the
options of speaking or remaining silent. Choosing to speak reveals a high
valuation, which is information that bargaining partners can exploit;
remaining silent indicates a low valuation. In short, you recognize that
"anything you say can and will be used against you." Therefore, regardless of
valuation, you decline to speak, since "you have the right to remain silent."®

The existing article most closely related to the present paper, and on
which we significantly rely, is that of Gul and Sonnenschein (1988).

Gul and Sonnenschein examined the standard (1,1l)-alternating-offer game under

éFor example, see footnote 2 of Grossman and Perry (1986).

5The structure in which informed agents’ valuations are partitioned into exactly two subintervals at
each informed agent move was introduced by Grossman and Perry (1886); it is necessitated by their notion of
perfect sequential equilibrium.

6The two phrases quoted in this paragraph were taken from the standard "rights card” used by the San
Francisco Police Department in the aftermath of the Miranda decision. See American Jurisprudence Proof of
Facts, Bancroft-Whitney Co., San Francisco, 1867, Vol. 19, p. 80.




one-sided incomplete information, for the case of a "gap" between the
uninformed party’'s valuation and the (lowest possible) informed party's
valuation. They formulated the four restrictions on sequential equilibrium
and demonstrated that these imply the "no delay" result: for any ¢ > 0, there
exists a sufficiently short (but still positive) time interval between offers
such that the probability of trade within time ¢ exceeds 1 — ¢. Our departure
from Gul and Sonnenschein is two-fold. First, we prove a uniform version of

7

the Coase Conjecture’ for (k,£)-alternating-offer games in the case of no

gap.® Second, we use the uniform Coase Conjecture merely as a lemma in
proving our main result, that the informed party chooses never to speak.
Grossman and Perry (1986) examine alternating-offer bargaining in the
case of a gap and prove that there exists at most one "perfect sequential
equilibrium." Ausubel and Deneckere (1989b) characterize the entire set of
sequential equilibria for the (k,f£)-alternating-offer game in the case of no
gap.® Rubinstein (1985) considers alternating-offer bargaining where the
uncertainty concerns the rate of time preference of the informed party. 1In a

model with two types, he shows that there is a continuum of sequential

equilibria but generally a unique "bargaining sequential equilibrium."

7The no delay result is closely connected to the Coase Conjecture for durable goods monopoly and
bargaining where the uninformed seller makes all the offers. The Conjecture states that, for any ¢ > 0,
there exists a sufficiently short (but still positive) time interval between offers such that the initial
offer is always within ¢ of the lowest buyer valuation.

Coase (1972) introduced the intuition for the Conjecture. Gul, Sonnenschein and Wilson (1986)
proved the Coase Conjecture to hold for the case of "the gap,” and to be true for "no gap" under an
assumption of stationarity. Ausubel and Deneckere (1989a) showed the Conjecture to be false without this
additional assumption.

In the alternating-offer game, a Coase Conjecture type result (such as Lemma 3.2 below) implies no
delay — since the initial offer is very low, buyer acceptance occurs very quickly. For the case of "no

gap"”, it can conversely be shown that the no delay result implies the Coase Conjecture.

8The Silence Theorem does not generally hold for the case of a "gap", so it cannot be proved using the
no delay result of Gul and Sonnenschein (who explicitly assume a "gap"). Moreover, a uniform version of the
Coase Conjecture (i.e., that prices are uniformly low, relative to the state, as the game evolves) is
required for proving the Silence Thecrem.

gWe also proved that, for both the gap and no gap cases, the game where only the informed party makes
offers has a unique sequential equilibrium.



Admati and Perry (1987) examine a different alternating-offer, extensive-form
game which circumvents the no delay result.

The structure of our paper is as follows. 1In the next section, we
describe the model and the equilibrium concept. In Section 3, we prove the
Silence Theorem. Section 4 concludes. Proofs of the lemmas are relegated to

an Appendix.

2. The Model

Consider a situation where two parties are bargaining over the price at
which a single item is to be sold. The seller’s valuation for the object is
common knowledge, for convenience normalized to equal zero. However, the
buyer’s type, q € I = [0,1], is private information. Let f(q) be a left-
continuous, weakly-decreasing function describing the buyer's valuation. We
assume that f(q) > 0 for q < 1, with £(0) = 1 and £(1) = 0. The assumption
f(0) = 1 amounts to a simple normalization. Note, however, that unlike Gul
and Sonnenschein (1988), we assume that there is no gap between the seller’s
and the lowest buyer'’'s valuation, i.e., 1imq”_f(q) = 0.10

We also assume that q is uniformly distributed on I. This distribution,
as well as the valuation function f(e), are common knowledge. Observe that
the implied distribution of buyer valuations is given by F(v) =1 — inf{q:
f(q) < v}, and that the support of F is a subset of [0,1] containing the
seller’s valuation s = 0.

The seller and buyer both exhibit impatience; in fact, we assume a

commonn discount rate of r. Thus, if trade occurs at a price p at time t the

10Any buyer types with valuations below the seller’s are not effective players in the game and hence
are deleted.



seller derives a net surplus of pe™*®, and the buyer (of type q) earns
(£(q) — ple™™.

Players alternate in making offers at discrete moments in time, spaced z
apart. The seller proposes in even periods (by convention, the initial period
is taken to be zero) and the buyer proposes in odd periods. Immediately after
an offer has been made, the other party can either accept or reject the offer.
Acceptance terminates the game; rejection yields the opportunity to make a
counteroffer in the next period. Let h, denote an n-period history of prices
and rejections, and let H, denote the set of all h,. Let h; denote h, followed
by a price offer in period n, and let H; denote the set of all h;. The
strategy of the seller is a sequence of functions o°® = {ai}iﬂ, where o7:

H, - ® for n even and a:: H; - {Y,N} for n odd. Similarly, the strategy for
the buyer is a sequence of functions oP = {o:}im, where 02: H; x I - {(Y,N} for
n even and 02: H, x I > R for n odd. We assume that the buyer'’s strategy is
measurable in the second argument (his type). A strategy profile is denoted
by ¢ = (0%,0%).

Let W denote the set of probability distributions on I and let Z C W
denote the set of uniform distributions on intervals [a,b], where 0 < a < b <
1. Distributions in Z will be denoted by the endpoints of their supports
(e.g., (a,b) € Z). Seller beliefs are defined for each history of the game by
functions g : H, » W and g;: H; - W. Specifically, g denotes the seller’s
beliefs at the start of period n, and g; denotes her beliefs following the
offer of the period n. We require that these beliefs do not change after the
seller’s own move, that is, g;q>= g, = g; for n even. Finally, let gn =

@

(g .g,) and let g = (g)

N n=1

We will say that the pair {o,g) is a sequential equilibrium if beliefs



are derived through Bayesian updating whenever this is possible, and if
strategies are "sequentially rational" in the sense that at every information
set a player’'s strategy maximizes his expected payoff given his beliefs and
the strategies of his opponents.

It is well known that in the seller-offer game, where the buyer has no
opportunities to make a counteroffer, the seller successively skims through
the buyer's possible valuations. A somewhat analogous proposition remains

true in even periods of the alternating-offer game.!!

Lemma 2.1: For any sequential equilibrium and any even number n there exists
a function Q: H; -+ I such that for all h; e H;, ai(h;,q) =Y if and only if

q < Q).

While buyer acceptances thus lead to a truncation of the seller's
beliefs concerning the buyer'’s type, the same need not be true about buyer
offers. Following Gul and Sonnenschein (1988), we will henceforth make two
assumptions which guarantee that buyer offers also truncate the seller's

beliefs.

A.l (Pure Strategies): Along the equilibrium path, the seller’s offer and

acceptance behavior is deterministic.

A.2 (No Free Screening): For all odd n, and for all h, € H,, let ¥%(h,)
{p: aﬁ(hn,q) = p for some q € I). Then if p,p’ € ¥(h,) and

g (hy,p) = g (h,,p’), either o(h,,p) = Y or of(h,,p’) = Y.

11The proof of this lemma is standard; see, e.g., Fudenberg, Levine and Tirole (1885, Lemma 1), and
Ausubel and Deneckere (1989a, Lemma 2.1).



Assumption 1 guarantees that at any stage of the game both the seller
and the buyer make at most one serious offer (an offer which has positive
probability of acceptance) .!? Assumption 2 rules out cheap talk, that is,
non-payoff-relevant moves which reveal information. More precisely, the
seller is required to form the same update following different nonserious
offers (offers which have zero probability of acceptance). Without loss of
generality, we will henceforth assume that there is a unique nonserious offer
in each period. The two assumptions taken together imply that the equilibrium

paths of our equilibria display a simple and intuitive structure. !

Lemma 2.2: For every sequential equilibrium (0,g) satisfying A.1 — A.2,
there exists a unique nondecreasing sequence q,,q;,q,, ... called the states
generated by o, and for each i there exists a unique h; € H; (and if i is even
a unique h; € H;) that occur with positive probability under o, such that:
(1) if i is even, then og(h;,q) =Y if q € (q;,9;+1] and
o%(h;,q) = N if q € (gy41,1];

(ii) if i is odd, then a?(hi,q) = p; if q € (q;,9;4+,) and p; is the
unique serious offer at i, and o?(hi,q) =p; if q € (q41,1]
and p; is the unique nonserious offer at 1i.

Furthermore, if i is even, then g (h,) = g (h) = (q;,1). If i is odd,
then g;(h;) = (q;,1); in addition, g;(hi,pi) = (q;,q;4;) and g;(hi,ﬁi)

(qi+l!l) .

12Indeed, for the seller, A.l guarantees directly that no randomization occurs, and hence that there
is at most one serious offer. The fact that the seller never accepts offers with a probability in (0,1)
makes it suboptimal for the buyer to make more than one serious offer in any given period (the lowest offer
always dominates).

13Actually, to obtain the conclusions of Lemma 2.2, the full strength of A.2 is not needed. It would
suffice that A.2 hold along the equilibrium path.



Proof: See Gul and Sonnenschein (1988).

Equilibria satisfying A.1 — A.2 can still be quite complex in the sense
that the buyer's offer and acceptance behavior can depend on the entire
history of offers and counteroffers. Several authors (Gul, Sonnenschein and
Wilson (1986); Gul and Sonnenschein (1988)) have advocated refinements in
which the buyer's strategy is Markovian, i.e., where the buyer’s behavior is
allowed to depend on the previous history only insofar as it affects the
current state. While we do not necessarily endorse this notion of
stationarity, we believe it is interesting to explore the consequences. We
will therefore follow Gul and Sonnenschein (1988) in making the additional

assumptions:

A.3 (Stationarity of the Buyer'’s Offer Behavior): For every n and m odd,
q € I, and every h, € H, and h, € Hy, g,(h,) = gu(h,) implies o>(h,,q) =

oo (b, Q) -

A.4 (Monotonicity of the Buyer’s Acceptance Behavior): For every n and m
even, for every h, € H,, h, € H,, and q, < q, such that g,(h,) = (q,,1) and
g.(h,) = (q,,1), and for every p € R, there exists p* > p such that

a2 ((hy,p"),q) = ob((h;,p),q) for every q € I.

Assumption A.4 is actually a hybrid assumption, requiring not only

stationarity of the buyer's acceptance behavior, but also a certain type of
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monotonicity in this acceptance behavior as a function of the current state.
To understand the precise meaning of A.4, let us define, for each n even and
each h, € H, with g (h;) = (q,1), the acceptance function P(h,,x) =

sup{p: Q(h,,p) = x}. Thus, P(h,,x) is the highest price a buyer of type x
will accept after history h,.

It is straightforward to verify that if m is even, and if h, € H, is
such that g (h,) = (q,1) = g,(h,), then P(h,,e) = P(hy,e). Thus, A.4 implies
that the buyer’s acceptance is only a function of the current state.
Furthermore, it is straightforward to verify that if m is even and, instead,
g.(h,) = (q’,1) for some q° < q, then P(h,,®) = P(h,,e). Thus, the buyer’'s
acceptance behavior is monotone in the sense that the presence of additional
high-valuation buyer types (those in the interval (q’,q]) does not lead a
particular buyer type to lower his acceptance price.

One final remark: the reader should observe that, in any stationary
sequential equilibrium and in any "cycle" of offer and counteroffer, there
must be a positive probability of trade. Indeed, suppose that there were two
consecutive periods in which only nonserious offers were made. By
stationarity, the buyer would continue to make nonserious offers. The seller
then must eventually make a serious offer, since there always exists a
positive price which has a positive probability of acceptance. Note that she
could have accelerated this offer by two periods, and stationarity would have
assured her the same continuation profits. This contradicts the optimality of

the seller's strategy.

ll‘As is evident from our proofs, we really need assume A.4 only for q such that g = g, that is, for
equilibrium states. Furthermore, we only need the existence of p* 2 p when Q(h,,p) = qp4;.
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3. The Silence Theorem

In this section, we establish the main result of the paper. It is
useful to begin by stating two lemmas, which are proved in the Appendix. The
first lemma is closely related to Lemma 3.1(iii) of Grossman and Perry

(1986)15:

Lemma 3.1: For any valuation function f(e), consider any sequential
equilibrium of the alternating-offer bargaining game. Suppose, after any
history in which the buyer has not previously deviated, the seller maintains
beliefs that the buyer’'s type is at most q (and so the buyer's valuation is at
least f(a)). Then the seller will reject any counteroffer less than

(1 i 6)f(a) and will not offer any price less than (I—%—g)f(a).

For any distribution of types implied by f(e), any real interest rate r, and
any time interval between periods z, let Z(f,r,z) denote the set of sequential
equilibria of the alternating-offer game which satisfy Assumptions A.l1 — A.4.
For 0 <M=<1<L<wand 0<a<wx, let F y, denote the set of all functions
f(e) such that M(1 — q)* < f(q) < L(1 — q)® for all q € [0,1]. This notation
permits us to state a second lemma, which is closely related to the main
theorem of Gul and Sonnenschein (1988), but instead treats the case of "no
gap" and establishes the same type of uniformity as in Theorem 5.4 of Ausubel

and Deneckere (1989a):1!®

15Grossman and Perry’s Lemma 3.1 concerns only sequential equilibria which satisfy the support

restriction, whereas our Lemma 3.1 treats all sequential equilibria.

16The proof of the lemma draws heavily on Gul, Sonnenschein and Wilson (1986), and Gul and Sonnenschein
(1988). We learned a lot from these authors, and are glad to be able to acknowledge our intellectual debt
here.



12

Lemma 3.2 (The Alternating-Offer, Uniform Coase Conjecture): For every

0 <M<1l<L<w, 0<a<wo, and ¢ > 0, there exists z(L,M,a,e) > 0 such
that for every f € F y,, for every z satisfying 0 < z < z(L,M,a,¢) and for
every equilibrium belonging to Z(f,r,z), the initial serious (seller or buyer)

offer is less than or equal to e.

An important observation should be made concerning Lemma 3.2. Kreps and
Wilson's (1982) definition of sequential equilibrium for finite games implies
that whenever (after any history) the seller revises her beliefs about the
buyer, she posits a new distribution function that has its support entirely
contained in the support of the initial distribution of buyer types. While it
may be desirable to also impose this restriction on equilibria of infinite
games, the proof of Lemma 3.2 does not depend on such a restriction and,
therefore, we will not make such a restriction in the current paper. Rather,
we will allow the seller’'s beliefs to wander outside the initial support of
buyer valuations, after histories which have zero probability of occurrence. !’
In the proof of Theorem 3.3, below, this will enable us to restate a version
of Lemma 3.2 which holds at the start of any (as opposed to just the initial)
period following an equilibrium history (where the seller may have narrowed
her beliefs so that high-valuation buyer types have zero posteriors).

With our intermediate results in hand, we may now prove the main

theorem:

17Fox: finite games (similar to the infinite game we are considering here), Fudenberg and Tirole (1988)

have formulated a notion of equilibrium which is in the spirit of sequential equilibrium but relaxes its
consistency requirements. Their notion, termed "perfect Bayesian equilibrium,"” permits a type with zero
prior probability to attain a positive posterior following a zero-probability history. In fact, were it not
for the fact that our game is infinite, our requirement of sequentiality would coincide with perfect
Bayesian equilibrium.
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Theorem 3.3 (The Silence Theorem): Let f belong to Fp y, and let r be any
positive interest rate. Then there exists z > 0 such that, whenever the time
interval between offers satisfies 0 < z < z and for every equilibrium
belonging to Z(f,r,z), the informed party never makes any serious offers in

the play of the alternating-offer bargaining game.

Proof. We begin by demonstrating that a version of Lemma 3.2 also holds along
equilibrium histories of the game: there exists z > 0 such that for every z
(0 < z < z) and for every (E,E) € Z(f,r,z), the next serious offer after a
state of q is at most e€f(q), where q is any state entering an even-numbered
period along the equilibrium path of (o,g). The proof is as follows. Let
fq(O) denote the rescaled residual valuation function from f(e) when the state
is q € [0,1), i.e., fq(x) = f[q + (1-q)x])/f(q), for all x € [q,1]. As in
Lemma 5.3 of Ausubel and Deneckere (1989a), if f € Fy y,, then £, € Fi, v ,,

where L’ = L/M and M’ = M/L. At the same time, let (o ) denote the

q’gq
continuation of (;,g) from the time that the state reaches g (without prior
deviations). Importantly, observe that when all prices and valuations in
(Eq,gq) are appropriately rescaled upward (via multiplication by 1/f(q)),
(Eq,gq) becomes a sequential equilibrium for valuation function fq

(i.e., (Eq,gq) S Z(fq,r,z)).18 Thus, for positive z < z(L’ ,M’ ,a,¢), Lemma 3.2

implies that the initial serious offer in (Eq,gq) is at most e¢. By rescaling,

the next serious offer in (;,g) after q is at most ef(q).

18Observe that this is the sentence of the proof which necessitated our discussion, earlier in this

section, of not restricting sequential equilibria to have the property that the seller’s revised beliefs be
entirely contained in the support of the initial distribution of buyer types. If we had made that
restriction in our definition of "sequential equilibrium,” then it would not necessarily be the case that
(Eq,gq) is a sequential equilibrium for valuation function f_. The reason is that (o.,g.) was derived from
a sequential equilbrium (o,g) for valuation function f. In (o,g), after a history in which beliefs are
entirely contained in (q,1], it is still possible (off the equilibrium path) for beliefs to subsequently be
revised outside (q,1]. This translates to beliefs Eq possibly wandering outside the initial support from

fq.
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We may now easily establish the Silence Theorem. Suppose the theorem
did not hold. Then for any z > 0, there would exist f € Fy y o, POsitive time
interval z < z, sequential equilibrium (;,g) € 2(f,r,z), and buyer types q
and q° (0 < q < ¢ < 1) with the property that, at some point in the
equilibrium, the interval (q,q’] of buyers makes a serious counteroffer. To
be more precise, there is an odd-numbered period j such that, along the
equilibrium path of (o,g), the set of buyers remaining at the start of period
j is (q,1]. 1In period j, the buyers partition into two nondegenerate
subintervals as follows: buyers in (q,q” ] make a serious counteroffer p;
whereas buyers in (q’,1] make a nonserious counteroffer.

We now will show that buyer q’° can profitably deviate by mimicking
(q’,1] in making a nonserious counteroffer.!® Suppose that q° follows the
prescribed equilibrium. Since q° reveals himself to be contained in (q,q"]
when he offers p, the seller immediately comes to maintain beliefs that the
valuation of q’ is at least f(q’). Since p is defined to be a serious
counteroffer, it must be accepted by the seller; by Lemma 3.1,

P = (l i 5)f(q’). Hence, the payoff (evaluated in period j) to q’ from

equilibrium play equals f(q’) — p, which is bounded above by (l i S)f(q’).

Alternatively, q° may deviate by making a nonserious counteroffer. This
deviation is undetectable and, hence, the state entering period j + 1 equals
q’” . By stationarity, the next serious offer must occur in either period j + 1
or j + 2. Let z be any positive time interval less than z(L’,M’ ,a,%). By

the version of Lemma 3.2 proven two paragraphs above, the next serious offer

will be at most %f(q”). Hence, the payoff from deviating is bounded below by

§%[f(q") — &%f(q’)] = %6%f(q’). Let z also be chosen sufficiently small that §

lgSince g’ will strictly prefer to deviate and f(e) is left-continuous, it is in fact the case that a
positive measure of buyer types in (q,q"] can profitably deviate by mimicking types (q",1].
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= % gsatisfies %62 > (T_%_E)’ whenever 0 < z < z. Then the payoff from

deviating exceeds the equilibrium payoff, providing a contradiction. Q.E.D.

The Silence Theorem holds not only for the (1,1)-alternating-offer game
but, in fact, for all alternating-offer games in which k (= 1) seller offers
are followed by £ (= 0) buyer counteroffers. 1In (k,£)-alternating-offer
games, the definition of stationarity is appropriately modified by requiring
the buyer's offer behavior to depend only on the current state and the period
modulo (k + £), and the definition of monotonicity is modified similarly.??
Let 3% %(f,r,z) denote the set of sequential equilibria of the (k,%)-
alternating-offer game which satisfy stationarity, monotonicity, pure
strategies and no free screening. Then Lemma 3.2 continues to hold for
Eha(f,r,z). Meanwhile, recall that Lemma 3.1 required that, for § = 1, the
seller reject counteroffers less than = 5 f(q). Similarly, for the (k,#)-
alternating-offer game, an analogue to Lemma 3.1 requires the seller to reject

k

counteroffers less than = (E_I_f)f(a)'21 Hence, the logic behind the proof of

Theorem 3.3 carries through for general (k,£); we have:

Theorem 3.4: Let f belong to F| y, and let r be any positive interest rate.
Let k> 1 and £ = 0. Then there exists z > 0 such that, whenever the time
interval between offers satisfies 0 < z < z and for every equilibrium
belonging to Ekl(f,r,z), the informed party never makes any serious offers in

the play of the (k,%)-alternating-offer bargaining game.

2OTO be more precise, A.3 is modified to read: "For every n and m which are periods in which the buyer

makes offers and such that n = m (mod (k + £)) ..." Similarly, A.4 is modified to read: "For every n and m
which are periods in which the seller makes offers and such that n = m (mod (k + £)) ..."

21

To be more precise, in period n = j (mod(k+2)), where k < j k+£-1, the seller will reject any
counteroffer less than [657873(1-6%)/(1-6¥"8)1£(3). 1In period n = i (mod(k+)), where 0 < i < k-1, the
seller will not offer any price less than [l-5k—l(1—6 )/(l'6k+£)]f(E). See Ausubel and Deneckere (1989b,

Theorem 5).

= IA
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If k = 0, then we actually find ourselves in the game where the buyer makes
all the offers. In Ausubel and Deneckere (1989b, Theorem 4), we proved that
this game has a unique sequential equilibrium. All buyer types pool by making
an offer demanding all the surplus; this offer is immediately accepted.

The Silence Theorem no longer literally holds in this case; nevertheless, the

informed party never reveals any information via his own offers.

4. Conclusion

Theorem 3.3 tells us that, for discount factors sufficiently close to
one, the informed party fully exercises his right to remain silent. However,
it provides us no guidance as to whether a particular discount factor is
"sufficiently close" to one. For example, at an interest rate of 10% per year
and a time interval of a few days between offers, is silence mandatory? To
shed some light on this question, we will consider the family of parametric
examples which are invariant under rescaling. Let f(q) = (1 — q)t/®, for any
a > 0. Using the formula F(v) =1 — f1(v), we see that the valuation
function f(e) corresponds to the distribution function F(v) = v*. Observe
that the rescaled residual valuation function of f(e) is given by fq(x) =
(1 — x)¥*; conditional distributions formed by truncation are merely rescaled
versions of the initial distribution. For this family of examples, it is
natural to examine sequential equilibria which not only satisfy Al — A4 but
also are themselves invariant under rescaling. Additionally, it is sensible
to restrict attention to equilibria in which the seller’s beliefs are not

permitted to wander outside the support [0,1] of the prior distribution F(e).



17

For the purposes of this Conclusion, let us redefine "state" to now
denote the highest remaining buyer valuation. Invariance under rescaling
requires that the continuation strategies, starting from any equilibrium
state, look the same. Therefore, all offers, counteroffers, acceptance
functions and value functions must be linear in the state. Moreover, either
there exists a serious buyer counteroffer in every (odd-numbered) period or
else the buyer never makes serious counteroffers in any period.

Let us assume for the moment that there does exist a serious buyer
counteroffer in every odd-numbered period. (This will be true when § is
sufficiently small.) The offer-counteroffer structure along the equilibrium
path can be described as follows, using constants 0 < ¢, v, n, 6, p < 1. When
it is the seller's turn to offer and the support of remaining buyer valuations
equals the interval [0,x), the seller proposes a price of ¢x. Buyers in the
subinterval [vyxX,x) accept, whereas buyers in [0,yx) reject. Of the rejecting
buyer types, an upper subinterval [f#vyx,yX) proposes a serious counteroffer of
nfyx in the next period, whereas the lower subinterval [0,f6yx) makes a
nonserious counteroffer and awaits the seller’s next offer. Finally, let
V([a,b)) denote the seller’s expected present value of continuing the game
when it is her turn to move and the set of remaining buyer valuations is the
interval [a,b). Then V([0,x)) is given by ux, where u = V([0,1)).

The following conditions on the parameters {¢,n,6,u} can easily be
derived. First, a buyer of valuation §yx must be indifferent between
proposing the counteroffer nfyx and awaiting the offer ##yx one period later,

i.e.,

4.1 1—-—n = 6 (1 —¢)
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Second, the counteroffer nf#yx must make the seller indifferent between

acceptance and continuing the game with beliefs [fyx,vyx):
(4.2) n6 = 6V([6,1))
Third, the seller must be optimizing when choosing p = ¢x:

(4.3) po= V([0,1)) = max {p¢([V(P),1)) + 6nfv(p)e([6v(p),v(p)))
1%
+ 52@([0,9V(p)))V([0,0V(p)))},

where v(p) denotes the solution to v(p) — p = §[v(p) — n6v(p)] and where
®([a,b)) denotes the probability that the buyer’s valuation is contained in
[a,b) (i.e., ®([a,b)) = b* — a% whenever 0 < a <b < 1).

Let §(a) denote the critical value at which the buyer stops speaking in
the class of equilibria we consider when the parameter is equal to a. Then
for any 6§ < §(a), it must be the case that the subinterval [fyx,yx) is
nondegenerate, while for 6§ > §(a), the subinterval [#vyx,yx) is degenerate.
Consequently, when 6 = §(a), the above system of equations must yield a
solution with § = 1. Note, then, that (4.2) reduces to n = §V([1,1]) =
(I_%_E)’ Rubinstein’s (1982) complete information solution.??

Also observe that ¢ is the maximizer of (4.3). Maximizing (4.3) and

substituting § = 1 and n = (T—%—g) yields:

221n any sequential equilibrium, after any history in which the seller’s beliefs are concentrated at
the upper bound of the support and in which it is the seller’s turn to move, she offers a price of 1/(1+4),
which is accepted immediately. This follows from Lemma 3.1, above, and equation (16) of Ausubel and
Deneckere (19889b).
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-1/a
(4.4) ¢ = (1 +6)1 {(1 + a)[l — as?(1 + 8)¢/(1 + a)]}

Finally, from (4.1), we see that ¢ = 1 — [§(1 + §)]7 . Substituting this into

(4.4) and rearranging terms yields:
w(8) = ab[6(L + 8) — 1] — (1 + a)[6(L + 6) — 1]+ 6* = 0.

Any solution to w(é) = 0 must satisfy 6(1 + §) — 1 > 0, that is, § >
(/5 — 1]. Numerical simulations reveal that w(e) has a unique zero in

(3[J/5 — 1],1); this zero is tabulated for various a in Table 1.23

Table 1

Calculation of é§(a), the maximal discount factor, and z(a), the minimal
time interval between successive periods, such that the informed party
ever speaks in the rescale-invariant sequential equilibrium,
when F(v) = v® and the real interest rate r = 10% per year.

a 8 (@) z(@)
.10 .78805 28 .58 months
.25 .79891 26.94 months
.50 .81458 24.61 months
1 .83929 21.02 months
2 .87271 16.34 months
4 .90976 11.35 months
10 .95164 5.95 months

23Wilson (1887) tabulates the parameters of the Grossman-Perry (1986) equilibrium at various values of
6, for the case of the uniform distribution and assuming that the serious buyer counteroffer takes the form
nfyx = [6/(1+6)]16yx. While there seems to be no justification for this assumption (other than simulations),
Wilson found the same critical discount factor of .83929. This should not come as a surprise to the reader.
First, the Grossman-Perry equilibrium satisfies rescaling invariance. Second, at the critical &, the
subinterval [87x,7x) collapses to a single point and, then, Grossman-Perry’'s support restriction justifies
the choice n = §/(1+6).
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The numbers in Table 1 should be interpreted as follows. Suppose that
the distribution function F(e) is linear and that the real interest rate is
10% per year. Then § = .83929 is equivalent to saying that, in the sequential
equilibrium which is invariant under rescaling, the informed party exercises
his right to remain silent whenever the time interval between successive
periods is less than 1% years. Since the extensive form has the parties
alternate in making offers, this means that the buyer is silent unless each
party has an opportunity to speak less than once every 3% years! As F(eo)
becomes arbitrarily concave, the requisite time interval between offers
expands to a limiting value of 29.80 months; as F(e) becomes arbitrarily
convex, the requisite time shrinks at a very slow rate toward zero. Even with

the rather skewed distribution function F(v) = v?°

, the buyer only speaks when
the time interval between periods is greater than half a year.

There is a fairly simple intuition why the requisite time interval
between periods is made shorter as the distribution function becomes more
convex. The force which discourages the informed party from speaking is that
making a serious counteroffer would reveal that he has one of the highest
remaining possible valuations. However, if the distribution function is very
convex, then the uninformed party already places a high probability on the
event that the informed party has one of the highest remaining possible
valuations. [For example, if F(v) = v!?, the buyer’s ex ante expected
valuation is already 0.909.] In other words, even when the distribution
function is made extraordinarily convex, the informed party retains the right
to remain silent. Unfortunately, against an opponent who holds a sufficiently
unfavorable prior distribution, silence becomes almost equally as

incriminating as an admission of guilt.
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Appendix

Proof of Lemma 3.1: Define p to be the infimum over all prices that the

seller accepts or offers in any sequential equilibrium, after any history in
which the buyer has not previously deviated and in which the seller maintains
beliefs that the buyer’s type is at most q. Since acceptance is individually
rational, the seller never accepts an offer (strictly) less than zero. It
then follows from the reasoning in Fudenberg, Levine and Tirole (1985, Lemma
2) that the seller never offers less than zero. This establishes that p = 0,
a bound which we will now tighten.

Consider any period in which it is the seller’'s turn to make an offer,
after any history in which the buyer has not previously deviated and in which
the seller maintains beliefs that the buyer’s type is at most q. Since the
seller never accepts or offers a price less than p, the surplus to buyer q in
the continuation game (following rejection) is bounded above by §{f(q) — pl.
Knowing this, all buyer types q € [0,q] accept offers p satisfying
f(q) — p > §[f(q) - p] or, equivalently, p < (1 — 6)f(a) + 65. Consequently,
any seller offer p satisfies p > (1 — §)f(q) + 6p.

Suppose that p < (l i 6)f(a). Then for any e¢ > 0, there exists p

satisfying p < p < p + € such that after some history in which the buyer has
not previously deviated and in which the seller maintains beliefs that the
buyer’s type is at most q, the seller accepts or offers the price p.

Consider e = %(1 — %) [ (3 f 6)f(a) — p]. A few lines of algebra show that p <

(1L — 6)f(q) + 6p; the previous paragraph argues that p cannot be a seller
offer. Therefore, p is a buyer offer. The seller has the option of rejecting
p and counteroffering p’ = (1 - §)f(q) + §p — ¢/6. Again by the previous

paragraph, p’ is accepted with probability one. Another few lines of algebra
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demonstrate that §p’ = p + ¢ and, hence, 6§p° > p. This establishes that

rejecting p and counteroffering p’ is a profitable seller deviation. We

conclude that p > (l i 6)f<a)' Finally, since any seller offer p satisfies
pz (1 - 8)£(q) + §p, we have p > (75 E(Q). Q.E.D.

Proof of Lemma 3.2: For any sequential equilibrium (;,g), define the

effective price function ®: [0,1] » [0,1] to associate with every buyer q €
[0,1] the price ®(q) he pays to the seller in the equilibrium. (Under the
assumption of "no gap," the buyer q = 1 never purchases; for convenience,
always define ®(1) = 0.) To be more precise, if the interval (g%, q*"] of
buyers purchases at price p* in equilibrium (o,g), we will say ®(q) = p* for
all q € (q¥,g¥"!]. Without loss of generality, we will assume that ®(e) is
left continuous and nonincreasing (see Ausubel and Deneckere, 1989%a, p. 516).

Suppose that Lemma 3.2 does not hold. Then there exists ¢ > 0, a
sequence {fn}:::1 C Fi mq, a sequence of positive time intervals {zn}::=l + 0, and
a sequence of stationary equilibria {En,gn}::=l (with effective price functions
{@n);ﬂ) such that ¢,(0) > ¢ for all n > 1. Without loss of generality, we may
assume that {@n}::=1 converges pointwise for all rationals in {0,1]. (This can
be assured by taking successive subsequences and applying a diagonal
argument.) For every rational r € [0,1], let &(r) = lim ., ®,(r). Define ®(0)
= ®(0) and, for every x € (0,1], define ®(x) = lim., ®(1ry), where each r, is
rational and r, t x. Observe that ®(e) is well defined, left continuous, and
nonincreasing. In the second part of the proof, we will demonstrate that the
®(e) so constructed is necessarily continuous. Let us assume this fact for
the moment and show that the supposition of @_,(0) > ¢ leads to a

contradiction.
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”

Assuming the continuity of ®(e), select ¢’ ,¢” and rational x,,Xx,
satisfying 0 < x; < x, < 1 and ®(0) = € > ¢ > C(xy) = P(xy) > ¢” > 0. By
construction, there exists n such that €,(0) > €, @ (xy) < €', and @ (X;) > €”
for all n = n.

Define t > 0 such that buyer q = 0 is indifferent between a price ¢ at

time zero and a price ¢’ at time t:

(A.1) £.(0) — € = e TH[£,(0) — €],

where £, (0) = 1.

Observe that, in every equilibrium (;n,gn) (n = ﬁ), no offer less than
€’ can be accepted until after time t. (Otherwise, buyer q = 0, who purchases
at time zero or later, would regret his purchase.) Since price has not
dropped below ¢’ at time t, all buyers q = x; remain in the market at time t.

Following Gul and Sonnenschein (1988), we will now specify an
"accelerated strategy" for the seller which compresses sales from time
interval [0,t] into the shorter interval [0, t/2]. For every n, define
N = |t/4z,]. Restrict attention to n > n=n, with n defined so that N > 1.
Let T3 = [1 — (j/M)(L —€¢), 1 - ((j -1y - ¢€)), for j=1,...,N. For
each such j, select the smallest serious price offered in o, before time t
which is contained in IJ (if one exists). Denote the resulting sequence of
descending prices pt,...,p" (1 < m < N) and refer to these as the good prices.
For each 1 (1 < i < m), let (qi,q;] denote the interval of buyers who

purchased at p* in o,.
In the play of the accelerated strategy, let k denote the current period

and q* denote the current state, i.e., the set of buyers remaining at the

start of period k is (q¥,1]. Our objective is to induce each of the states
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q; (1 = i=<m) in at most the first 2i periods. When q* > q:, the seller will
have completed the acceleration phase and continues by inducing exactly the
same states as in the original strategy from En_

We now describe the accelerated strategy for ¢* < q;. Define
i(k) = min{i < m: q; > q*). The following prices, ﬁk and 0%, can be defined if

k

q€ is an equilibrium state arising from (o,,g,) .2

If p'™® was named by the

seller in the original equilibrium, let ﬁk be a seller offer which induces a

i(k)

;0 when the current state is ¢*. If p'® was named by the buyer in

state of q
the original equilibrium, let ﬁk be a seller offer which induces a state of

qi“) when the current state is ¢. (The existence of p* is guaranteed by

1)y Also, let OF be the serious buyer

A
monotonicity; furthermore, p* = p
counteroffer when the state is ¢, if a serious counteroffer exists;

otherwise, define O = 1. The seller’s strategy when ¢* < qg is defined to be:

(A.2) If k is even:
. Offer ﬁk.
If k is odd:
o Accept any counteroffer of at least OF,

. Reject any lower counteroffer.

Observe, as in Gul and Sonnenschein (1988), that the following facts
hold under the accelerated strategy:
(1) All trades (with any buyer type) which would have occurred
in time interval [O,t) under (E;,gn) now occur no later and

at prices no more than (1 — ¢ )/N lower; and

2"Observe that it is sufficient to specify the accelerated strategy only for states which arise if
the buyer does not deviate from his equilibrium strategy.
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(ii) All trades (with any buyer type) which would have occurred
in time interval [t,«) under (;n,gn) now occur at least t/2

sooner and at the same or higher prices.

Statement (i) follows from the fact that the states induced under the
accelerated strategy are a subsequence of the states under (o,,g,), and any
trade which originally occurred at a price in interval IJ still occurs at a
price in the same (or higher) interval. Statement (ii) follows from the fact
that the state is brought beyond q? in at most 2m periods and, hence, before a
time of 2mz, < 2Nz, < t/2. Monotonicity guarantees that all sales beyond qg
occur at the same or higher prices (but are accelerated by time t/2).

The acceleration strategy thus entails a loss in revenues from buyers
q € [0,q;] but provides a gain due to discounting from buyers q € (qj,1].
Observe that qg < x; for all n = n. By (i), the monetary loss is less than
(1 — ¢’ )/N and the probability of loss is less than x;. Hence, expected
losses are bounded above by x;(1 — ¢ )/N =< [4x,(1 — € )/(t — 4z )]z,.

Let V denote the seller’'s expected payoff in (;n»éé) starting from when

-Zrzn

the state is qg. V can be bounded below by e e”[(x, — x1)/(1 — x9)], as
follows. Let (q’,q”] be the interval of buyers who purchase with x, at the
price ®(x;). When the state 1is qg and it is the seller’s move, the seller has
the following option: 1if @®(x,) was a seller (buyer) offer in (Bg,gn), the
seller charges a price (= ®(x,)) which induces a state of q” (q”). 1In the
latter event, buyers in (q”,q”] reject the seller's offer and counteroffer

®(x,), which is accepted. This assures the seller an expected payoff of:

-r “Irz

e O(x)[(q7 = dN/(1 - qD] > e e7[(x ~ x) /(1 — xp)].
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Meanwhile, when the state is q; but it is the buyer’s move, the seller can
assure herself the same payoff, only discounted by one period, giving the
desired lower bound.

The ex ante probability that the state will reach qj is greater than
(1 — x4). The continuation profits upon reaching qg are accelerated from a
time not earlier than t to a time not later than t/2, and equal at least V.

Hence, the expected gains are bounded below by:

-rt/2 -rt -rt/2 -rt -2rzn
(e —e )1 —x)V > (e — e e €7 (Xy ~ Xq).

-+ n

Since ]_imn z_ = 0, the expected gains from acceleration exceed the expected
losses for sufficiently large n, demonstrating that acceleration is a
profitable deviation from En. Thus, our initial assumption that ®(e) was
continuous leads to a contradiction.

It remains to be shown that ®(e) is continuous. Suppose otherwise.
Since @,(q) = f,(q) = L(1 — q)%, for all n and q, it follows that
®(q) = L(1 — g)% and hence that ®(e) is continuous at 1. Therefore, there
exists x (0 < x < 1) where ®(e) is discontinuous. Define d =
[®(x) — limqu ®(q)1/3, P C(x) — d and ¢ = @(x) — 2d. If x = 0, select g
(0 < n < x) such that x — n is rational and n° (0 < n < min(n,l — x)) such
that x + n”° is rational. Also, for any v € (0,n” ), choose rational q: S
(x — v/2,x) and rational qs € (x,x + v/2). Meanwhile, if x = 0, merely select
n” (0 < p” < 1) such that n’ 1is rational. Always choose qg = 0 and, for any

v € (0,n”), choose rational qs € (0, y/2). By construction, for each vy, there

exists 87 such that @n(qg) > ¢ and @n(qS) < ¢ for all n = 37. Define t by:

(A.3) £(0) — ¢ — e "“[£,(0) — €'],
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where £,(0) = 1. Observe that, in every equilibrium (En,gn) (n > 37) a time
interval exceeding t must elapse from the moment that q: purchases until the
moment that qs purchases. ((A.3) implies that f,(q") — €,(q}) <
e () — 0a(aD] )

We will now specify an accelerated strategy for the seller which
compresses all sales from time interval (t, ., t, ., + t] into the shorter

interval (t t + t/2], where t

n,y? n,v

, denotes the time that q: trades in

(0,,8,). Similar to the first part of the proof, define N = |t/4z,] — 1 and
restrict attention to n > n, > ﬁﬁ, with n, defined so that N > 1. Define
intervals IJ (j =1,...,N) exactly as before. For each j, select the smallest
serious price offered in o, during time interval (ty 4y, t,, + t] which is
contained in I3 (if one exists). Denote the resulting sequence of descending
prices pl,...,pm (1 <m < N) and define intervals (qi,q;] as before. We will
now induce each of the states q; (1 =1i=<m) in at most the first 2i + 1
periods after t, ..

The seller’s accelerated strategy is as follows: during time interval
(0,t, 4], use the original strategy from g,. Beginning at time t, , + z,, and
until the state reaches qz, follow the strategy of (A.2). After the state has
reached qg, the seller continues by inducing the same states as in the
original equilibrium (o,,g,).

Fact (i) from above now holds for time interval (t,,, t,, + t]. Fact
(ii) now holds for time interval (t,, + t, «). Additionally, all trades
which would have occurred in time interval [0,t, .] under o, occur identically

> n, vy

under the accelerated strategy.
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The accelerated strategy may entail a loss in revenues from buyers
q € (q:,qg] but provides a gain due to discounting from buyers q € (qj,1].
Observe that qg < qs and, hence, the probability of loss is less than
(qg - q?) < (qs - q:) < v. Hence, expected losses are bounded above by
y(1 — €')/N =< [4y(Y — €')/(t — 8z,)]z,, discounted from time th 4-
Let V denote the seller’s expected payoff in (EA,ER) when the state is

m

q,- V can be bounded below by:

“rz “rz

e "(1-—e MMM -x)/2] (L -x - N/ - x - v/2)],

as follows. When the state is qg, the seller has the option of waiting at

“rz

most one period and offering a price of (1 — e n)fn((l + x)/2) =
1—e ™M@ - x)/2)]%. Buyers q € (q%,(1 + x)/2] find this to be an offer
they cannot refuse, since the payoff from acceptance dominates obtaining the
good for free in the next period. The probability that q € (qg,(l + x)/2],
conditional on a current state of qj, equals [(1 + x)/2 — q,1/11 — q;] >
(1/2)(1 — x — v)/(1 — x — v/2), yielding the desired lower bound.

Since qg is reached with a probability of greater than (1 — x — ¥/2) and
subsequent revenues are at least V and are accelerated by at least t/2, the

-rt/2 -rt, % r

z
expected gains are bounded below by (e — e e n(l — e n)(M/2)

’

[(L — x)/2]%(1 — x — v), discounted from time t, ,. For sufficiently large n
_[Zn
note that 1 — e > (x/2)z,.
We conclude that there exist k;,k, (0 < k;,k, < «») such that losses are
less than k;yz, and gains are greater than k,z,. Since vy can be made

arbitrarily small, the expected gains can be made to exceed the expected

losses, demonstrating that ®(e) cannot be discontinuous. Q.E.D.
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