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Abstract

We provide an equivalence theorem for the binary stochastic choice
problem, which may be thought of as an implicit characterization of binary
choice probabilities which are consistent with a probability over linear
orderings.

In some cases this implicit characterization is very useful in
derivation of explicit ns :essary conditions. In particular, we present a
new set of conditions which generalizes both Cohen-Falmagne's and Fishburn's

conditions.






1. Introduction

The.binary stochastic choice problem is the following: given a set N

of alternatives and numbers, {p interpreted as "the probability

ij}i,jeN;i¢j'
that i will be preferred to j," when is there a probability distribution Pr

on the |[N|! linear orderings of N such that

Pij 7 Liryirgy PTR)?
(In this case, (pij) will be called consistent.)

We will not expatiate here on the motivation, background, or history of
the problem. We refer the reader to Block and Marschak (1960), McFadden and
Richter (1970), Falmagne (1978), Cohen and Falmagne (1978), Dridi (1980),
Souza (1983', McLennan (1984), Barbera (1985), Barbera and Pattanaik (1986),
Fishburn (1988), Fishburn and Falmagne (1988), Marley (1989), and Gilboa
(1989).

While it is known that for every n = IN| there are finitely many linear

inequalities in {p, .} which fully characterize the consistent binary

ij7ij
choice probabilities, there is no set of explicit conditions which are
necessary and sufficient for all n. Several necessary conditions are,
however, known, and they are quoted in Section 2.

Following Monderer (1989), which uses a game-theoretic approach to
derive Block-Marschak conditions for the (non-binary) stochastic choice
problem, this paper uses a similar approach to derive an equivalence theorem
which may be considered as an implicit characterization. Although it falls

short of an explicit one, i.e., it does not provide explicit formulae for

finitely many linear inequalities, it may be used to derive necessary
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conditions. In Section 3 we state and prove the equivalence theorem, and
Section 4 shows how it can be used to derive some known conditions.

These proofs show that in some cases the equivalence theorem is a
useful tool in proving necessity of conditions, which is more technical and
requires less imagination than direct combinatorial proofs. Indeed, the
proofs in Section 4 suggested natural generalizations, and in Section 5 we
present a new set of necessary conditions, which unifies and generalizes the
Cohen-Falmagne conditions on one hand and Fishburn's on the other.

However, we also have some bad news. Trying to obtain the diagonal
inequality, which is a generalization of the Cohen-Falmagne conditions, we
were not very successful at utilizing the equivalence theorem. It seems
that in this case the direct combinatorial proof is significantly simpler
than the one using the theorem. In Section 6 we discuss the diagonal
inequality, provide a new combinatorial proof of it, which may be insightful
by itself, as well as the more complicated proof using the equivalence
theorem.

Finally, Section 7 concludes this paper with a remark on the

insufficiency of the known conditions.

2. Known Necessary Conditions

2.1 The Triangle Inequality
This condition, which is to be found in Block and Marschak (1960), is a

direct implication of tramsitivity. It says that for every i,j,k € N

p < 2.

ij T Py T Pyi



2.1 Cohen-Falmagne's Inequality

In Cohen-Falmagne (1978) we find the following condition: for every

two sequences, A = (al'az""'ak) and B = (bl’bz""'bk)' where
k k
fagdioy by, =@

Z{(i,j)}lfiﬁjSK) paibj - Zi=1 Daibi < k(k - 2) + 1.

(Here and in the sequel, a "sequence" refers to a sequence of distinct

elements of N.)

2.3 PFPishburn's Condition

Fishburn (1988) provides the following necessary conditions: for every

two sequences, A = (al.az,...,ak) and B = (bl’bz""'bk)* with
k k
{a;}j.; N {b;}{_; =@ and k = 28 - 1,
k K
Zi=1 pab * Zl;:l pa'b. - Zi=1 pab <32 -2
11 171+1 iTi+Q

where the addition operation on indices is done mod k.
It should be mentioned at this point that McLennan's paper includes two
conditions which are very similar to Cohen-Falmagne's and to Fishburn's

condition, respectively.

2.4 The Diagonal Inequality

Gilboa (1989) proved the following to be a necessary condition: for
any two sequences, A = (al.az,....ak) and B = (bl'bZ""'bk) (not

necessarily disjoint), and every 1 < r <k -1,



L((i.9)115i#i<k) Py p - TIi, b, , Sk(k-1) -rk+r(r+ 1)
i7j ivi
This condition is identical to Cohen-Falmagne's in the case r = 1 and
disjoint sequences. With A = (i,j) and B = (j,k) it is equivalent to the
triangle inequality (assuming, w.l.0.g. (without loss of generality) that

P =1.)

ij T Py

3. The Equivalence Theorenm

We first introduce some game-theoretic definitions. Given a finite and
nonempty set (of players) N, we define a game v on N to be a set function

v: ZN - R with v(@8) = 0. (Subsets of N are interpreted as coalitions.) For

any @ # T € N we define vT to be the unanimity game on T by

1 SOT

I
vo(S) =
|0 otherwise
L

i 11 kn that i i i
It is we own tha {VT}TSN,Ttﬂ is a basis for the linear space of games
on N (endowed with the natural linear operations).

Given a game v, and player i, we define i's maximal marginal

contribution in v to be

VI = max{v(S U {i}) - v(S)|S S N, i € S}.

A convenient abuse of notation is to identify a player i with the

singleton (i}, and we will enthusiastically do so whenever possible.



We can now formulate:

The Equivalence Theorem: Given a finite and nonempty set N, and numbers

(pij)i,jeN;i:j’ the following are equivalent:
(i) (pij} are consistent;
(ii) For every {aij}i.jeN;ixj and every game u,
i
< - *
Li jen;izj %ijPij S Liey (v - W} + u(v)
where

vl = ) 3PN - JENE
{(jli=i} 7ij (1,34}

This theorem is, in fact, a special case of Theorems A and B in Gilboa-
Monderer (1989). However, for the sake of completeness we also provide here

a proof:

a. i) => (ii
Suppose {aij) and u are given. It suffices to show that for every

given linear ordering R on N the probabilities {p§j} defined by

r
R |1 iRj
DU=<
|0 otherwise
L
satisfy (ii). W.l.o.g., assume that N = {1,2,...,n} and that R is the

natural ordering. We therefore need to show that

i
P> aij < Zi (v - u); + u(N).



For .each i, let st - {ilj < 1i}. By definition of the * operation,

vewrr o wstu - el - ast) -

= whst un - it - uestui) - ugsty)

As vl(T if i € T, and vl(T) =0 if i ¢ T, we obtain

b= Ly ei ety %

i, .1 .
] = e ..
VSTUD = T ey %y
and
visly - 0.
Hence,
Iy > ~ i oy i
Zi (v T + u(N) 2 L Z{J!J<i} @5 Zi [u(s™ U i) - u(S")] + u(N)
= £j<i aij'
We now wish to show the converse.
(b) ii) => (i
We have to show that every linear inequality
x
(*) Z.‘i;tj ccijpij <B

which is satisfied by (pﬁj} for every linear ordering R is also satisfied by
every (pij) satisfying (ii). (Thus, {pij) satisfying (ii) are proved to be

in the convex hull of (p§j} )

R
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It suffices to show that (*) holds for the minimal 8 which is

= max
B R ZiRj aij‘

Define a game u by

ulS) = maxp Lipj.i.jes iy

Condition (ii) implies that

Py S I, (v - W+ u)

Ligj % ij i

where v! = ) and u{(N) = 8. Hence, all we need to show is

(i1ieiy %i3Y(4,5)
that

for all i € N. However, vl(i) = u(i) = 0, so that (v1 - u)} > 0 is obvious.
To show the converse inequality we have to convince ourselves (and the
reader) that for every S € N and every i ¢ S
i . i .
V(SUi) -v(S) u(SU i) - u(s).

Note that

viisu i) - vigs)

i
™M

je s %ij-



Let RS be a linear ordering such that

ul(s) = Z{k'jes;kst} ;-

Let Ré be a linear ordering which agrees with RS on S and satisfies iRéj for

i € S. Ihen
u S U i’ :_ E: . . s|'- .R [0 4 = u(s’ + z: x. .

which completes the proof. //

4. Derivation of Known Conditions

In order to get used to the game-theoretic machinery and illustrate its
applicability, we devote this section to the derivation of some known

conditions.

4.1 The Trivial Conditions

It is usually assumed that the binary probabilities {pij} satisfy
pij + pji = 1 and pij 2 0. Since this was not explicitly assumed in the
equivalence theorem, we conclude that these linear conditions are also
derived from it. Indeed, let us first choose for some i,j € N (i # j)
aij = 1 and Xeg = 0 for (k,2) # (i,j). Letting u = 0 we obtain
v =0 Vk=zi

and
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i
s = < x -
Py j Zi¢j <3Piy S L;(v )} = 1.

tak L.o= = = i,J i
Next let us take alJ aji 1 and akQ 0 for {k,Q} # {(i,j}, with

u=v,. ... Then
{i,j}
i J k L.
vi = vS o= v, ., =0 Vk=#i,
{i,J} v J
and
k *
(v - u)k =0 Y k € N.
Whence one obtains
<
Pij * Py =1
i = f. = - i = -v,., . i .. e 2 i
Similarly, aij aJl 1 with u v(l'J} yields le,+ le 2 1 which
i 1 = >
implies pij + pji 1 and also pij 2 0.

4.2 The Triangle Inequality

For given i,j,k € N (assumed distinct) we have to show that
<
Pij " Pjk * Pgy < 2
This formulation naturally suggests

%5 % Fyk T i T L

(Here and in the sequel, coefficients which are not specifically mentioned
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should be taken to be zero.)

These coefficients, in turn, define

i J k
=v,., . vy = = . .
{i.j} MERS: MRS
It only remains to choose
PTG T VG0 T Yy T YRy
It is easy to verify that
R .
(v - u)ﬁ =0 YV 2 €N
and
u(N) = 2
whence the triangle inequality follows.
4.3 Cohen-Falmagne's Condition
Let there be given two disjoint sequences A (al,...,ak) and
B = (bl,...,bk). We wish to prove that
PP b, - b <k(k-2)+1.
{((i,j)1<i#j<k} "a.b, i=1 Fa.b, ~
i7j i1
Define « =1for1<i#j<kanda = -1 for 1 £ i £ k.
aibj aibi

Correspondingly
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ay

v = . . _
Z(J|J¢i:15JSk} v{ai,bj} v(ai,bi}

b,
(and v - 0 for all i).

Let us define u as follows

u = Zk
i=1 {a;,b b, ..., by 1By, qyr---oby)
_Zk
i=1 "{a ,bl.b2 ..... b1—1 b bi+1' ,bk}
+ v
{bli ’bk}
One may verify that
ay
(v - u); =k -2 for 1 £i £k
i
and
2 . _ k
(v u)Q =0 for 2 ¢ {ai}i=1'
Noting that u(N) = 1 we obtain the desired result.
4.4 Fishburn's Condition
Given two disjoint sequences A = (al,az,...,ak) and B = (b
with k = 22 - 1 (2 € N), we wish to show that
k
L, _, P +£}.(_p -Z]-(_p < 3R - 2.
i=1 aibi i=1 aibi+1 i=1 aibi+a

1,b2,...

,b

k)

Although the equivalence theorem guarantees the existence of a game u



12
which attains the exact bound on the right side, this game is quite

complicated to compute. Instead, we will use a simple game which will bring

us close enough.

Naturally, we have

(04 = a =1, a = -1, ¥1 <1<k
a;b; iPi+1 3;b;i.q
and
a,
visvy + v - v
fag byl - T(apbyg) (A )
for 1 €i<k. (v =0 for j € {a.}¥ _.)
=0 i'i=1"
Define
K
u=g' v
i=1 {ai'bi'bi+1)
_Elf_v
=1 {a;.b;.0y,1.0; )
+ (1/2) Ek_ v .
i=1 (bi’bi+ﬁ)
3
It is readily seen that (v - u); =1 (for all 1 € i €£k). The
i
equality (—u); =0 (for 1 £ i £ k) is slightly trickier but still correct.
2
Thus one gets
Tiy P * Diey P b "Ly Pap S (22 -1) 5 u)
i7i i7i+1 i7i+

= (22 - 1) + (R - 1/2) = 3% - 3/2.
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Now we have to resort to extraneous argument to complete the proof:
since all the [N|! extreme points of consistent {pij)' which are integer-
valued, satisfy this inequality, they also satisfy it with (32 - 2) in the
right side. Hence this is also true of every {pij} in their convex hull and

this yields Fishburn's inequality.

Derivation of New Conditions

The analysis presented above suggests additional necessary conditions.
However, the "new" conditions one obtains may well be derived from known
ones. For instance, should we try to develop an analog of Fishburn's

condition for the case k = 2%, one may obtain the inequality

k. K
L1 Pab. *Liey Pap - 2#=1 Pa.b, S3%
i7i i7i+1

which trivially follows from

k

k
Li-1 Pap. ~ Li=1 Pap.
i7i i"i+q

<2

which, in turn, follows from Cohen-Falmagne's condition for k = 2. (And the
latter, involving only four alternatives, is also derivable from the
triangle inequality.)

Even if the new conditions are independent of known ones, there is
still no guarantee that they are the best one may obtain, namely, that one
has the smallest B for a given set of coefficients {aij}'

Nevertheless, we find the inequalities we are about to present

interesting even if they are not necessarily the best ones for the same sets
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of coefficients: these conditions will unify and generalize the Cohen-
Falmagne condition and that of Fishburn. Let us first have another look at
these.
Renumbering the sequence A, one may present Fishburn's condition as
£k

-, (p -p +p ) £ B
1=t ""a;b;  Ta;b, o Tajb, .o

(for the appropriate B).
Shifting the indices of the sequence A by Q = L(k/2)J (where X
denotes the largest integer not exceeding x), Cohen-Falmagne's condition

takes the form

L., (p *p * ... +p - P + P
boragby ey 3Piiger 3Piag 23Piign

(for some B).

It seems natural to consider a "step size" which differs from L(k/2)J
(as in Fishburn's condition) and from 1 (as in Cohen-Falmagne's). Let us
take some integer s satisfying 1 < s < L(k/2)J, and assume that k = gs - r

(€N, 0<S<r<s-1). Let t = L(q/Z)J, and let us try to estimate

aibi+vs aibi+(t+1)s aibi+vs

for the case d = L(t/2)J > 2.

(Note that for the case r = 0 the best possible bound follows from
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Cohen-Falmagne's condition for k' = q - 1, as was the case with the analog
of Fishburn's condition for k = 2s = 2%.)
So let us set
aa =1 for 1 £i<kand1<v<qg-1,vazt-=+1
i7i+vs
and
a = -1 for 1 £i <k
3P, (te1)s
Correspondingly, define, for 1 < i < Kk,
a.
1 t q-1
=L v -V + v .
v=0 {ai'bi+vs} {ai’bi+(t+1)s} Zv-t+2 {ai’ i+vs}
Next, define
R
1=1 (ai’bi'bi+s'""bi+ts'bi+(t+2)s'"”bi+(q—1)s}
—Zli(=lv(abb b b b }
i"71Ti+s” T Tists Ti+(t+1)s” T ' T+ (g-1)s
s-1
+ L0 o [v
'u=0 {by-ds‘yu—(d—l)s""’b#' y+s""’b#+ds}
+ Vv I
b . ..
¢ (t+1)8+ﬂ-d8'b(t+l)s+#—(d—1)s'""b(t+1)s+p’ 'b(t+1)s+ﬂ+ds}
Again, it is not difficult to see that

(v i

and



16

(-u)¥ =0
bi
for all 1 € i < k, while u(N) = 2s.

We therefore obtain

S € k(q - 2) + 2s

as a necessary condition on {pij} to be consistent. We note that this bound
does not have to be the best that one may obtain in specific cases. For
instance, for s = 1 we obtained (—u); = 0 with u(N) = 1 (rather than

i
u(N) = 2).

6. The Diagonal Inequality

As opposed to the other known conditions, which could be derived from
the equivalence theorem relatively easily, and even suggested some
generalizations, the diagonal inequality does not seem to be readily
obtained by this method. Indeed, the sufficiency proof is constructive
enough to specify a game u for any given set of coefficients {aij},

However, the computation of the game u used in the proof is more complicated
than a direct computation of the right side B: we know that B = u(N), so
that computing B8 directly is tantamount to estimating u on one (rather than
all) coalitions.

However, actual computation of the game u provided by the theorem may
be insightful in some cases. 1In particular, we would like to compute it for
the diagonal inequality since the (combinatorial) method of computation may

be useful by its own right.
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We will restrict our attention to the case of disjoint sequences A and

B, although this does not exhaust the richness of the diagonal inequality.

Let, then, be given A = (a, .. . = i
g ( 1 ,ak) and B (bl,...,bk) with
i k _ B .
{ai)i=1 N {bi)i=1 = @, and a number 1 < r < k 1. We define
@ , =1 1<i#j<k
i7j
aa.b. =T 121k,
ii

which define, for all 1 £ i £ k,

i-1 C v . zk v
1 {ai'bi} j=i+1 {ai,bj}

(and v = 0).

The associated game u is defined by

u(S) = maxp Eiirj.i.jes) %ij

(where the max is taken over all linear orderings on N, or, equivalently, on
S).

Given a coalition S, let us assume it contains exactly m pairs (ai’bi)'
2 elements of A whose counterpart is in s and q elements of B whose

i
=m+ Q; |SN {bi}i=1[ =m+ q.)

counterpart is in S®. (Thus, |S N {ai}:=1|

Let us compute a linear order R which maximizes Z{iRj-i jes) aij'

consider an element ai such that bi € sc. Obviously, for every bj € S,

ainj has to hold for R to be maximal. Similarly, for b, € S with ai € s

i

one has to have aiji for all aj € S. the interesting part is, therefore,
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the m pairs (ai'bi)‘ Assume w.l.0.g. that these are {(ai,bi)}?=1. It is
obvious that R may be defined arbitrarily over {bi}?=1' W.l.0.g. assume
ble2R Rbm
The main point in this direct computation method is the following:

given the order defined over (bi}, each a; may be separately located in the

order R so as to maximize its contribution to the expression

Zi*J Pap, ° T Zi P
1)
Let us now distinguish between two cases: (i) m <r and (ii) m > r.

a.b.’
ivi

If m £r, it is quite straightforward to verify that the maximal order R has

to satisfy biRaini+ {for 1 € i £ m). In this case u(S)

1 <
2{m + q) + mq + m(m - 1)/2.

As for case (ii), biRaini+1 still has to hold for 1

IA

i £ r. However,
forr +1<i<n, ainl is a necessary condition for R's optimality. 1In

this case, one obtains

u(S) = &(m + q) + (m-r)(m+q-r -1) + r(m - r + q) + r(r - 1)/2.

It is also easy to verify that for S = N we obtainm = k, & = q = 0 and

u(N) = k(k - 1) - rk + r(r + 1)/2.

(Which proves the diagonal inequality either directly or via the
equivalence theorem.)

Worthy of note is the fact that this method of computation of the game
u (or of u(N) directly) cannot be applied without some symmetry

consideration that would allow assuming an arbitrary order over the sequence
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B (or part of it). Trying to apply it to Fishburn's condition, for
instance, involves combinatorial arguments which are tantamount to a direct

proof.

7. A Remark Regarding Sufficiency

None of the explicit conditions mentioned inm this paper--the known and
the new ones--is sufficient, nor are they sufficient in conjunction. This
may be proved by the same example used in Gilboa (1989) to establish the
insufficiency of the diagonal inequality. This example involves
probabilities Pyj € {1/3, 2/3}, and it is easy to see that for such {pij}
all conditions hold. VYet, it was proved that the specific set of (pij}

given there is not consistent.
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