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Renegotiation-Proof Implementation and Time Preferences
Abstract

This paper explores how the requirement that the implementation of
contracts be renegotiation proof affects the set of contracts which
theoretically can be implemented in a seller-buyer scenario in which the
information regarding the agents’ valuations is non-verifiable. The paper’s
main contribution is that, first, it explicitly adds a time dimension to an
implementation problem, and second, it introduces a natural criterion of
renegotiation proofness for the case of time consuming renegotiation.
Consequently, the results regarding the set of implementable contracts are
different from those in the related literature.









Renegotiation-Proof Implementation and Time Preferences

1. Introduction

This paper explores how the requirement that the implementation of
contracts be renegotiation proof affects the set of contracts which
theoretically can be implemented in a seller-buyer scenario in which the
information regarding the agents’ valuations is non-verifiable. The paper’s
main contribution is that, first, it explicitly adds a time dimension to an
implementation problem, and second, it introduces a natural criterion of
renegotiation proofness for the case of time consuming renegotiation.
Consequently, the results regarding the set of implementable contracts are
different from those in the related literature.

For concreteness, the discussion will be conducted in the context of the
following example. There are two agents, a seller and a buyer, who sign a
contract for the sale of one unit in the future. Their valuations for the
unit, denoted by s and b respectively, are not known when they sign the
contract. They become known to both parties after the contract is signed and
before it is implemented. Thus, when it comes to implementing the contract the
parties’ information is complete, but it is assumed to be non-verifiable,
i.e., not observable to third parties (such as a court). For the ease of
exposition, we first restrict attention to the case in which in all
realizations of s and b, b>s (this restriction will be dropped in Appendix 1).
When they sign the contract, the parties want to specify, for any possible
realization of the valuations (s,b), whether or not there will be trade and

the price P(s,b) at which it will take place. The contract describes the



procedure that will be followed after the valuations are realized. The purpose
of this procedure is to make sure that the original intentions of the parties
are indeed carried out. The idea is that the steps laid out in the contract
are independent of (s,b) and hence are enforceable by a third party (or by a
social convention). In game theoretic terms, a contract specifies a game form
that implements the function P in the sense that, for all s and b, P(s,b) is
the resulting game'’'s unique subgame perfect equilibrium outcome.

In the context of this scenario we shall investigate the set of price
functions P(s,b) which can be so implemented by a contract and examine how
this set is affected by the requirement that the contract be renegotiation-
proof. The senses in which we use the term renegotiation proof will be made
precise below, but roughly speaking it means that the contract is such that in
no stage the parties find it mutually beneficial to scrap it and reach an
alternative agreement.

As already mentioned above, we are mainly interested in the idea of
introducing explicitly the time dimension into an implementation problem and
using it to look at renegotiation-proof implementation. The contracting
scenario outlined above is therefore used mainly as a vehicle to expose these
ideas, and so we devote relatively less space to discussing the economic
issues involved. Nevertheless, before we proceed, let us point out briefly why
the scenario and the questions to be considered are interesting from the
viewpoint of economic analysis. Suppose that the seller’s valuation is zero,
that the buyer’s valuation can be either 1 or 2 and that ex-ante there is
equal probability for anyone of the buyer types. Assume that in order to
produce the unit the seller has to invest 1.3, before the buyer’'s valuation

is determined. Notice that a contract that specifies the constant price of



1.4, regardless of the buyer’'s valuation, achieves the efficient outcome that
the seller produces the unit and that it ends up at the hands of the buyer.
However, this contract is not ex post individually rational and the low
valuation buyer will block the sale if he has the power to do so. Thus, in an
environment where outcomes that are not ex post individually rational cannot
be enforced, a constant price contract will not induce the seller to make the
necessary initial investment and the overall outcome will be inefficient. The
question of whether this situation necessarily gives rise to inefficient
under-investment amounts, therefore, to inquiring whether or not it is
possible to implement other price functions, such as the one that prescribes
prices 0.8 and 1.8 to the low and high valuation buyers respectively. And if
the situation is such that the parties are free to renegotiate, the relevant
question is whether such other price functions can be implemented by a
renegotiation-proof contract. Of course, by identifying the set of all price
functions implementable by a renegotiation-proof contract, we get at once the
answer to this question and to similar ones. In this sense, the problems
investigated in the present paper, regarding the entire sets of price
functions which are so implementable, are potentially useful for the analysis
of a class of cases of this type.

In the first case considered the possible outcomes which may be reached
in the implementation game are sale at a certain price or the "no-sale"
outcome. Our initial result (proposition 0) establishes that it is possible to
implement a big set of functions, including all functions P which are

1 in s and b and satisfying b>P(s,b)>s. However, the mechanism

increasing
constructed in the proof of proposition O makes use of the inefficient "no-

sale" outcome, i.e., certain out of equilibrium moves in the implementation



game will lead to "no sale". This feature is questionable when one thinks of a
voluntary contract, since in situations in which agents are sovereign to
mutually agree to scrap the mechanism, they will probably not put up with
substantial inefficiency and instead will negotiate a new outcome. Therefore,
if agents see through the contract and anticipate renegotiation, they will not
be necessarily deterred by the no-sale outcome and hence the contract might
not achieve the desired outcomes.

This criticism motivates the work of Maskin and Moore(l988), Green and
Laffont(1988) and Aghion, Dewatripont and Rey (1989). They respond to it by
looking at contracts which take into account the negotiated outcome that will
follow an inefficient one. We follow here a somewhat different approach and
look at contracts which are immune to this criticism. Such contracts are

called renegotiation-proof. The first notion of renegotiation-proofness that

we discuss requires that, for all s and b and in all subgames of the
implementation game, the SPE outcomes be efficient. In the environment
considered here, this requirement amounts to ruling out the no-sale outcome as
a possible SPE outcome of the implementation game, whenever b>s. The idea is
that if the game were to end with this outcome it could not be considered
renegotiation-proof since this outcome would be renegotiated to an agreement
which is preferred by both. Proposition 1 shows that this renegotiation
proofness criterion indeed restricts considerably the set of implementable
contracts to include only those that specify a constant price irrespective of
(s,b).

The fact that renegotiation-proof contracts form a limited subset of the
set of possible contracts has been presented in the literature as a source of

inefficiency, since this limited subset may not contain sufficiently rich



contracts which are required under certain circumstances to provide the right
incentives for, say, investment which has to take place before the information
is revealed (see, e.g., Green and Laffont(1988) Hart and Moore(1988)).

The substantial limitation of the set of admissible contracts described
above seems to be an artifact of the too stringent criterion of renegotiation
proofness employed. The idea of eliminating all inefficient outcomes
implicitly assumes that there is time dimension and that, after the
implementation game is over, the parties turn to renegotiate inefficient
outcomes. But the above approach leaves this dimension unmodelled and does
not specify what the time structure is and how the fact that time is normally
costly figures into the considerations.

We modify the model by adding explicitly the time dimension. The set of
possible outcomes will now be richer since outcomes will be dated so that a
typical outcome is a pair (p,t) with the interpretation that the good is sold
for price p at time t. The mechanism described by the contract should be
interpreted as including a time table of the different steps in the execution
of the contract. The two features of the time dimension which are relevant for
the problem at hand are, first, that delays are costly and, second, that these
costs are irretrievable--it is impossible to go back in time.

The notion of renegotiation-proofness to be used here requires that in
the beginning of each period, after any possible history, the subgame perfect
equilibrium outcome is Pareto efficient. That is, the parties will not find it
mutually advantageous to renegotiate another outcome at the beginning of any
period. In other words, if one period is the minimum amount of time required
to renegotiate a contract, then at no point will both parties want to

renegotiate.



It turns out that with this notion of renegotiation proofness, all
contracts that specify for b>s trade at the price P(s,b), where P(s,b) is
increasing in s and b and s<P(s,b)<b, are implementable in a renegotiation
proof manner much as they are in the absence of renegotiation proofness
requirements, and in contrast to the case in which only efficient outcomes are
considered renegotiation proof. That is, modeling renegotiation proofness by
restricting attention only to efficient outcomes is by no means an
approximation to what goes on in an environment with costly renegotiation,
even 1f the cost is small.

Thus, since results in the spirit of proposition 1 can lead to
conclusions on inefficient behavior, the last result suggests that such
explanations may not be valid when the contract can use the time dimension and
when recontracting is costly (time consuming).

Finally, we remark that modeling implementation over time requires
looking into implementation by extensive game forms, where the natural
solution concept is SPE. The study of implementation by SPE was started by

Moore and Repullo(1988).

2. The Model
There are a seller and a buyer who are interested in signing a contract
for the sale of a certain unit. The reservation values, denoted by s and b
respectively, are taken from the sets S and B. We assume that S and B have
both maximum and minimum. Let s , b , S . and b . denote the maxima and
ma min min

minima of S and B respectively. For the ease of exposition, throughout the
paper we assume that b . >s so that there is always room for trade. In

mln max

Appendix I we shall extend the definitions and the results to the case in



which S and B may overlap so that we may have Smax>bmin' When the contract is
signed the parties know only S and B, but before it is carried out the true
values of s and b are realized and are common knowledge between both parties.

The possible outcomes with which this interaction may end are exchanges
for some price p, and the no-sale outcome. We shall refer to an exchange at
price p as outcome p and to the no-sale outcome as outcome D (for
"disagreement"). Notice that this specification of possible outcomes restricts
the range of possible contracts, e.g, it does not include contracts such that,
after certain developments, one party or both pay penalties to or receive
subsidies from a third party. The preferences of the parties over these
outcomes are given by the utility functions p-s and b-p for the seller and the
buyer respectively; utility of zero is assigned by both to the no sale
outcome.

We shall be interested in implementing by a contract a price function P
that assigns a price P(s,b) to each pair s,b. We shall further restrict the
discussion only to price functions which are strictly ex post individually
rational, i.e., satisfy s<P(s,b)<b.

Definition 1: A price function P(s,b) will be called implementable if there

exists a game form with perfect information such that: (1) all its terminal
nodes are either (exchanges for) prices in the interval [Smin’bmax]’ or the

no-sale outcome D; (2) for all s and b, the unique subgame perfect

equilibrium outcome is an exchange at the price P(s,b).

The interpretation of the game form is that of a procedure fixed by a
contract which is signed before s and b are realized and can be carried out

after these values are realized, if one of the parties wants. Since when it



comes to implementing the contract both parties know s and b, the
implementation game is one of complete information. However, the meaning of
the requirement that one game form implements P(s,b) for all s and b is that s
and b are unobservable to third parties, such as a court that enforces the
steps prescribed by the contract. (Alternatively, if the game is a social
custom rather than a formal procedure implemented by court, this requirement
means that the custom applies to all cases independently of the reservation
values.)

Notice that we adopt here a specific notion of implementability out of a
number of such possible concepts. Possible variations on the definition of
implementability would either relax the uniqueness requirement or replace the

SPE with another solution concept.

3. A Preliminary Result: Implementation Without Renegotiation Proofness

The first result prepares the background for our later discussion in
renegotiation proofness. It demonstrates that the set of functions P(s,b) that
are implementable is rich. The ideas of the proof are related to those
presented in the literature on Subgame Perfect Implementation by Moore and

Repullo (1988) and Glazer and Ma (1988).

Proposition 0: Any function P, s<P(s,b)<b, which is increasing in s and b is

implementable.

Proof: Let P be a function of s and b, s<P(s,b)<b, increasing in both

arguments. Consider the following game in extensive form.



Stage 1:

Stage 2:

Stage 3:

The announcement stage

The seller announces a number vg in §.

The buyer announces a number vg in B or challenges the seller.

If the buyer challenges the seller, the game continues to stage 2.

If the buyer chose vp, the seller may challenge the buyer: if the
seller does, the game continues to stage 3; if he does not,
the unit is exchanged for P(vg,vp).

The buyer can make a "take it or leave it" price offer below v

The buyer can choose a price offer p<vg.
The seller either accepts in which case the good is exchanged for p,
or rejects in which case the outcome is D.

The seller can make a "take it or leave it" price offer above v

The seller can choose a price offer p>vg.
The buyer either accepts and then the good is exchanged for p, or
rejects and then the outcome is D.
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Let us verify that this game form indeed implements P.
Step 1: Consider a subgame starting at stage 2. If vs>s the SPE outcome is

exchange for the price s and if v_<s, the SPE outcome is D. Similarly, for a

S

subgame that starts at stage 3, if VB<b the SPE outcome is exchange for the

price b and if VBZb, the SPE is D.

Step 2: In the subgame that starts after the seller announced vg>s, there are
the following three possibilities. If the buyer challenges, then by step 1
the SPE outcome is an exchange at the price s; if he does not challenge and
announces VB<b, by step 1 the outcome is an exchange at b; and if he announces
v_>b, the outcome is P(vS,vB) > P(VS,b) > P(s,b) > s. Thus, in any SPE the

B

buyer challenges and the outcome is an exchange at s.

Step 3: In the subgame that starts after the seller announced v_<s, the buyer

S
can announce VB=b after which the SPE outcome is exchange at the price

P(s,b)sP(vS,b).

Step 4: Consider the different continuations in the subgame that starts after
the seller announced Vg=S. If the buyer challenges, the SPE will be D. If the

buyer announces v_=b, the seller will not challenge him in the following SPE

B
and the outcome will be an exchange at the price P(s,b). If the buyer
announces VB<b the SPE outcome will be exchange for the price b which is worse

for the buyer than the price P(s,b). Finally, if the buyer announces v_>b, the

B
SPE outcome in the continuation will be P(s,vB)ZP(s,b). Thus, after the seller

announces VS=s, the SPE outcome will be exchange for P(s,b).

From steps 1,2,3 and 4 above it follows that the only SPE outcome is exchange
for P(s,b).

QED
10



Thus, given that the set of possible outcomes of the implementation game
consists only of the exchanges and the no-sale outcome, all price functions P,
s<P(s,b)<b, which are increasing in s and b are implementable by a contract of
the type considered here. Looked upon from the point of view of contract
design, this is an optimistic result since a wide range of price functions can
be implemented.

Although we shall not be concerned here with characterizing the exact set
of implementable functions, let us point out that this condition on the
monotonicity of P is "almost" a necessary condition in the following sense.
Any function P which is implementable by a finite game form (i.e., the number
of nodes in the game tree is finite) is increasing in s and b. We show this
in Appendix II by proving a lemma stating that if P is implementable and
P(s,b)<P(s,b') for some b>b’, then the implementation game between s and b’
must have another SPE with outcome D or price not higher than P(s,b), in
contradiction to the implementability of P (which by definition requires

uniqueness of the SPE outcome).

4. Renegotiation Proofness is Identified with Efficiency

The proof of Proposition O relies on the possibility to enforce the no-
sale outcome, D: if the seller lies about the buyer’s valuation, then the
equilibrium outcome in the resulting subgame is D. Notice that since b>s
outcome D is inefficient. Thus, if the situation is such that the parties can
communicate and are sovereign to scrap the old contract, then in the event
that D is indeed reached they would probably renegotiate a mutually beneficial
exchange. The implied criticism is that proposition O might exaggerate the set
of implementable price functions. If a contract involves inefficient outcomes,
the parties will presumably see through it and base their decisions on the

11



anticipated outcomes of the renegotiation. Therefore, the parties will not
necessarily be prevented from taking steps that lead to outcome D and the
contract may fail to implement some price functions.

The above argument suggests that in order to investigate what price
functions can really be implemented we should look at contracts which are
immune to criticism of this type, i.e., renegotiation-proof contracts. The
following definition gives the first notion of renegotiation-proofness

considered here.

Definition 2: A price function P(s,b) will be called renegotiation-proof

implementable if: (1) it is implementable; (2) the no-sale outcome cannot be

reached after a finite number of moves; (3) for all s and b and all subgames,

the SPE outcome is efficient.

This definition essentially requires that at no node of the
implementation game will it be mutually beneficial for the parties to
renegotiate. As we have already mentioned Green and Laffont(1988), Maskin and
Moore(1986) and Aghion, Dewatripont and Rey(1989) take a somewhat different
approach to this problem. They do not require the contracts themselves to be
renegotiation-proof as we do here, but rather study their consequences in the
presence of exogenous renegotiation technologies (for more details see the
part of the discussion in section 6).

The following proposition shows how this requirement of renegotiation
proofness reduces considerably the set of implementable price functions and

hence the range of possible contracts.

12



Proposition 1:

The only renegotiation proof implementable (strictly ex post individually
rational) price functions are the constant functions P(s,b)=p, where

s <p<b .
max min

Proof:

Suppose that the function P(s,b) such that s<P(s,b)<b is renegotiation-proof
implementable. Observe that, when outcome D is ruled out, the preferences of
all buyers over the remaining outcomes coincide and likewise the preferences
of all sellers coincide as well. Therefore, any equilibrium in the game
between s and b is also an equilibrium in the game between s' and b’, and if
an exchange at P(s,b) is the unique SPE outcome in the game between s and b,
it must be the unique SPE in the game between s’ and b’'. It follows that

)

P(s,b)=p where the constant p is in (s ,b_.
max’ min

QED

Note that while the reason for ruling out inefficient outcomes from being
SPE in any subgame is that they will be renegotiated, the approach described
in this section does not model explicitly the renegotiation process. Instead
it implicitly assumes that renegotiation is costless and is always concluded
successfully. The question is how sensitive the result is to this
abstraction--whether, for example, the above result changes significantly once

we recognize that renegotiation could be costly.

5. Renegotiation and Time

The model considered in the two previous sections is rather crude: the

basic outcomes are either efficient (an immediate agreement) or grossly

13



inefficient (no-sale). We shall consider now a more refined model of the
situation and the added detail will result in a richer set of outcomes.

Specifically, we assume that the model has a time dimension. Time 1is
divided into discrete periods 0,1,2..., where period O corresponds to the
point at which the implementation game begins. The set of possible outcomes
includes all outcomes of the form: "the good is sold for price p at time t",
to be denoted (p,t), and the no-sale outcome, D. The parties’ preferences 2g,
2p extend the preferences over the basic outcomes and are assumed to have the
following three properties: (i) impatience: for all p>s, (p,t)2g(p,t+l), and
for all p<b, (p,t)2p(p,t+l); (ii) substitution: for any p>s and t, there
exists q<p such that (q,t)25(p,t+l), and for any p<b and t, there exists g>p
such that (q,t)zp(p,t+l); (iii) status quo: D ~ s (s,t) and D ~ b (b,t) for
all t.

Notice that all preferences which are represented by utility functions of
the form U(p,t) = (p-s)iillei fall into this category, but the lexicographic
preferences which give time the secondary significance are ruled out.

The implementation game will be designed to take place over time and the
design will include specification of the timing of the different decision
nodes. We shall not identify one period with one move in the game, but assume

that the design may prescribe a few moves to a single period.

Definition 3: A function P will be called implementable (over time) if there

exists a game form with perfect information such that:
(1) Each node is dated: the date of the origin is 0 and, if node y comes
after node x, the date attached to y is at least as late as the date attached

to X.

14



(2) The terminal nodes are either outcomes of the type (p,t), where p in

[

Smin’bmax] and t is the date of that terminal node, or the no-sale outcome D.

(3) For all s and b, and for any specification of the parties’ time

preference having the above properties, the unique SPE outcome is (P(s,b),0).

Notice that this definition extends definition 1 (in section 3) to refer
to the added time dimension. Condition (1) describes how the time enters into
the model. Condition (2) means that the implementation of the contract ends
either with an exchange in which case the price paid by the buyer is received
by the seller, or it ends with no sale in which case the parties do not make
or receive any payment. Condition (3) gives the precise sense in which the
contract implements exchange at P(s,b)--for all b and s it is the unique SPE
outcome of the game laid out in the contract.

It is important to note that condition (3) holds for any specification of
the parties’ time preferences. This means that we regard a function P as
implementable only if the design of the contract does not require knowledge of
the time preferences, beyond the fact that they satisfy the three required

propertiesz.

We are interested in studying renegotiation-proof contracts in this context.
This framework allows us to introduce a renegotiation proofness criterion

which is not as extreme as the criterion of section 4.

Definition 4: A price function P is renegotiation proof implementable (over

time), if (1) it is implementable; (2) all terminal nodes are outcomes of the
form (p,t); (3) if node y is an immediate successor of node x, then the date

attached to it is equal to the date attached to x or to that date plus 1; (&)
15



for all s and b, any subgame and each period t, the SPE is Pareto efficient in
the beginning of t (i.e., the SPE is efficient at any decision node at t which

no other decision node at t precedes it on the path from the origin);

Condition (2) assures that there is no incentive to renegotiate the
outcome after the implementation game is over. Notice that while in section 4
such a requirement assures that the outcomes are efficient when evaluated from
any point in the game, this need not be the case here due to the presence of
time costs. Therefore, conditions (3) and (4) are meant to supplement (2) by
extending the renegotiation proofness requirement to other points in the game
as well. Specifically, it assures that there is no incentive to renegotiate at
certain points--the beginning of each period--throughout the game.

Note that the essence of the above conditions is that an implementation
game is renegotiation proof, if after any history the SPE is almost Pareto
Efficient in the sense that there is no possible exchange that would give each
party a payoff that exceeds its expected SPE payoff by more than the value
attributed by this party to one period.

Put differently, suppose that renegotiation is time consuming--the time
it takes to tear up the old contract and negotiate a new one--and that it
takes at least one time period to renegotiate a contract. Then, if a contract
is renegotiation proof in the sense of this section, no attempt at
renegotiation can be mutually beneficial since it is impossible that the post-
renegotiation payoffs of both parties will be high enough to compensate for
the time lost in renegotiation.

The following result shows that this criterion admits again the wide

class of contracts which, as shown in section 3, are implementable in the

16



absence of renegotiation proofness, but most of which were ruled out by the

renegotiation proofness criterion of section 4.

Proposition 2:

Any function P, s<P(s,b)<b, which is increasing in s and b is renegotiation

proof implementable over time.

Proof:

Consider the following game in extensive form.
Phase 1:

The seller announces a valuation vg in S.
The buyer may challenge the seller or announce a
valuation vg in B.
If the buyer challenges, the game continues to Phase 2-0.
If the buyer announces vg, the seller may agree or challenge.
If the seller challenges, the game will continue to Phase 3-0.
If the seller agrees to the buyer's announcement, P(VS,VB) will
be implemented.

Phase 2-t: A Bargaining Game

The seller makes a price offer p.

The buyer either accepts the offer and p is implemented or rejects it
and makes a counter-offer q<vg.

The seller either accepts the offer and q is implemented or rejects
it and the game continues to Phase 2-(t+l).

Phase 3-t: A Bargaining Game

The buyer makes a price offer p.

The seller either accepts the offer and p is implemented or rejects it
and makes a counter-offer g>vg.

The buyer either accepts the offer and q is implemented or rejects it and the
game continues to Phase 3-(t+l).

The decision nodes described in Phase 1 are in period 0. The nodes of phase 2-
t and 3-t are in period t.

To every infinite path of the game we attach the outcome D.

17
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The proof that for b>s the game has a unique SPE is based on a similar
idea to that of proposition O.
Step 1l: Consider a subgame that starts at the beginning of phase 2. If vs>s,
the game is effectively a bargaining game in which the buyer makes all the

offers, since the buyer has the last word in each period and the restriction



on the price offers is of no consequence in this case. With the time
preferences allowed here (which display impatience, time-substitution and the
status-quo properties), the unique SPE outcome in a bargaining game in which
one side makes all the offers is such that this side appropriates all the
surplus. Therefore, if v_>s the SPE outcome of this subgame is (s,0).

S

Similarly, if vsss, the game is effectively a bargaining game in which the
seller makes all the offers, since the restriction on the buyer’'s offers to be
below vS makes them irrelevant and therefore the SPE outcome is (b,0).
Consider next a subgame that starts at the beginning of Phase 3. By
complete analogy, if VB<b, the SPE outcome will be (b,0) and, if VBZb, the SPE
outcome will be (s,0).
Step 2: Suppose that the seller’s announcement is vg=s and consider the
continuation. If VB=b, the seller will not challenge the buyer since the
seller prefers (P(s,b),0) to (s,0), which by step 1 will result from
challenging; if VB<b the seller will challenge the buyer and by step 1 the
outcome will be (b,0); if VB>b the seller will not challenge and the outcome
will be (P(s,vB),O) which by the monotonicity of P is worse for the buyer
than (P(s,b),0).
Therefore, if the seller announces Ve=s, the buyer’s equilibrium response
is to announce VB=b and the SPE outcome is (P(s,b),0).
Step 3: Suppose that the seller announces vs>s. As argued in step 1, by
challenging the buyer will achieve the outcome (s,0). If the buyer does not
challenge, the outcome will be either (p(vs,vB),O) or the game will continue
to phase 3 in which the seller will never agree to a price below s. Since
p(vs,vB) > Vg > s, the buyer’s best response is to challenge.

Step 4: If the seller announces v_<s, then the buyer can announce vB=b and

S
19



the outcome will be (P(vs,b),O). By the monotonicity of P this price is lower

than P(s,b).

It follows from steps 2,3 and 4 above that the only SPE outcome of this game
is (P(s,b),0).

QED

The proposition shows that requiring a contract to be renegotiation-proof
is not as restrictive as it might seem from the approach described in the
previous section. When the criterion of renegotiation-proofness is weakened as
would be sensible if the process of renegotiation itself is a time consuming
activity, then a wide class of price functions are implementable.

One sense in which this proposition is strong is that one mechanism
implements a price function P for all time preferences, as long as they
reflect some degree of impatience. That is, given that time is costly, the
design of a contract which is implementable and even in a renegotiation-proof
manner does not require any further information about the time preferences.

Note that the criterion for renegotiation proofness is that the SPE is
efficient at the beginning of each time period, but not necessarily at each
node. If we required efficiency at each node, we would be back with the
renegotiation proofness criterion of section 4, and nothing would be gained
from the added structure. More precisely,

Claim: Modify part (4) of definition 4 to read:
"for all s and b, and any subgame (not only those which start at the beginning
of a period), the SPE is Pareto efficient". Then the only functions P which

are renegotiation-proof implementable over time are the constant ones.
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Proof: Consider a function P which is renegotiation-proof implementable over
time, according to the modified definition. Consider the case in which the
time preferences of all seller and buyer types are represented by the utility
functions (p-s)6t and (b-p)st respectively, where 6<1. It is sufficient to

show that the SPE that induces the outcome (P(sm ,bmin),O) is a SPE for all

ax
(s,b). Assume that there is a subgame for which one of the agents, say seller
s, can deviate profitably. By assumption, the SPE outcome in this subgame is
Pareto efficient (for s and b ., ), which means that this outcome is an
max min
exchange at some price p in this period. The profitability of the deviation by
seller s means that he can achieve an exchange for p’ after some t periods’
delay such that (p’-s)6%>(p-s). However, if this inequality holds for s, it
also holds for s so that this pair of strategies may not be a SPE for s
max max

and b .

min

QED

6. Discussion

Costly Renegotiation

One may argue that the implementation game of section 5 is not fully
renegotiation-proof, even though it passes the criterion of definition 4. This
is because there exist points in the game, not at the beginning of periods, at
which the SPE is not efficient. At such points the parties would have an
incentive to renegotiate to an efficient outcome. However, if renegotiation
is costly, this criterion is immune to such criticism. Specifically, suppose
that the cost of the renegotiation process is in it being time consuming. If
the single time period of the implementation game is shorter than the amount

of time needed to renegotiate the contract, then a contract that passes the
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criterion of section 5 is renegotiation-proof in the following sense. At any
node of the implementation game, including those in which the SPE is
inefficient, it will not be profitable for both parties to renegotiate. This
is because any node is at most one time period away from an efficient node and
this implies that any alternative agreement which will be implemented after a
delay of at least one period cannot be preferred by both parties to the
continuation of the game.

Of course, if renegotiation involves other costs instead of the time
costs, a similar point can be made. As long as the costs of renegotiation are
larger than the costs of delaying the implementation game for one period,

renegotiation is prevented since it may not be profitable for both parties.

Why Renegotiation-Proofness?

We have yet to explain why the notion of a renegotiation-proof contract
is useful for investigating the theoretical limits of contracting with non-
verifiable information. That is, to explain the sense in which price functions
which are implementable by renegotiation-proof contracts are the only ones
that can at all be implemented in an environment that does not prohibit
renegotiation. To think about this question, let us return to the world of
section 4 (before the introduction of the time dimension), where
renegotiation-proofness is identified with efficiency of the SPE in all
subgames. Recall that a contract which is not renegotiation proof in that
world is such that there are certain nodes of the implementation game and
certain types s and b for which the outcome prescribed by the contract will be
inefficient. This implies that the actual outcome will be achieved via
renegotiation after the implementation game ends. Suppose that the function
g(s,b,y) describes the results of the renegotiation between s and b after they
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reached the terminal node y. Given such a bargaining function, one may study
the full consequences of a contract, even if it is not renegotiation-proof.
The parties to such a contract will simply act as if the outcome at node y is
the (possibly) type dependent outcome g(s,b,y) rather than the outcome
prescribed by the contract. This approach is taken by Maskin and Moore(1986),
Green and Laffont(1988) and Aghion, Dewatripont and Rey(1989), who
investigate the scope of implementation in the presence of exogenously given
bargaining function. Notice that since the bargaining function g is allowed to
depend on s and b, there are price functions which are implementable given
some function g, but are not implementable in a renegotiation-proof manner in
the sense of the present paper.

Thus, it may appear that there is no reason to restrict attention to
price functions P(s,b) which are implementable in a renegotiation-proof
manner. This is because other functions which are implementable by non-proof
contracts, given the appropriate renegotiation technology, may seem relevant
as well. However, if we follow the logic of this reasoning further, this
statement will seem questionable. If one believes that the bargaining process
summarized by the function g(s,b,y) can be described as a game in extensive
form, then it should be possible to complete a non-renegotiation proof
contract by replacing node y with the bargaining game that results in
g(s,b.y). (1f different types engage in different bargaining games, the
contract has to include the game that decides what bargaining games s and b
will follow and so on.) Now, by the same reasoning the bargaining game itself
should also be renegotiation-proof in the sense that inefficient terminal
nodes will be renegotiated to efficient ones. Therefore, the compounded

contract has to be renegotiation-proof in the sense of the present paper.
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Thus, focusing on renegotiation-proof contracts in the sense of this
paper is not an arbitrary restriction on the scope of the discussion. One may
not suppose, for example, that the limitations on what can be implemented via
renegotiation-proof implementation of the type considered in section 4 will be
alleviated if we considered open ended contracts that leave for some types
room to renegotiate. Once we recognize that any bargaining games that take
place outside the contract can, in principle, be included in the contract,
then proposition 1 characterizes all the price functions that can at all be
implemented in an environment in which inefficient outcomes are renegotiated.

How Renegotiation Proofness Affects the Consequences
of Non-Verifiability

The fact that the information of the parties to a contract is not
verifiable to a third party is a form of imperfection. As other imperfections
in the use of information, it could have real effects on the allocation of
resources. For example, if one of the parties has to make some investment
before the valuations are realized, it is possible to construct examples in
which the contract has to condition the outcomes on the information in order
to create incentives that will assure the proper magnitude of the investment.
But when the information is non-verifiable, a contract that conditions on it
may not be enforceable, and in the absence of such a contract the resulting
investment might be inefficient.

Obviously, when the possibility of renegotiation exists so that the
relevant contracts are the renegotiation-proof ones, the inefficiency/under-
investment problem pointed out above may become more pronounced (see Green and
Laffoht for a discussion of this issue). For concreteness, consider the

following example. S={0}, B={1,2} and suppose that ex-ante there is equal
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probability for anyone of the buyer’'s types. Assume that in order to produce
the unit the seller has to invest a sum of 1.2 before the buyer’'s valuation is
determined. Recall that the renegotiation- proof contracts in the sense of
proposition 1 admit only constant price contracts, which do not use any of the
information. Therefore, if that is the right renegotiation-proofness
restriction, the seller’s revenue cannot exceed 1 and, hence, in the first
place the seller will not invest in the production and inefficiency will
result. The implication of Section 5 and proposition 2 for this example is
that the inefficiency derived here owes to the too powerful renegotiation-
proofness criterion. If renegotiation is time consuming or otherwise costly to
the extent that the criterion of section 5 is appropriate, then the set of
relevant contracts is richer and hence the potential inefficiency problem
seems less severe. Here, the parties could have a renegotiation-proof contract
which implements P(0,1)=0.9 and P(0,2)=1.7. This contract alleviates the

inefficiency by making the investment of 1.2 profitable.

The Role of Time

This paper recognizes and exposes the important role that time may have
in the design of mechanisms for the enforcement of contracts. Two properties
of time are used here: that time is costly and that its passage is
irreversible. Of course, the analysis does not necessitate the incorporation
of a real time dimension into the contract. The effects of time can be
mimicked by imposing other costs on the parties. Nevertheless, the real time
dimension is of primary importance in this problem, since other forms of
"burning" resources may not be commonly observed in practice. Furthermore, it

is natural to think of the renegotiation process itself as involving time and
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therefore to design a contract that takes into account the time dimension of

the renegotiation processes.

An Alternative Interpretation

Throughout this paper we interpreted the implementation problem under
consideration as a contract design problem. An alternative interpretation of
this analysis is that it studies the properties of a family of games. For
example, the analysis of section 4 and proposition 1 can be viewed as a
statement on the family of games with perfect information, parameterized by
the seller’s and buyer’s reservation values, all of whose terminal nodes are

exchanges at prices from the interval [s ] and for all s and b such

. ,b
min’ “max
that s<b, there is a unique SPE payoff. What proposition 1 tells us about this
family of games is that the outcome function (the outcome as a function of the
parameters s and b) is constant over all (s,b) combinations such that b>s.

From this point of view proposition 1 seems more interesting than 2,
since it gives a tighter characterization of the outcome function of a family

of games, while from the point of view of contract design proposition 1 seems

as a negative result and proposition 2 is the more informative one.

End-Remarks

The basic seller-buyer scenario which we analvze has a rather special
structure. Two major characteristics of this scenario are that (a) the parties
preference rankings of all outcomes but the no-sale outcome are diametrically
opposed; and (b) all types of seller (or buyer) have almost identical
preferences and differ only with respect to how they rank the no-sale outcome
vis-a-vis others. 1In addition, we focus on the class of contracts that are ex

post individually rational in the sense that s<P(s,b)<b.
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These limitations do not allow to speculate much beyond the boundaries of
the above discussion of the theoretical possibilities of contracting with non-
verifiable information. Nevertheless, we believe that the idea of explicitly
including the time dimension in an implementation problem, in general, and in
such a problem with renegotiation, in particular, has validity beyond confines

of the present model.
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Appendix I

Relaxing the assumption that S and B are disjoint

The above analysis was conducted for the case in which for any
realization of s and b we have s<b so that trade is always efficient. In what
follows we comment on how the above analysis and its results can be extended
to accommodate the case in which S and B overlap.

To avoid discussion of degenerate cases, it is assumed that b and

2s
max max
. 2s . . We shall be interested in contracts which for each pair s,b such
min “min
that s<b implement a price function P , s<P(s,b)<b, and for pairs s,b such
that s>b result in no trade.

Consider first the material of section 3. Definition 1 will be modified

as follows to accommodate the possibility of b<s.

Definition 1’: A price function P(s,b) will be called implementable if there

exists a game form with perfect information such that: (1) all its terminal

nodes are either (exchanges for) prices in the interval [s ] , or the

min’bmax
no-sale outcome D; (2) for all s,b such that b>s, the unique subgame perfect
equilibrium outcome is an exchange at the price P(s,b); (3) for s,b such that
s<b, the subgame perfect equilibrium payoffs are non positive.

Note that definition 1' differs from definition 1 in the added condition
(3). We think of the game form as a procedure fixed by a contract. This
procedure can be activated after the values s and b are realized, if at least
one of the parties wants. If both choose not to activate the contract they

just not trade. Condition (3) means that when there is no surplus to split, no

party has an incentive to activate the procedure laid out in the contract.
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Proposition O does not change. The game described in the proof already
satisfies condition (3) so that the only addition to the proof is that in the
announcement stage if VBSVS the outcome is D.

Consider next the material of section 4. lLet us leave definition 2 as it

is except that condition (3), that the SPE of all subgames is efficient, will

be required only for realizations such that s<b.

Proposition 1':

If bmin<smax then there is no renegotiation proof implementable price function
P.
Proof: Suppose that the function P(s,b) is such that, for all b>s, b>P(s,b)>s

is renegotiation-proof implementable. It follows from proposition 1 that

P(s,b ) is constant for all s and that P(s . ,b )=s . Also, P(s . ,b) is
max min’ “max max min
constant for all b and P(s . ,b y<b . .
min’ max min
Thus, if b . <s the above leads to contradiction and there exists no
min ~max

such renegotiation-proof implementable function.
QED
Thus, although the Pareto efficiency of the SPE in all subgames is
imposed only for realizations such that s<b, there is no renegotiation proof
function.
Finally, in order to consider the results of section 5 we have to modify

definitions 3 and 4 as follows.

Definition 3’: A function P will be called implementable (over time) if there

exists a game form with perfect information such that:
(1) Each node is dated: the date of the origin is 0 and, of course, if node y
comes after node x, the date attached to y is greater than or equal to the

date attached to x.
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(2) The terminal nodes are either outcomes of the type (p,t), where p in

[s

. ,b ], or the no-sale outcome D.
min’ “max
(3) For all s and b such that b>s, the unique SPE payoff is P(s,b), for any
specification of the parties’ time preference having the above properties.
(4) For any s and b such that s=b, all SPE payoffs are non-positive.
Notice that this definition simply differs from definition 3 in the added

condition (4) which requires that when there is no surplus to split, no party

has an incentive to activate the procedure laid out in the contract.

Definition 4': A price function P is renegotiation proof implementable (over

time), if (1) it is implementable; (2) for b>s, any terminal node dated t is
Pareto efficient at t (i.e., all terminal nodes are outcomes of the form
(p,t)); (3) for all s and b, any subgame and each period t, the SPE is Pareto
efficient in the beginning of t (i.e., the SPE is efficient at any decision
node at t which no other decision node at t precedes it on the path from the
origin); (4) for any s and b, each of the parties has a strategy which
guarantees to it payoff zero.

Definition 4' differs from 4 in condition (4) which is added to guarantee
that the case of s>b is irrelevant, by making sure that in this case the
parties will not want to activate the procedure. This is because, with s>b,
there is no possible exchange that will benefit both, and by condition (4)
each party can guarantee at least zero to itself, so that no party has an
incentive to activate the procedure.

Proposition 2 and its proof remain the same. One has only to notice that
the game described in the proof already satisfies condition (4) of definition

4!,
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Appendix IT

A proof that the requirement that P is decreasing in s and b is a necessary

condition for the implementability of P by a finite game.

Assume that the function P is implementable by a finite game and that
P(s,b)<P(s,b’) for some b>b’. The following lemma shows that the
implementation game between s and b’ must have a SPE whose outcome is D or
price below p(s,b). Thus, the implementation game between s and b’ has two
outcomes, in contradiction to the implementability of P. Therefore, P must
non-decreasing in b and, analogously, it has to be non-decreasing in s.

Lemma: Let (f ) be a SPE for a finite game with perfect information

sb'gsb

between s and b, let b’<b and let O(f,g) denote the outcome of strategies

f and g.
If O(fsb,gsb) = p*, p* > b, then 3 SPE for (s,b’) s.t. O(f,g) = p*
If O(f ., ,) = p*, b’ < p* < b, then 3 SPE for (s,b’) s.t. 0(f,g) =D

sb’®sb

or o(f,g) = p =

If O(fsb'gsb) - p¥, s< p* <b’, then 3 SPE for (s,b’') s.t. o(f,g) = p, s <
If O(f, .8, ) = P" <s, then 3 SPE for (s,b') s.t. O(f,g) = p*
If O(fsb,gsb) =D , then 3 SPE for (s,b’) s.t. O(f,g) =D
Proof: By induction on the diameter of the game. It is obvious that the

statement of the lemma is true for games of diameter zero. Assume that it
holds for all finite games of diameter less than L, consider a game of
diameter L and notice that all subgames of such a game are of diameter less
than L.
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G, which follow the first move in the

Consider the different subgames Gl’ oGy

game. Let (al,...,ak) denote their outcomes according to (fS By the

b'8sh) -

inductive assumption each Gi has a SPE outcome ai in the game between s and
b’, where ai is related to a; as described in the lemma. Define the strategies
(f,g) as follows. The first move of the player who controls the root of the

game 1is the one that selects the subgame Gi such that ai is the best outcome

!

for this player from the set {al,.

..,aﬁ} and the continuation is such that in
each subgame Gi the strategies f and g coincide with the SPE strategies for s
and b’ which yield the outcome ai, i=1,...,k. Notice that (f,g) is a SPE in
the entire game between s and b’.

Now suppose that O(f b) is aj and 0(f,g) is ai and let us verify that

sb'gs

they are related as required by the lemma.

Assume first that the buyer moves at the root of the game. If aj is a

a, } must be prices above b and by

price and aj>b, then all outcomes in {al,.‘., "

the inductive hypothesis a&=am for all m and therefore the minimal price in

{ .,ak} is the same as the minimal price in {(a! a'). If aj is a price

al,.. lv-"xk

and b'Sajsb, then by the inductive hypothesis either aiSajSaj or ai=D. If
sSaj<b', then for all n, an=D or an2aj>s. By the inductive hypothesis aj is
also a price and ssajSaj<b' and, for all n, aézs or aé=D . Hence ai is a

price and s<a!<a'<a.<b’. If a.<s then for all n, a_=D or a_=za,. By the
i™7j J n nj

’ ’

inductive hypothesis, a!=a., and for all n a’'=D or a’'>a_. Hence, a)=a,.

j n n_ n 1]
Finally, if a.,=D, then all outcomes in {al,...,ak} are either prices above b,
or D, and hence by the inductive assumption all outcomes in {ai,...,aﬁ} are

also either prices above b or D implying that ai=D. Thus, the constructed SPE

has the required property.
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The remaining case is that the seller has the first move. The argument in this

is similar to the above case, and we leave it to the reader. QED
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Notes

1. We adopt throughout the convention that "increasing" means weakly

increasing.

2. Compare with the virtual implementation ideas of Abreu and Sen (1987) and

Matsushima (1988).
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