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"I wish that I could do something useful
Like planting a tree
on the bottom of the sea.

But I am just a guitar player."

Bob Dylan
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The qualitative study of optimal economic growth has attracted the
attention of economic theorists for some number of years. One major
focus of this research has been to find sufficient conditions on models
of economic growth for the convergence of growth paths to a steady state.
Two kinds of models have been studied: (1) descriptive growth models and
(2) optimal growth models. The important entities common to (1) and (2)
are (a) a vector of capital stocks, (b) a vector of prices of the capital
stocks, (c) a set of differential equations that govern the rate of change
of capital stocks and their prices in response to the current capital

stock and price level.

The major differences between descriptive models and optimal growth
models is that for the descriptive case conditions are imposed directly
on the capital-price differential equations in order to obtain qualitative
results, whereas for optimal growth models an optimizing process determines
the capital-price differential equations. In the optimum growth case, the
preferences of society and the production technology are studied carefully
in order to determine qualitative results. Assumptions are placed directly

on preferences and technology.



An optimal growth model generates a capital-price differential equation
by using the Hestenes-Pontriagin ([16], [27]) Maximal Principle to write down
necessary conditions for an optimal solution. This process generates a type
of differential equation system that we will call "a Modified Hamiltonian
Dynamical System.'" The adjective '"'modified" appears because it is a certain
type of perturbation peculiar to economics of the standard Hamiltonian system.

Since the standard Hamiltonian case will be a special case of our problem,
our results will be of independent interest to mathematicians working in the
field of Hamiltonian dynamical systems.

In order to discuss what is new in our approach, we need a definition.

A Modified Hamiltonian Dynamical System (call it an MHDS for short) is a

differential equation system of the form

. oH
@D 4y = egy - g (@)
5 J
. oH .
k. = aq (q,k) ] = 1,2,...,n
J J
Here H: R" X Ri -+ R, p £ R+ . In economics kj is stock of capital good j and

qj is the demand price of capital good j. The function H is called a Hamiltonian
and it is defined only on R" X Ri for economic problems. H turns out to be the
current value of national income evaluated at prices q. The number p is a
discount factor on future welfare arising from the structure of social preferences.
The first part of (1.1) states that capital gains plus yield must equal the common
rate of return for all capital goods. The second equation of (1.1) just boils
down to a ''budget restraint' in economic problems. If preferences and technology
are assumed to be concave and certain other economically plausible assumptions

are satisfied then optimal growth problems generate a family of solutions of (1.1)



having the following property:

(1.2) There exists a closed convex set K & Rz such that for kO £ K,

there exists 9, £ Rn, such that the solution to (1.1) with
initial conditions (qo,ko), ¢t(q0,k0),has the following

properties.
n
, . . e ]
(1) ¢t(q0,k0) is defined for all t > O, ¢t(qo,ko) R™ x K

(ii) H2(¢t(q0,k0)) > € > 0 for some E(ko) > 0. Here, HZ denotes the projection
on the k subspace.

(iii) l¢t(q0,k0)| f_M(kO) for some M(ko) > 0. Here, |.| denotes any norm in
R°D,

Property (1.2) is a plausible requirement for many dynamic economic problems
to be well posed. The reason follows. (i) requires that a solution exists for
all t (what is, of course, a necessary condition for the existence of an optimal
path) and that orbits starting in R" x K remain there i.e. that R" x K be
"positively invariant." If kT = Hz (¢T(q0,k0)) and qp = Hl (¢T(q0,ko)) then
¢t(qT,kT) obviously satisfies (i}, (ii) and (iii) if ¢t(q0,k0) does. Hence,
the set of k € R: that satisfies (i), (ii) and (iii) is clearly positively
invariant. If every capital good is indispensible in the production of at least
one good whose marginal utility goes to infinity as consumption goes to zero,
then (ii) is satisfied. (iii) holds if ome postulates the existence of a

maximum reproducible capital stock. (cf. McKenzie's [24] assumption III and

Scheinkman [34] proof of Lemma 5).

In the appendix, we show that in the one-sector model one can choose
n ~ ~
K= {k ¢ R+ / € <k < k} for any € > 0, small enough where k is the limit of

the path of pure accumulation (i.e. the maximum reproducible stock).



Our theorems on convergence will be proved for kO € K. In economic growth

models, a capital stock k., £ K is one such that either the economy is not

0

viable (for instance, k., = 0), or such that the economy would be better off

0

with a smaller initial capital stock (for instance, when kO > i in the omne
sector model). If free disposal is present and the economy is viable, then
one can assume kO £ K. 1If disposal is impossible, then there exists no optimal
path for kO £ K. When one introduces a positive, but finite, cost of disposal,
then with the use of negative demand prices, one has K = {k € R/k > €} for any
£ > 0, small enough in the one sector model.

The special interest on bounded paths is justified since by assuming concave
preference and technology, one can prove that bounded paths are optimal. If
uniqueness and property (1.2) holds, then for k € K optimal and bounded paths

coincide.

The problem we shall address in this paper may now be defined.

Problem 1: Find sufficient conditions on solutions ¢t of (1.1) satisfying
(1.2) such that ¢_~ (q,k), t » =, Also, find sufficient
conditions such that the steady state (q,k) is independent of
the initial condition (qo,ko).

The literature on Problem 1 has two main branches: (1) analysis of the local
behavior of (1.1) in a neighborhood of a steady state, and (2) analysis of global
behavior of solutions of (1.1).

The first branch of the literature is fairly complete. It studies the

linear approximation of (1.1) in a neighborhood of a rest point. Eigenvalues

have a well known symmetric structure that determines the local behavior. Since



we have nothing new to contribute to this branch of study, therefore, we cite
some representative references and move on. (Kurz [20], Samuelson [33],
Levhari and Leviatan [22]). To the global problem we now turn.

The literature on Problem 1 is very large yet there are no general results
on global stability. Representative literature on existing global stability
results for paths satisfying property (1.2) follows. The case n = 1 (the one
good optimal growth model) is well understood. See Burmeister and Dobell [6],
Cass [7], Koopmans [18], Kurz [19]. The case n = 2 has received a lot of study
since the pioneering work of Uzawa [35] in the two sector optimal growth litera-
ture. The two sector models form a subclass of systems of type (1.1) for n = 2.
Ryder and Heal [31] analyze a case of (1.1) for n = 2. They generate a variety
of examples of different qualitative behavior of property (1.2) paths. Burmeister
and Graham [37] present an analysis of a model where there is a set S containing
the steady state capital k such that for k £ S there is a unique q such that

¢t(q,k) + (q,k), t > ®». See [37] Theorem 2, page 149.

The case p = 0 is the famous Ramsey problem studied first by F. Ramsey
for the one good model then by Gale [12], McKenzie [24], McFadden [23], and
Brock [3] for the n goods model in discrete time and by Rockafellar [28] for
continuous time. These results state, roughly speaking: if H(q,k) is strictly
convex in q and strictly concave in k and p = 0, then all solution paths of
(1.1) satisfying property (1.2) converge to a unique steady state (q,k) as

t » ® independently of (qo,ko).

J. Scheinkman [34] has recently proven a result that shows that the
qualitative behavior for p = 0 is preserved for small changes in p near

p = 0.



Until very recently no general results on the convergence of solutions
of (1.1) satisfying (1.2) were available, In fact, little was known about
sufficient conditions for the uniqueness of steady states of (1.1). Recently
a paper of W. Brock's [4] gave a fairly general set of sufficient conditions
for uniqueness of the steady state. Thus, the uniqueness problem is fairly
well understood. There was nothing done in the Brock paper on convergence,
however.

In 1973, Cass and Shell [9], Rockafellar [30], and Brock and Scheinkman
[5], [38], working independently, came up with sets of sufficient conditions
on Problem 1. The Cass, Shell, Rockafellar (CSR) conditions are curvature
conditions on the Hamiltonian of (1.1). The conditions in [5] stem from the
stable manifold theory developed by Hirsh and Pugh [17], and are hard to
interpret from an economic viewpoint. In [38], we proved results on the
global stability of bounded trajectories of systems of type (l.1l) that were
stimulated by the basic paper of Hartman and Olech [15] on the global stability
of differential equations. We also developed some thoughts on '"dominant
diagonal" type of results. The sequel is a revision of [38]. We will do the
following in this paper.

First, in section 2, we will present a general method to obtain global
asymptotic stability results for Hamiltonian Systems. The results proved there
resembles a ''Lyapounov Method." It contains as a corollary some well known
theorems on global asymptotic stability (cf. [1], [13], [14]), and can be used

to derive the convergence of bounded solutions of differential equations which

are not globally asymptotically stable i.e. systems where the stable manifold
S - {x0|¢t(x0) + 0, t > ®} is not the whole space. In particular, the results

in [38] are now simple corollaries. The proof which is inspired on the elegant
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proof of one of the Hartman and Olech results that was obtained by A. Mas-

Collel [39] is much simpler than the one in [38].

Second, in section 3, we show how the results of [38] can be obtained
from the general method and also discuss their economic interpretations.
We will also derive certain results concerning the relation between the
"shadow'" prices and capital stocks. These theorems are useful when one
interprets the prices as equilibrium prices in a decentralized framework.

Third, in section 4, we will try to develop some thoughts on 'dominant
diagonal" type of results. The reason for this is that we believe that both
our "Q-Conditions" used in sections 2 and 3 and the CSR condition would be
very sensitive to the value of p. For p small they are very natural, but as
P increases more stringent conditions are placed on the eigenvalues of certain
matrices. As an illustration, we prove that if the Modified Hamiltonian
Dynamical System is upper triangular then convergence occurs independent of
p. This suggests that if "off-effects" are small, convergence should still
ccecur.

Finally, we shall close with a summary, conclusions and suggestions for

further research in section 5.
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Section 2

A GENERAL RESULT ON CONVERGENCE OF BOUNDED TRAJECTORIES

In this section, we shall present a general theorem that will generate
Hartman and Olech's basic result [15, p.157, Theorem 2.3], our results [38]
and many other results - all as simple corollaries. Furthermore, the general
theorem will be stated and proved in such a way as to highlight a general
Lyapounov method that is especially useful for the stability analysis of optimal

paths generated by optimal control problems arising in capital theory.

Theorem: Let f: Rm -+ Rm be C2. Assume there is x such that f(E) =0
(W.L.0.G. put X = 0) such that there is V: Rm + R satlsfying: (1) Every rest
point x of the differential equation system

(2.1) x = f(x)
1/

is L.A.S.  on bounded trajectories in the sense that the hypothesis there is

Eo > 0 such that X € NE (x), there exists a bound B such that |¢t(xo)l <B
o

for all t > O implies the conclusion: ¢t(xo) +~x, t >, I.E. every rest point

has a neighborhood such that all bounded trajectories starting in this neighbor-
2/

hood converge to the rest point. We also assume

(2) (a) For all x # 0, x Y2 V(0) [J(D)x] < 0

(b) For all x # 0, V V(0) [ %X

J(AX)]X=O x =0, VV() J(O)x =0
(¢) TFor all x # 0, V V(x) f(x) = 0 implies x V2 V(x) f(x) =0
(d) For all x # 0, x V2 V(x) f(x) = 0 implies V V(x) J(x) x < 0

Then
(1) V) f(x) <0 for all x # 0

(2) All trajectories that remain bounded for t > 0 converge to a rest point.

1

L.A.S. is an abbreviation for '"locally asymptotically stable."

2

The notation V V denotes the gradient of V, V2 V is the matrix of second order
partial derivatives of V, and J(x) denotes the Jacobian matrix of V evaluated

at x. If x and y are vectors, we write xy for the dot product of x,y i.e. Xy
n

=z xyy- If A is a matrix, we write xAy for the bilinear form I I Xy aij yj
i=1 1]

We will write xT, AT for the transpose of the vector x and the matrix A when

confusion is prevented thereby.



Proof: Let x # 0 and put

(2.2) g(A) = VVQOx) £0Ox)

We shall show that g(l) < 0 in order to obtain (1). We do this by showing that
g(0) =0, g'(0) =0, g"(0) <0, g(X) = 0 implies g'(X) < 0 for X > 0. (At this
point, the reader will do well to draw a graph of g(}A) in order to convince

himself that the above statements imply g(l) < 0). Calculating we get

(2.3) g"(M) = x V2 VOx) £Ox) + ¥ VOx) JOx)x
(2.4) g"(\) = x| gi’ V2 V] £0x) + x V2 VOx) [TOx)x] + x V2 VOx) [TOx)x]

+VVOx) | %X’ JOX) Ix

Now A = 0 implies f(Ax) = 0 so g(0) = 0. Also g'(0) = 0 from £(0) = O and

(2b). Furthermore, £(0) = 0, (2b) imply

(2.5) g"(0) = 2 x V2 V(0) [J3(0)x]

But this is negative by (2a). By continuity of g" in A, it must be true that
there is €, 0 such that g(}) < 0 for Ae (O,EO]. Suppose now that there is

A > 0 such that g(A) = 0. Then there must be a smallest X > 0 such that g(i) = 0.
Also, g'(;) > 0. Let us calculate g'(i), show that g'(;) < 0, and get an

immediate contradiction. From (2.3)

(2.6) g") = x V2 VOx) £0x) + ¥ VOx) JOx)x

Now g(A) = 0 implies V V(Xx) f(ix) = 0. But this, in turn, implies that A x
) - - - - _

Vo y(x) £Ox) =0 by (2¢). Finally, (2d) implies that V V(Ax) J(Ax) (Ax) < 0.

Thus, g'(i) < 0 -~ contradiction to g'(i)

v

0. Thus,

(2.7) VV(x) f(x) <0 for all x # 0.
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It is easy to see that all trajectories that remain bounded for t > O

converge to a rest point. For let {¢t(xo)}t>0 be such a trajectory where

X is the initial condition. Since V V(¢t(xo)) f(¢t(xo)) < 0, therefore,

dv . .
it < 0. Thus, V(¢t(xo)) decreases in t > 0. We claim that {¢t(xo)}

t20
clusters at the rest point x = 0. 1If it does not cluster at the rest point

X = 0, then there is Eo > 0 such that

(2.8) v

ri v V(¢t(xo)) f(¢t(xo)) < -Est

v
o

This follows from boundedness of {¢t(xo)} (2.7) and continuity. Therefore,

£>0 °

V becomes unbounded as t > ©, Contradiction to boundedness of {¢t(xo)}t>

3/

and continuity of V. Since 0 is a locally asymptotically stable rest point

0

for bounded trajectories, this ends the proof of the theorem.

Note that to get global asymptotic stability results for bounded trajectories
all one needs to do is find a V that is monotone on bounded trajectories and
assume that rest points are locally asymptotically stable for bounded trajectories.
This result is important for global asymptotic stability analysis of optimal paths
generated by control problems arising in Capital Theory. Also, Hartman-Olech [15]
type results emerge as simple corollaries. Let us demonstrate the power of the
theorem by extracting some corollaries.

Corollary 2.1 Let f: R" » R". Consider the ordinary differential equations

x = f(x), £(0) =0
If J(x) + JT(x) is negative definite for each x, then 0 is globally asymptotically
stable.

Proof: Put V = xT x. Then V V(x) = 2 x Vz V() = 21 where I is the n x n

3The reader may wonder if our theorem implies that x = 0 is the only rest point.
It does. This is made clear by the assumptions 2a-2d. For 2a-2d imply that the

trajectory derivative of V is negative for x # 0, and this implies that the rest
point is unique.
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identity matrix. Assumption (2a) becomes

x J(0)x < 0 for all x # 0.
But this follows because

2 x JOx = x (JO) + I (0) x < 0.
Assumption (2b) trivially holds since V V(x) = 2x. Assumption (2c) amounts
to 2x £(x) = 0 implies x(2I) f(x) = 0 which obviously holds. (2d) obviously
holds because 2x J(x)x < 0 for all x # 0. It is obvious that rest points
are L.A.S. since J(0) + JT(O) is a negative definite matrix. Thus, all
bounded trajectories converge to 0, as t =+ ®, It is easy to use V = xTx
decreasing in t in order to show that all trajectories are bounded. This
ends the proof.

The following corollary is a stronger result than Hartman and Olech [15]

in one way and weaker in another. We will explain the difference in more

detail below.

Corollary 2.2 (A. Mas Collel [39]) Consider x = f(x), f(0) = 0. Assume

that x [J(0) + JT(O)] x <0 for all x # 0 and
(2.9) x f(x) = 0 implies x [J(x) + JT(x)] x <0 for all x # 0.

Then 0 is globally asymptotically stable.

T
X x. We show that

Proof: Let V =
(2.10) §¥-= 2 xT f(x) <0 forx# 0

Assumptions 2a,b,c,d of the theorem are trivially verified. Therefore, %%‘< o,

and the rest of the proof proceeds as in Corollary 2.1.
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This type of result is reported in Hartman and Olech [15] and in Hartman's
book [14]. 1In [14] and [15]}, O is assumed to be the only rest point and it is
assumed to be locally asymptotically stable. On the one hand, Mas Collel puts
the stronger assumption: x [J(0) + JT(O)] x <0 for x # 0 on the rest point.
It is well known that negative real parts of the eigenvalues of J(0) does not
imply negative definiteness of J(0) + JT(O), but negative definiteness of J(0) +
JT(O) does imply negative real parts for J(0).

But on the other hand, Hartman and Olech [15] make the assumption: for all
x#0

wT f(x) = 0 implies wT [J(x) + JT(x)] w £ 0 for all vectors w.

Note that Mas Collel only assumes xT f(x) = 0 implies xT [J(x) + JT(x)] x < 0.
So he places the restriction on a much smaller set of w, but he requires the
strong inequality. Furthermore, the proof of the Mas Collel result is much
simpler than that of Hartman and Olech.é/

It is possible to obtain general results of Hartman and Olech type from

the theorem. For example,

Corollary 2.3 Let G be a positive definite symmetric matrix, and let O be

the unique rest point of % = f(x).
Assume that
T . . T T
x (G+ G) f(x) = 0 implies x~ [(G + G ) J(x)] x < 0 for all x # O
Then x = 0 is globally asymptotically stable for bounded trajectories.

Proof: Let V(x) = xT Gx. Then

4At this point, it is interesting to compare the "Hartman and Olech - Mas Collel"
type of result with the more standard result of corollary 2.1. This is more easily
seen if we assume that f(x) = Dg(x) for some g: R? -+ R™., 1In this case J(x) is
symmetric (being the second derivative of g) and hence corollary 2.1 becomes:

If J(x) is negative definite, then %X = f(x) is G.A.S. This condition is equivalent
to g being a concave function (except for borderline cases). On the other hand,
Corollary 2.2 will read x - f(x) = 0 => x J(x)x < 0 for all x # 0. A sufficient
condition for this is that g be quasi-concave.
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VV (x) = x' [G+ 6]

Also,

2y (x) =G+t

The rest of the proof is now routine.

Corollary 2.3 is closely related to Hartman and Olech's [15, Theorem 2.3,
p.157] and Hartman's book [1l4, Theorem 1.4, p.549]. Hartman and Olech also
treat the case of G depending on x. We have not been able to obtain their
result for non constant G as a special case of our theorem. Thus, their
different methods of proof yield theorems that our methods presented in this
section are unable to obtain. This leads us to believe that the original
method of proof developed in [38] is needed to develop Hartman and Olech type
of generalizations for non constant G for Modified Hamiltonian Dynamical Systems.
In fact, we obtain such results in [39]. We turn now to the study of Modified

Hamiltonian Dynamical Systems.
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Section 3

CONVERGENCE OF BOUNDED TRAJECTORIES OF MODIFIED HAMILTONIAN SYSTEMS

In this section, we apply the results obtained in Section 2 to systems of
the form (1.1). We will assume that (1.1) has a singularity (E,E) and rewrite
it as

(3.1) él =p (zl + q) - Hz(z) = Fl(z)

i

z, = Hl(z) Fz(z)
In [38] Brock and Scheinkman presented a ''matural" generalization of the
Hartman-Olech type of result to differential equation systems of the form (3.1).

Our sufficient condition for global asymptotic stability of bounded trajectories

of (3.1) was for all z # 0, w{

2n

FZ(Z) + wg Fl(z) = 0 implies wT Q(z)w > 0

for all 0 # w = (wl,wz) £ R The proof in [38] was long and complicated.
The theorem proved in Section 2 generates a much better result than that in

[38] as a simple corollary.

Theorem 3.1: Let

H,.(2) p/2 1
(3.2) Qz) = | 1

p/2 1 - HZZ(Z)
where T is the n x n identity matrix. Assume

(a) 0 = F(0) is the unique rest point of Z = F(z)

(b) there is € > 0 such that le] < g

¢)t(20) >0, t >

0 and ¢t(zo) bounded imply

(c) for all x # O

(3.3) z{ F2(z) + zg Fl(z) = 0 implies z Q(z)z > 0
(d) for all w # 0 wQ(0)w > O

then all trajectories that are bounded for t 0 converge to 0 as t - «,

nv
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0 I
Proof: Let V = zT Az where A = - . Here I is the n x n identity

1 O
matrix. Note zT Az = - 22§ 22. Assumption (1) of Theorem 2.1 is assumed in
(3.1)(b). Since V2 V(0) = 24 and (wA) (J(Q)w) = - w Q(O)w, therefore,

T T
assumption 2(a) of Theorem 2.1 follows from (3.1)(d). Also V V(z) = z (A + A7)
so 2(b) of Theorem 2.1 follows trivially. Now, 2(¢) of Theorem 2.1 amounts to
VY V(z) F(z) =

T T . . 2 _ T T -0
z0 (A+ A°) F(z) = 0 implies z V™ V(z) F(z) = z [(A+A")] F(z) =

which is trivially true. Furthermore, assumption 2(d) of Theorem 2.1 amounts to

T
(3.4) 2T A+ AY) F(z) = 0 implies z' [(A+ A) J(2)] z <0
But (3.4) is identical to (3.3) as an easy calculation will immediately show.

Thus, V < O except at the rest point 0. The rest of the proof is routine by now.

Q.E.D.

The above result can be used for the study of optimal growth paths. Under
fairly general assumptions an optimal growth problem generates an M.H.D.S. as
(1.1) [ecf. Kurz [20], Brock [4]]. 1If property (1.2) holds for a K< Ri then
for any ko € K, there exists q, such that the solution of (1.1) with initial
conditions (ko,qo) is bounded. If the hypothesis of Theorem (3.1) holds, such
solution converges to the Optimal Steady State. Furthermore, if utility and
production functions are assumed concave, bounded solutions are optimal. This
implies that an optimal solution that converges exists for any ko € K. Also,
if strict concavity holds, optimal solutions are unique.

The reader should note that in the special case where p = 0, the assumptions

of Theorem (3.1) always hold for a M.H.D.S. derived from a problem of optimal

growth in a multisector economy, with concave production sets and concave utility



~16_

function. 1In fact, in this case the concavo~-convexity of the Hamiltonian imply
that Q is positive definite. Furthermore, the local stability of bounded
trajectories (saddle-point property) is also obtained [cf. Samuelson [33]].1/
From the proof of the result, one can also notice that if the conditions
hold for a convex, positively invariant set Z, then for any z € Z the conclusion
follows. Hence, this result can be used to prove global asymptotic stability
of optimum growth paths with initial conditions in a certain subset of all
positive capital stocks.

The proof of Theorem 2 also yields that z = (q - q) (k - k) is mono-

122
tonically increasing. Under stronger assumptions, one can also show that along
any bounded path q k = Fl(z) F2(z) is negative. This establishes that the

change in the capital stock (i.e. the net demand for new capital) has a negative

inner product with the price change. This is proven in

Corollary 3.1 Let z, be such that ¢t(zo) is bounded for t > 0. Assume that

for any w # 0, for any z.
(3.5) wl FZ(Z) + W, Fl(z) = 0 implies w Q(z)w > 0 and that conditions
(a) and (b) of Theorem (3.1) hold. Then Fl(zo) FZ(ZO) < 0.

Proof: Let z(t) = ¢t(zo). Suppose there is a time t, > 0 such that Fl(z(to))
Fz(z(t )) = 0. Then

0

d (F1F2)=FQF>O at t_ bt (3.5)

dt

t . For if not then let t. be the first

We claim that F, F, > 0 for t 1

172

v

o)
. d
t = . —
ime larger than t0 such that Fl F2 0 Now the slope dc (Fl F2) must be

non-positive at t Butrthis is a contradiction to (3.5). Hence, F1 F2 >0

1°

1[n the spirit of footnote 4 of Section 2, we can compare the result of Theorem
3.1 with the weaker result that can be obtained if one assumes Q(x) positive
definite (cf. [38] Section 2). For the case p = 0, Q(x) is positive definite
iff the Hamiltonian H is concave in k and convex in q. Our assumption 3.3 then
is related to quasi-concavity of H in k and quasi-convexity of H in q ( and not
concavo-convexity). This is important in the study of certain models where one
does not obtain the concavo-convexity of the Hamiltonian.
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for t > ty: This cannot be. For Q is positive definite at 0 by (3.5). Thus,
by continuity of Q in t, there is a neighborhood N of O sgch that there is tO >0
such that

F(z) Q(z) F(2) > €, (F (2)) (F(2))
for z € N. Now

idl? (F, F)) = F' Q(2)F > €, IFT(Z)]2 > € !Fl(z) F,(2)|

for z £ N. Since by Theorem (3.1), ¢t(zo) -~ 0, t > o, therefore, there is
T(ZO) such that t > T(zo) implies that ¢t(20) = z(t) € N. Thus, Fl F2 becomes

d
. - S d N
unbounded because Fl F2 is positive for t 2 t and at (Fl FZ) € ,Fl le
for t large. This is a contradiction to continuity of F in t and boundedness
of z(t). Thus, the corollary follows. Q.E.D

A further result on the relation between ¢ and k can be obtained when the

following is assumed

Assumption 3.1 - There exists Cl function g: K ~» R™ such that k(t) with

k(0) = ko is an optimal path iff k(t) = HZ( t(g(ko),ko)) where ¢t(g(ko),ko)

is a solution of (1.1) satisfying assumption 1.2.
2/

Corollary 3.2 If Q is positive definite, Jg(k)_ is quasi-negative definite

for any k € K.

Proof: Let z, = k - E. Then zy = q - a = g(k) - a = h(zz) - a. Then Jg(k) =

Jh(ZZ) for z, = k - k. Fix z, and write J(t) for the Jacobian matrix of the

system (1.1) evaluated at ¢t(h(22),22). By Theorem (3.1), ¢t(h(22),22) -+ 0 as
t »®, For any U € Rn, consider the system y = J(t)y, y(0) = u = (Jh Uy W)

3/
where Jp = Jh(zz). Since u = (Jh Uys uz), we have y(t) ~ 0 as t > o,

ZJg denotes the Jacobian matrix of g.

3This follows from the fact that since ¢t(h(22),22) > 0,J(t) »J(0) and from a

theorem on stability of differential equations (cf. [10],p.316). A detailed
proof can be found in {[39].
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However, 5;‘ y(8) y,(8) = y(t) Q (¢, (h(z,),2,) y(t) > € lyl(t) yz(t)| for

some £ > 0, since ¢t(h(22),22) is bounded and Q(z) is positive definite. Hence,

if yl(t) y2(t) >0 for some t, lim Iy(t), = o, But this is a contradiction to
>

y(t) - 0 as t > ». Hence, yl(t) yz(t) < 0 for all t > 0. In particular,

Hi

Y1<0) y2(0) U Jg u < 0,
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Section 4
SOME PRELIMINARY RESULTS OF A "DOMINANT DIAGONAL" TYPE

In this section, we develop some thoughts on a "dominant diagonal" type
of method for Hamiltonian systems. Lazer [21] establishes some results in
this direction. The difficulty in applying such results, however, for Modified
Hamiltonian systems that arise from economic problems is that the assumption of
dominant diagonal is, in general, not fulfilled. Consider for instance the

one sector model of growth analysed by Cass [7 ].

e}

-pot

max J e u(c ) dt

0
s.t.
k + c = f(k)

k ive
o 9iven
The Hamiltonian system becomes

q=pq-H =pq-af's k=H = £k - glq)

where g = u'(c) and g = (u')_l
Hence,
-f'(k) +p -gf”
J(t) =
-g'’ £'(k)

Note that at the steady state k*, we have -f'{k*}) + p = 0 and hence the first
diagonal element is zero.

This shows us that a simple "dominant diagonal" assumption is not natural.
In economic parlance the "dominant diagonal" assumption is usually translated as

"the own-effects dominate the off-effects." This suggests that a useful definition
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of dominant diagonal for our case would relate the sum of the absolute values of
the diagonal term with the "own" off diagonal term to the sum of all other off

diagonal terms e.qg.: ]Hqiki] + [Hqiqi] i_jii IHqiij + jii lHqiqj]. We have

not yet been able to prove such a theorem. However, a weaker theorem can be
stated. We start with some preliminary lemmas. As before, we will be considering
a Modified Hamiltonian system like (1.1) of Section 1, or translated to the origin

like (3.1) of Section 3. We will use assumption 1.2 and some of the assumptions

made in Section 3 that we now summarize.

Assumption 4.1

(a) 0 is the unique rest point of z = F(z)

(b)  there exists €/ > O such that if Izol < €, and ¢t(zo) is bounded
for t > 0, then ¢t(zo) >0as t >

(c) there exists C1 function g: K > R" such that k(t) with k(0) = k

0]

is an optimal path iff kt = H2(¢t(g(k0), ko)) where ¢t(g(k0), ko)

is a solution of (1.1) satisfying assumption 1.2

Note that (a) and (b) were wused in the proof of Theorem 3.1. 4.1 (c) was

used to prove corollary 3.2. We will also take IV' =  max V?
- i
i

Assumption 4.2 For {q,k) + R2n the following inequalities hold

i - .
(a) | He g T+ He T—-] > .Z' |- Hk,q + p| + .Z' lHk,k,I for q, #0
i idg, j#i i*] j# i)
and
ORI > 1| B, | for X
H — +H > ¥ |H | + L H for k, # 0
49 x Gk g4 949 [FTEEFLY .
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Lemma 4.1 Suppose assumptions (1.2) and (4.1) hold and that assumption 4.2

holds for (q,k) in the set B = {(q,k) < R2n[q = g(k), k 4 K}, then

d .. S
r | (q,k) | # 0 for any (4,k) # O
Proof: Suppose there exists (q,k) such that gf I (q,ﬁ)l = 0. In particular
there exists q {or ki) such that ] (é,ﬁ) | = ]qilz (or Iﬁilz). If
. - .12
l (qu){ = ‘qil then,
14 . . . . .
J 177
.2 - .
+ L Hk,k k )l = I(-Hk q + O)qi + Z (- + O)qiqj
J 173 171 J#i i3
k, .2 .2
FHoe A4 DoH o k] 2 R e g
ii . j#i i™j i'i
93
1;i 2
o T oal - Toen el dg g
i1 qy it i%j
; 1;i 2
BTSN - tetH o, =&
j#i i i°1 11 q;
- |- +pl 4 - ¢ | | 4 (since [q.]° > Id-’z
oy i S T
. 2 2
and Iqll > |k_]| )‘

. .2, , .o . , .
Since q; 1s maximum and (q,k) # 0, therefore qi > 0, and thus we have by inequality
(a) of assumption 4.2 that the last expression is positive, which is a contradiction.

The case where léilz > max (ld,lz, li,fz) follows similarly using inequality 4.1(b).
i ] J
Q.E.D.

We can now prove our
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Theorem 4.1 Under the assumptions of the preceeding lemma, if ¢t(q,k) is

bounded then ¢t(q,k) > (g*, k*) as t > ®,

Proof: Write z = (@ - g%, k - k*) and consider the variational system
zZ = J(t) z where J(t) = J(¢t(zo)), J the Jaccbian of F, with initial
condition,
> = =B - (g*, k* .
(4.1) z, J(zo)z0 for z, <+ B=B (g*, k*) of (3.1)

We write wt(éo) for the flow associated with (4.1).

' d . .
i i — 0
By the preceeding lemma since ¢t(zo) 4 B for all t, e |wt(zo)| # 0 since
. . . . d . .
0 is the unique singularity of (3.1). Suppose EE"wO(ZO)I > 0. Then either
there exists € > 0 such that %E-|wt(éo)| > e for all t £ [0,%), or there

exists sequence t

X such that g;—|wtk(éo)| -+ 0 as e -+ o,  Suppose the last

statement is true. Then since ¢t(zo) is bounded, a subsequence k2 exists such that

. d . s
¢t (zo) *> z* £ B. By continuity, Ez-lwo(z*)[ = 0 which is a contradiction.
)
d . . . . .
If a;—[wt(zo)l > € then lwt(zo)| becomes unbounded which is also a contradiction
. . . . d .
since ¢t(zo) is bounded and F is continuous. Hence, a;-[wo(zo)l < 0 and hence
d .
az-lwt(zo)| < 0 for all t 4 [0,»). BAlso, suppose ¢t(zo) # 0. By assumption 4.1(b)
we must have J¢t(zo)] > § for some 6 > 0, for all t. Since O is the only

singularity of (**), we must have ’wt(20)| >n for some N > 0. Since %E-|wt(éo)| < 0,

. . d .
this implies EE-|wt(zo)l > 0 as t > @®, As before, this implies that there exists

d
z* # 0 z* 4 B such that re |w0(z*)| 0, which is a contradiction.

0.E.D.
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Let us now turn to a result for "upper triangular" M.H.D.S.'s.

A result by Markus and Yamabe [26, pp.314-316] on the global asymptotic

stability of the solution x = 0 of the system x = f(x) where x. = f,(x,,X,,  ,...,%X)
i i 17 i+l n
i=1,2,...,n, and fii < 0 for all x generalizes naturally to M.H.D.S.'s of the
form
(4.2) 9; - pqi = H i(qi'qi+l"' Ay kl'ki+l" 'kn)
ki = H . (qi,qi+l,.. ,qn, kl,ki+l,...,kn), i=1,2,...,n

Before we state a theorem and prove it, let us intuitively discuss the Markus

and Yamabe result. They use x = f (x ), £ (0) =0, f (x ) < O to prove that
n n n n nn n
> > 3 v = 3
Xn(t) 0, t @, Then they examine X _1 fn-l(xn—l'xn)' First, they use
< - . . - 0. a ;
fn—l,n—l(xn-l'xn) 0 to get fn_l(xn_l,o) 0 implies X _1 0 They proceed in
this manner by induction to show that f(x) = O implies X, = 0, 1i=1,2,...,n.

Now, Xn(t) > 0, t > @ independent of initial conditions. Look at

(4.3) X 1= fn-l(xn—l’xn)

the right hand side of this is converging to fn_l(xn_l,o) as t > . Thus it seems
: ¢ = is G.A.S. (f < f 0,0) = 0!
intuitive that since Y .1 fn-l(yn—l’O) is G.A.S. ( n-1,n-1 0, n—l( ,0) )

therefore, (4.3) should be G.A.S. This is what is proved in [26]. Markus and
Yamabe then proceed by induction to complete the proof. We will follow a
somewhat similar procedure here.

Look at the usual one sector growth model which generates an MHDS of the
form

(4.4) q-pg= - H (q,k)

k - 1 {q,k)
S
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where q + R, k 4 R+. Our Q condition is much too strong to impose on this model.
The usual phase diagram analysis leads to very general sufficient conditions that
are essentially independent of p for the convergence of a bounded trajectory of
(4.4) to a unique steady state. Rather than restate these well known conditions,
let us just assume that the one sector model is G.A.S. on bounded trajectories

at the outset. For the one sector model a natural assumption to make is that

k = Hq(g(k),k) is G.A.S. where k is the rest point and it is assumed to be

unique. See Cass [7] for a complete discussion of the one sector model.
Theorem Suppose that (4.4) may be written in the form
(4.5) g4y -pa; = - Hki(qi'qi+l""'qn; Kirkipqrenarky)
. ..=H S e yeney H PR O P e
(4.6) kl a; (ql q;L+l qn k1 k1+l kn)
(4.7) q; = g(ki’ki+1""'kn) along B and letting
q _ ko
J (qj,-.-,qn), 3 (kj,..-,kn)
Write
4.8 }'(.:H 7. H 7 = kr 7. ’
( ) i qi (ql 1+lq kl 1+1k) fl( i k1+1 kn)
Assume that
k = f (k)
n n n
is G.A.S. with the unique rest point kn;
kn-l = fn—l(kn—l'kn)
is G.A.S. with the unique rest point kn-l’ and thus assume for i = 2,3,...,n+l
Kiep = By Geygrkyreeaik))

is G.A.S. with unigque rest point Ei—l'

Then every bounded trajectory of (4.5) and (4.6) converges to a unique rest point
(q,k) as t > o,

Proof: We proceed by induction. Look at (4.5} and (4.6) for i = n. It
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becomes
(4.9) én -Pa = - Hk (qn’kn)
n
n

k = Hqu (qu,kn)

Since (qn'kn) is bounded (qn,kn) > (qn'kn)' t - © by hypothesis. Look at n-1.

Equations (4.5) and (4.6) become

3 = - ; k
(4.10)  q , =pq _; -~ H (o .95 Kk o o
n-1
) = ;k ,k
kn-l an_l(qn—l'qn n-1 n)
= k
(4.11) 91 g(kn_l, n)
Now the set {(qn_l(t),kn_l(t))}tzo is bounded on a bounded trajectory.
Suppose that kn_l(t) does not converge to a steady state i.e. if we write
" = ( k =
(4.12) kn—l an—l gn—l(kn—l' n)' gn(kn)'kn—l'kn) fn—l(kn—l'kn)
then
(4.13) f (k k) A0, £ >
n-1 n-1" n
Let k be a cluster point of the bounded set {k ()} . Since k > k ,
n-1 n-1 t>0 n n

t » ©, therefore, by definition of a cluster point there is a sequence {tj}
> % S o> o
such that kn_l(tj) kn—l' 3 .

Thus

~

fn-l(kn—l(tj)'kn(tj)) > fn—l(kn—l'kn)

But by hypothesis fn_l(k,in) is zero only at k = in and is positive for

-1’
k < k , negative for k > k . Since the family of functions f (.,k (£)) -~
n-1 n-1 n-1 n
f (.,k ), t >, it follows that k (t) cannot cluster at a point k
n-1 n n-1 < n-1

where £ (K K) #0. Thus, k . (t) ~ k
n n-1 n

' along the bounded manifold.
-1 n-1"'n

-1

Proceed in this manner for kn k etc. This ends the ovroof.

-2'""n-3"'
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It is worthwhile to make a few comments about what type of model will
generate M.H.D.S.'s that are covered by this theorem.

Consider the following growth model

[e9)
. -pt
(4.14) maximize /. e PT u(c ye..,c )dt
0] 1 n
. = J k. k), 1=1,2,...,n
s-teocp kg o= Bk, Kt ’
k(0) = ko
n
where u is separable i.e. u = )} u.(ci). (The fi here are not the same
i=1
as the f., in equation (4.13)). The usual necessary conditions for an optimuﬁ‘
i

for (4.14) give an MHDS of the form (4.5), (4.6) and (4.7). This model is

not meant to be realistic - it is only meant to be illustrative. We are

presently working on applications and extensions of the "dominant diagonal"®

result proved above and of this result for "triangular M.H.D.S.'s". These

results may be important leads to developing a valuable set of sufficient
conditions for G.A.S. that are not so dependent on the size of p as are the

Q conditions. After all the one sector model is G.A.S. on bounded trajectories
with hardly any restriction on the size of p. Therefore, there should be

a class of useful sufficient conditions for G.A.S. for n-sector models that do not

depend upon the size of p. The results presented here are a beginning.
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Section 5

SUMMARY

We have been quite successful at obtaining a fairly general set of
sufficient conditions for G.A.S. of bounded trajectories of M.H.D.S.'s of
the type arising in optimal accumulation problems. It is reasonable to

NP . . 0
exhibit diminishing returns to capital and labor, and satisfy 5%— = 4+ ©
i
when c, = 0 for all consumption goods are almost always bounded for each

initial stock vector ko.

In section 3, we developed a set of sufficient conditions that were more
likely to hold when p is small. Section 4 gave some preliminary results
that are not so dependent upon small p's in order to be useful.

We did not develop applications in any detail in this paper. As we
will show in a future paper, our sufficient conditions are applicable to
a wide range of economic problems including optimal growth, adjustment cost
models in the theory of the firm, optimal harvesting of several interacting
animal species, and many more. In fact, just about any optimal control
problem that arises in economics will generate a differential equation system
of a type such that our results will be useful in its qualitative study.

It seems to us that in this paper we have come part way at least to
doing for optimal accumulation problems with many goods what Arrow, Block
and Hurwicz [1], and Arrow and Hurwicz [2] and the literature that followed
did for the global qualitative study of the Walrasian tatonnement. Since
optimal accumulation problems are the heart of intertemporal economics, we

believe that in time the CSR results and the results presented here will

become useful tools for the study of dynamic economics.
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APPENDIX

In this appendix, we set up the one sector growth model to exemplify our
assumptions. More details can be found in Cass [7] or Koopmans [18].

Here one studies the following problem

o]

Max [ e Pt u(e(t)) at
0]
subject to
k(t) = £(k(t)) - c(t)
k(0) = ko

The Hamiltonian system becomes

q=pq-H =pg - qf’

. (A.1)
k =H = f(k) -
g (k) g(q)
-1
where g = u'(c), g = (u')
~ -
Hence, J(t) = —E k) +p —qf”
_gl fl(k)
and o(t) = af” p/2
p/2 ~-g'

If one assumes the so called Inada "conditions" i.e.

I(a), 1lim f'(k) =, 1lim f£f'(k) < 0, f"(k) <0
k>0 koo
and

I(b), wu'(c) >0, u"(c) <0, 1lim u'(c) =
c>0



