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Abstract: In this paper, we develop a framework in which players’ knowledge
and their information partitions are constructed based on the players’
perception and their logical deduction. A player knows something if it is
observed or logically deduced from the observed facts. A player's
information partition is derived from the player’s indistinguishability
defined as follows: Two states of the world are indistinguishable for a
player if there is no difference in his observation at each of those two
states. It is shown that the players’ knowledge so defined is equivalent to
their knowledge defined in the manner given in Aumann (1976) using the
information partitions constructed in our framework. As an application, we
consider the characterization of information partitions. We obtain a
necessary and sufficient condition for one player’s information partition to
be a refinement of the other’s. We also discuss the properties of

information partitions caused by a player’s particular observing abilities.



1. Introduction
1.1. Motivation

In game theory, information partitions (partitions of the state space)
are widely used to express players’ knowledge. A set of information
partitions indicates each player’s knowledge of an event (a subset of the
state space) as well as each player’s knowledge of mutual knowledge of an
event. Based on this knowledge, denoted by the given information
partitions, the game theorist can analyze a game. For example, the notion
of common knowledge2 was firstly formulated by Aumann (1976) using the
players’ information partitions. And several important properties of the
players’ believes and/or actions are derived by that formulation (e.g.,
Aumann (1976), Kobayashi (1980) and Milgrom and Stokey (1982)).

But, how are the players’ information partitions determined ? The
information partitions are usually assumed to exist by the game theorist
without any reasons why they are so determined. The basic structure which
explains the reason why the players have those information partitions is
completely hidden behind the mathematical formulation.

In the real world, people get information through their perceptions and
1ogical deduction. People know something from watching a fact, hearing
someone’'s announcement and applying logical deduction to what we watch and
hear. The players’ information partitions should be determined to denote
what the players know from such activity. In other words, the information

partitions are the accumulation of the information which the players finally

An event is informally said to be common knowledge between players 1
and 2 if 1 knows it, 2 knows it, 1 knows that 2 knows it, 2 knows that 1
knows it, 1 knows that 2 knows that 1 knows it, 2 knows that 1 knows that 2
knows it, and so on.



obtained from their mental activity.

Indeed, when we are interested in the players’ knowledge as a given
parameter of a game, this accumulation is a benefit to us. However, if we
must investigate in detail how the players know something, and how the
players come to know that another player knows something, then this
accumulation property of information partitions represents an obstacle to
our investigation.

For example, let us consider the situation in which a player
communicates a part of his private information to another player. In such
case, 1f the first player has incentive to communicate it, he will make
effort to show that he really knows it to let the second player believe him.
His effort will succeed if he can show objective evidence and what he knows
is logically deduced from it. But, if he cannot show enough evidence, it
becomes hard for him to communicate it, and futhermore, it is much more
difficult for him to convince the second player to really believe it. To
consider rigidly this situation, we will need the foundational structure
which specifies how a player knows, how a player knows what another player
knows, etc.

In this paper, we develop a basic framework which explicitly describes
the players’ perception and their logical deduction. In the framework, we
will formulate naively players’ knowledge and their information partitions.
To show the consistency of our framework, we prove that the players’
knowledge which we define is equivalent to their knowledge induced from
their information partitions constructed in our framework. As the first
step of the application of the framework, we will characterize the

information partitions in some special situations of the players’



perceptions.

1.2. Review of the framework

We consider two players in our framework. In this paper, we use the
term observation to denote the players’ perception.

We describe the objective statements in the world by propositions. We
call them objective propositions. An objective statement stands for the
statement which describes the world but not any players’ cognizance. For
example, "The temperature of New York City on August 1, 1989 is 100 degrees
Fahrenheit." is an objective statement. (Of course it may or may not be
true.) We have a set of objective propositions in our framework.

Each player can observe the truth values of some set of objective
propositions. Precisely, each player knows that some objective propositions
are true and some are false by directly observing the propositions.

We consider that the difference in players’ knowledge arises from their
observing abilities. To specify the players’ observing abilities, we

introduce a hypothetical concept called an observation device. An

observation device (abbreviated as 0.D.) is an imaginative machine through
which the player who owns it observes the world. It is assumed that each
player can observe the other player’s 0.D.

We assume that there are various types of 0.D’'s. What each player can
observe is determined by the type of his 0.D. For each type of 0.D., there
exist

i) a set of objective propositions which the player can observe, and

ii) a set of types of the other player’s 0.D. which are considered as



possible.
Given the type of 0.D. of each player, a player’s knowledge is defined
as follows:

i) Player 1 knows that an objective proposition p is true if it is
observed to be true or logically deduced (by modus ponens) from the
true objective propositions which he observes.

ii) Player 1 knows that player 2 knows that p is true if, for any type of
2's 0.D. which 1 considers as possible, p is observed to be true or
logically deduced from the objective propositions which are observed by
the type and which 1 knows to be true.

(We will also define the cases in which 1 knows that 2 knows that 1 knows

that p is true, 1 knows that 2 knows that 1 knows that 2 knows that p is
true, ... But, to avoid complexity, we omit the verbal description of the
definitions of such cases here.)

Next, let us see how we formulate the players’ information partitions.
In our framework, a state of the world is defined to be an assignment rule
of the true propositions and the true type of each player’'s 0.D. We say two
states are indistinguishable for a player if, the following three conditions
hold:

i) The set of objective propositions which can be observed are identical
at each of the two states;

ii) The truth values of the objective propositions which can be observed
are identical at each of the two states;

iii) The possible types of the other’s 0.D. are identical at each of the two
states.

For each player, his indistinguishability is verified to be an equivalence



relation on the set of the states. We define the information partition of a
player as the equivalence class under his indistiguishability.

To make sure of the consistency between the players' knowledge and
their information partitions, we establish that the players’ knowledge
defined in our framework is equivalent to their knowledge defined in the
manner given by Aumann (1976) using the information partitions constructed
in our framework (Theorem 1). Precisely, we prove that, at any state,
player i knows that j knows that i knows that ... that an objective
proposition p is true if and only if, in Aumann (1976)'s sense, i knows that
j knows that i knows that ... knows the event that p is true.

As an application of our framework, we will consider the charact-
erization of the information partitions. We present a necessary and
sufficient condition for one player’s information partition to be a
refinement of the other’'s (Theorem 2). We also consider the following three
cases: a player can observe all the truth values of ﬁhe objective
propositions and the true type of other’'s 0.D. (the case of complete
observation); a player observes nothing about the true type of the other’s
0.D. (the case of purely private observation); a player observes nothing
about the truth value of the propositions nor the true type of other's 0.D.
(the case of null observation). We examine the properties of the
information partitions corresponding to these cases.

This paper 1is organized as follows: In Section 2, we formulate our
framework. Section 3 presents the definition of player’s knowledge. 1In
Section 4, we define the information partition for each player, and prove
Theorem 1. Section 5 is devoted to the application.‘ We prove Theorem 2,

and examine some characterization of the information partitions.



2. The Observation Device Model

In this section, we formulate our model named the Observation Device
Model. The Observation Device Model is given by the eight tuple

< P, Al’ A2, fl, f2, 81+ By» Q >, where P and Ai (i=1,2) are countable sets

. . . . P
(Pn Ai =g (i=1,2), Al N A2 = &), fi (i=1,2) is a mapping Ai - 27, 8;
(i=1,2) is a mapping AjXAi - ZAj (je(1,2}, i#j) and Q is a set of the

mapping w: P U A1 v A2 - {0,1}.
We interpret as follows: P is a set of the propositions which stand for

objective statements of the world. We call p € P an objective proposition

to distinguish the propositions which we will define later to denote
player’s knowledge. In this paper, we use the propositional connectives ~
(negation), A (conjunction), - (conditional) and v (disjunction). P is
assumed to be the set of the propositions generated from the set of the
atomic propositions PO = {pl,pz,p3...} by those propositional operations.

Formally, let Prl = { ~p: pEP } U

n-1

{pAp', PP and p vp': p,p ePn-l } for n=1,2,..., and P = Voo Pn.

Each a; € Ai denotes a type of player i’s observation device. A, is

the set of all the possible types of player i’s 0.D. Given a; € Ai as the
true type of i’'s 0.D., we interpret that i can see the truth value of every
p € fi(ai).

For each oy € Ai and aj S Aj (i,j € (1,2}, i=j), gi(aj,ai) stands for
the set of the types of player j's (j=i) 0.D. which player i considers as
possible when oy when aj are respectively the true types of i,j’s 0.D.’'s.

Each w € O is interpreted as a truth assignment on P U A, U A,. For

1 2

each r € P v A1 U A2, we interpret w(r) = 1 (0) to mean that r is true

(false). Below, we say, for economy of expression, that i’s (true) O0.D. is




a, instead of saying that the true type of i's O.D. is a. . We call each w €

Q1 a state of the world. (Or, a state in short.) We assume that Q is the

set of all w'’s which satisfies the standard rule: For p, p' € P, w(p) =1
iff w(~p) = 0; w(p AP') =1 1iff w(p) =w(p') = 1; w(p » p') =1 1iff w(p) =
Oor w(p Ap')y=1;, w(pvyp')=01iff w(p) = w(p’') = 0.

On this basic framework, we put the following five assumptions.

Assumption 1.

For any w € @ and i=1,2, there is a unique a, (S Ai such that w(ai)

[
=

This assumption states that the enumeration of the type of 0.D. of each

player is exclusive and exhausting. By ai(w) we denote the unique as, i.e

player i's true 0.D. at w.

Assumption 2.

For any w € Q and 1i,j (i,j € (1,2}, i=j), aj(w) € gi(aj(w),ai(w)).

Assumption 2 says that each player’s true 0.D. is counted to be possible by

the other player.

Assumption 3.

. 1 2 . .. . 1 2
For any a; IS Ai (i=1,2) and aj, aj € Aj (jell,2y, j=i), if aj € gi(aj’ ai),

1 2
then gi(aj,ai) = gi(aj,ai).

The meaning of this assumption is as follows. Suppose that a player i

thinks that a group of the types of j (¥i)’'s 0.D. are possible. Then,
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player i will think that this group of the types of j’s 0.D. will be
possible whichever type in that group may be true. It seems natural that if
a matter A occurs, and matters A and B look possible to occur for a person,

then A and B look possible for him if B really occurs.

Assumption 4.
For any al a2 € A, and any a, € A, (i,je(l,2}, i=j), if £ (al) = f (a2) and
i’ i i j ]j ' T ’ iti iti

1 2 1 2
Assumption 4 states that if player i cannot recognize any difference in his
observation by ai and ai when j’'s 0.D. is aj, then j should also observe
that both ai and ai are equally possible. Roughly, it means that when a
player cannot distinguish two types of his 0.D. by his own observation, then

the other player cannot distinguish those two types.

Assumption 5.

For each i=1,2, and any a; € Ai’ fi(ai) is a finite set.

This assumption means that a player cannot perceive the truth values of
infinitely many propositions at a time. Its adequacy seems to be
controversial. We have this assumption only for technical reasons in this
paper. Precisely, it is needed in the proof of Theorem 1.

We implicitly assume that the Observation Device Model is common
knowledge between the players.

In the rest of this section, we present a simple example of the

Observation Device Model.



Example 1 (Watching a coin with eyes).

Let P be the set of the propositions generated from PO = {pl};

Al = {al,az};

A, {bl,bz);

f1<a2) = fz(bz) &,

gl(bi,al) = {bi} (i=1,2);
g1 (b;.ay) = (by,by} (i=1,2);
gy(a;,by) = (a)) (i=1,2);
g,(a; b)) = (a,a,} (i=1,2).

There are eight states of the world in this model:

w Py a; a, b1 b2

wy 1 1 0 1 0

w, 1 1 0 0 1

wq 1 0 1 1 0

w, 1 0 1 0 1

wg 0 1 0 1 0

we 0 1 0 0 1

W, 0 0 1 1 0

w 0 0 1 0 1

8
The intended interpretation of this model is that: Py stands for the

proposition " The coin appears head."; ay (bl) means that player 1 (2) opens

his eyes; a, (b2) means that player 1 (2) closes his eyes. (We forbid half-

closed eyes.)

11



3. Deductive Knowledge

In this section, for any objective proposition p, we introduce the

propositions denoting the statements such as "1 knows that p is true.", "l
knows that 2 knows that p is true.", "1 knows that 2 knows that 1 knows that
p is true.", etc. We extend the domain of each w € Q to include those

propositions, and consider the reasonable truth assignment of them.

Let K. (i=1,2) be a logical symbol. Let a formula K, K. ...K, p
i i, i, i
be a proposition, if i e (1,2} (k=1,2...,n), i ] i (k =1,2,...,n-1)
and p € P. For any p € P, Ki Ki ...Ki P is intended to mean that "i1 knows
1 72 n
that 12 knows that ... that in knows that p is true."

We assume that each player has the ability of logical deduction. In
this paper, we divide it in the following three abilities:
Al) a player can calculate the truth values of propositions following the
rule of w (€ Q) on the connectives ~, A, -+ and v,
A2) a player can recognize that any tautology is true, and
A3) a player can make successive operations of modus ponens for any
finitely many times.
Specifically, Al) means the ability to assign the truth value for the
propositions by the rule:
for any p € P, ~p is true iff p is false;
for any 121 and P, e P, Py A P, is true iff both 121 and p, are true;
Py * Py is true iff either Py is false or both 121 and p, are true;
Py VP, is true iff either P or P, is true. A tautology is a propositions
which is true for any truth assignment. For example, for any p, q € P,
pv-~p, P~ (g~p),p~ (qg— (p A Qq)) are tautologies. A player can

verify that a proposition is a tautology if he has the ability of Al) and he
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can list up all the possible truth assignment for the propositions which are
included in the proposition in question. A2) means this ability. A3) means
that if p, p + q are given to a player as true, then the player can conclude
that q is true (modus ponens). A3) further means that the player can repeat
arbitrarily many times this inference for the propositions which have
already been obtained as true.

Given a set of propositions, we say a proposition is deduced from the
set if it is obtained as true by Al) through A3) from the set of
propositions. We call a player's knowledge acquired through these logical

ability the deductive knowledge. We implicitly assume that the logical

ability of each player is common knowledge between the players.

The deduction defined here is essentially the same as that of
propositional calculus. However, our definition is redundant in comparison
with it. Strictly speaking, the ability Al) is induced from A2) and A3).
Moreover, a part of A2) is also redundant. However, I chose the ability Al)
through A3) in this paper to make the meaning of the players' logical
ability clear and to formulate simply a player’s inference of the other’s
knowledge. We will discuss about this subject at the end of this section.

To formulate a player’'s knowledge, let us define the following

notations i), ii) and iii).

i) For any S c P, define B(S) as follows. Let BO(S) =SuU{ ~p: peES ),
and for n =1,2,..., let Bn(S) ={gqATr,q»r, qvr, ~(qATI),
[oe]
~(q =+ r) or ~(QVvr): q, re€ Bn_l(S) }. And let B(S) = Un=0 Bn(S).
B(S) stands for the set of all the propositions generated from S by

the connectives ~, A, =+ and v.
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ii) For any S C P and any w € Q, define Tw(S) = {q: g€ S and w(q) =1 }.
Further, define T = { q € P: w'(q) =1 Vw'ed }, i.e., T is the set of
all the tautologies. Tw(B(S)) U T denotes the set of all the

propositions which the player concludes to be true from S with

abilities Al) and A2).

iii) For any S c P, define M(S) as follows: Let MO(S) = S and, for
n=1,2,..., let Mn(S) = Mn_l(S) U {qeP: 3 q' € P; q', (q' = q) €
el . .
Mn_l(S) }. And let M(S) = Un=0 Mn(S). M(S) indicates the set of the
propositions which can be obtained from S by the finitely many

successive operations of modus ponens.

Now we are in a position to define the truth assignment of the
proposition Ki Ki ...Ki p at given w € 1. Before the general definition,
1 72 n
let us consider the truth values of Klp, K1K2p and KleKlp to clarify how

the players’ logical abilities work on the truth assignment.

First we consider first Klp. Let &1 = al(w). Then, player 1 observes
the truth value of the proposition in fl(&l). From Al), he can calculate
the truth value of each proposition in B(fl(&l)). On the other hand, by
A2), he knows that each element of T is true. Hence, he obtains the set of
true propositions Tw(B(fl(&l))) U T. Then, by A3), he comes to know that

the propositions contained in M(Tw(B(fl(&l))) U T) are true.3 Therefore, we

should define w(Klp) =1 iff p e M(Tw(B(fl(&l))) uT).

3 - . .
He does not have to extend the true propositions using Al) again

here. It can be shown that the true propositions produced by connecting
propositions in M(Tw(B(fi(ai))) UT ) with ~, A, » and v have already been

contained in M(Tw(B(fi(ai))) UT ). (See Proposition A.l in Appendix 1.)
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Next we consider K K2p. Let M(Tw(B(fl(al))) = Dw(a Now we

1 1)

implicitly assume that player 1 knows that player 2 has the logical ability.
So, we can consider that player 1 knows that player 2's knowledge is
constructed in the same way as above. In our framework, player 1 knows that

the types of 2's 0.D. in gl(az(w),&l) are possible. Take &2 arbitrarily

from gl(az(w),&l). Suppose that 1 assumes that 2's 0.D. is &2. Then 1

thinks that 2 can calculate the truth value of the propositions in B(fz(&z))
based on 2's own observation. Here, 1 does not know the true state of the
world, so that 1 cannot say which is the true proposition in this set. 1
can say only that 2 recognizes that the propositions contained in Dw(&l) N
B(fz(&z)) U T are true. Hence, 1 knows that if &2 is 2's true 0.D., then 2
knows that the propositions contained in M(Dw(&l) N B(fz(&z)) U T) are true.
Let M(Dw(&l) N B(fz(&z)) uT) = Dw(&l,&z). Here, &2 is not the unique

possible type of 2's 0.D. Hence, at w, 1 can say that 2 knows that p is
true if, Va2 S gl(az(w),al), P E Dw(al,az). Thus we should define w(Klep)

=1 iff p € Dw(al,az) Va2 IS gl(az(w),al).

For KleKlp, the argument is almost the repetition of the above one.
Suppose that 1 assumes that 2's true 0.D. is &2 € gl(az(w),&l). Then, at w,
1 can say that 2 knows that 1 knows that p is true iff Vv ;l e gz(&l,&z),

P € M(Dw(al,az) N B(fl(al)) U T), since 1 knows that 2 considers ay S

gz(al,az) as possible if 2's 0.D. is a,. Let M(Dw(al’a2) N B(fl(al)) uT) =

Dw(al’a2’al)' Then, we can define that w(KleKlp) =1 iff p € Dw(al,az,a

1)
Va2 'S gl(az(w),al), Val IS gz(al,az).
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For the general definition, let us define the following notations.
We say that (i

.,in) is a proper order if i, € {1,2} (k=1,2,...,n) and

1’12"' k

Lo*ig (k=1,2,...,n-1). For any w € ? and any proper order €

(il’iZ""’in)’ we say that (al,az,...,an) is an a-sequence with 6 at w if

k-2 k-1
a ,

a =a. (w), a2 € gi (ai (w),al), and ak € g. ( ) for k=3,4,..., n.
2

ol 1 k-1

For any w € I, any proper order 6 = (il’i2""’in)’ and any a-sequence

(al,az,...,an) with © at w, define Dw(al,az,...,an) inductively as follows:

Let D (al) = M(T (B(f, (al))) UT); Suppose D (ar,a?,...,a") is defined,

then let Dw(al,az,...,ak+1) - M(Dw(al,a2,...,ak) N B(E, @y Uy,

k+1
The concept of proper order is defined to specify the order of the
inference between the players. In our framework, K1K2K2p, e.g., is not
regarded as a proposition. The meaning of "proper" reflects this

restriction. An a-sequence stands for the inference chain of possible types

of 0.D. between the players with a given proper order € at w € Q.

Definition 1.

For any p € P, any w € 1 and any proper sequence 6 = (il’i2""’in)’
we define w(K, K. ...K, p) =1 iff p e D (al,a?, ... &™) for all

i i i w

1 72 n

1 2 n .
a-sequence (a ,a ,...,a ) with 6 at w.

To see the player’'s deductive knowledge concretely, we cite Example 2.

Example 2 (Watching white and red balls with eyes).
Suppose that three persons 1, 2 and 3 are standing around a table.
There is an empty urn, a red ball and a white ball on the table. At first,

3 shows that the urn is empty and puts the two balls in the urn. Next, he
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picks up one ball from the urn and puts it on the table.

Let Py stand for the proposition "The ball on the table is red.", and

let P, stand for the proposition "The ball in the urn is red.". For the
sake of simplicity, we assume that 1 and 2 have their eyes open and see each
other. Then we can consider the following Observation Device Model for this

situation.

P = B((pl,pz});

A, = {a

1 Yoo Ay = byl

1 2

g1 (Py.a)) = by, gy(ay,b)) = a).

There are the following four states of world:

© Py Py 3 by

1
Wy 1 0 1 1
wq 0 1 1 1
@, 0 0 1 1

Of course, the states w, and w, do not occur. They exist only as the result

1 4
of logical enumeration. Supposing now that wq is true, I will verify that
K1p2 and K1K2p2 are true at w3
Now, fl(al) = { Py V Py, ~(p1 A p2), Py }. We can easily verify that

((p1 v p2) A —-(p1 A p2)) - (~p1 - p2) is a tautology. From the definition
of B(.), (pl v p2) A ~(pl A pz) € B(fl(al))), and it is a true proposition

at Wy Therefore, (p1 v p2) A —-(pl A p2) and



(b ¥ 2p) A =(py A2y * (2 = By €T, (B(E (a))) U T Thus, by modus

ponens, we have ~P -+ p, € M(Tw (B(fl(al)))) = Dw (al). Futhermore, ~Pq €

2
3 3
B(fl(al)) and w3(~pl) = 1. Hence, we have ~Pq € Dw3(al)' Thus, by modus
ponens, we obtain p, € D (a,), which means that w,(K,p,) = 1 by Definition
2 wq 1 3t1Y2
1.
Let us consider K1K2p2. Since f2(bl) = fl(al), from the above

argument, (p; VvV pP,) A ~(py A Py), ((p; V Py) A ~(p; APpy)) = (P > P,) and
~p, are contained in B(fZ(bl)) U T. Therefore, these propositions are
contained in Dw (al) N B(fZ(bl)) U T. Hence, by applying modus ponens

3
twice, we have P, € M(Dw (al) N B<f2(bl)) uT) = Dw <al’b2)’ meaning

3 3
w3(K1K2p2) =1.

We close this section by stating the relationship between the deduction
system defined in this paper and that of propositional calculus.

Let A = { peP: 3q, r and s € P; Pp=q~ (r=+q),

(@2 (r=>3s)) »((g>r1r) > (r=>s)or (~q=>-~r)) » ((~qg > 1) >q) }.

We can easily verify that all elements in A are tautologies. Using our
notation, it is defined in propositional calculus that a proposition p is
deduced from S (c P) if p € M(S U A). Therefore, if we make faithful
deduction to propositional calculus, the set of deduced propositions when
player i (i=1,2) observes the truth value of the propositions in fi(ai)’
should be Ml = M( {(p: p € fi(ai) and w(p) =1 }) v
{~p: p € fi<ai) and w(p) = 0 ) UA ). However, this set is eventually
equivalent to M2 = M(Tw(B(fi(ai))) UT ). Let's verify it here. Since
ACTand {(p: p € fi(ai) and w(p) = 1) U {~p: p € fi(ai) and w(p) = 0) C

Bo(fi(ai)) - B(fi(ai)), we have Ml c M2. On the other hand, there is a

18



following theorem.

Completeness Theorem.
M(A) = T.

(See, e.g., Mendelson (1979).)

Therefore, T C Ml' Hence, Ml = Mi = M( {p: p € fi(ai) and w(p) =1} U
{~p: p € fi(ai)) and w(p) = 0 ) UT ). Furthermore, we can show that
Tw(B(fi(ai))) C Mi. (See Proposition A.2 in Appendix 1.) Thus, we have Ml D
M2 so that Ml = MZ’ i.e., it can be said that our definition of deduction is
essentially the same as that of propositional calculus.

The author quotes here important theorems established in propositional
calculus. Those theorems will play significant roles in the proof of

Theorem 1 in the next section. Let’s define the following terminologies.

We say S (cP) is inconsistent if there exists p € P such that both p € M(S U

A) and ~p € M(S U A) holds at a same time. S is said to be inconsistent iff

S is not consistent. We also say that a state w satisfies S (cP) if w(q) =

1 for all q € S.

Generalized Completeness Theorem 1.

S (cP) is consistent iff there exists a state which satisfies S.
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Generalized Completeness Theorem 2.

For any p € P and any S ¢ P, p € M(S U A) iff w(p) =1 for all w (€ Q)

that satisfy S.

(Proof of these two theorems are in Appendix 2.)4

As we stated above, M(S U A) =M(SUT) V S cP. Hence, we could
write the definition of (in)consistency and Generalized Completeness Theorem
1 and 2 by replacing A by T. 1In the following part of this paper, we
replace A and T in M(.) as occasion demands without comment. Such
replacement will cause no confusion.

We abbreviate Generalized Completeness Theorem 1 and 2 as G.C.T.1l and

G.C.T.2, below.

4. Information Partition

In this section, we define the indistinguishability of the states for
each player, and induce their information partitions. We establish the
equivalence theorem on the players’ knowledge.

We define a player’s indistinguishability of two states as follows:

Since it is difficult for us to find the proof in the literatures, I
state them in Appendix 2. The proof is originally given in Fukuyama (1980).
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Definition 2.

For any w, w' € Q, we say w and w’' are indistinguishable for player i

(i=1,2) and write w = w' if
ii) w(p) = w'(p) Vp € fi(ai(w)), and

iii) gi(aj(w),ai(w)) = gi(aj(w'),ai(w'))-

The intended interpretation of w = w' is that there is no difference
in player i’'s observation for w and w' with respect to:
i) the set of the observable objective propositions;
ii) the truth value of the observable propositions; and
iii) the possible types of the other player’s 0.D.
It can be easily shown that = is an equivalence relation on Q. Let Hi
(i=1,2) be the equivalence class under = Then IIi (i=1,2) is a partition

of Q.

Definition 3.
Let Hi be the equivalence class under equivalence relation = which is

defined in Definition 2. Then, we call Hi the information partition of

player 1i.

Let us consider the information partitions for the Observation Device
Model given in Example 1. There are the following eight states of the

world:
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At wg the type of player 1l’'s 0.D. is al, hence, fl(al(wl)) = {pl} and

gl(az(wl),al(wl)) = {bl}. This means that w w only for w = w

171 1
Because, w(pl) = wl(pl) for w = ws (i=5), fl(al(w)) = {bl,bz} =
fl(al(wl)) for w = wy Or w,, and fl(al(wZ)) = {b2} = fl(al(wl)). Similarly,
each of Wy, Wg and we is indistinguishable with only itself for player 1.
However, Wy = W for w = W, 5 wg and wg since fl(a2) = @ and gl(bi’aZ) =

(bl,bz) for i=1,2. We have Hl as follows:

Hl = { {wl), {wz}, {w3,w4,w7,w8), (ws}, {w6} ).

In the same way, we can easily verify that:

H2 = { (wl}, (wz,wa,w6,w8}, (w3}, {ws}, {w7) ).

Aumann (1976) gave the two different but equivalent definitions of
common knowledge in terms of the players’ information partitions. One of
the definitions is as follows: An event E C 2 is said to be common

knowledge at a state w if E contains all w' € Q1 such that there is a

2 n 1 n

. . k
sequence 7 n,..., n satisfying that w e ", w’' € n, # (k=1,2,...,n)

’



belongs to either Hl or H2 and wk N "k+1 * @ (k=1,2,...,n-1).

Here, let n be a fixed positive integer, and let us consider the

following statement:

(*) E Cc O contains all w’ € Q for which there is a sequence ﬂl, ﬂz,...,
7" such that w € wl, w' € ﬁn, ﬂk IS Hi (k=1,2,...,n), where
k
1k e (1,2} (k=1,2,...,n) and 1k 4 lk+l (k=1,2,...,n-1)

The basic interpretation of the information partition of player i is
that, for any wn € Hi’ if w € * is the true state, then i knows that the true
state is in wn, but he does not knows which w’ € n is the true one.

According to this interpretation, we can say that, at w, il knows that i2
knows that ... that in knows E (occurs) iff (*) holds. This is the reason
why the above definition of common knowledge can be considered to reflect
the intuitive meaning of common knowledge. (See Footnote 2.)

In this paper, we adopt (*) as the formulation of a player’s knowledge

in terms of the information partitions. For the formal definition, we

define the following notations: For any proper order 6 = (il,iz,...,in) and
any w € {, we say (wl,wz,...,wn) is an w-sequence with 8 at w, if wk € 0
(k=1,2,...,n) and wp zik+l Y (k=0,2,...,n-1), where wy = w.

Definition 4.

For any w € 1, any proper order 6 = ( ,in), and any p € P, we define

SRR VYRR

that K(il’i2""’in)p holds at w if for any w-sequence (w ,wn) with @

l,wz,...
at w, wn(p) = 1.

23
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Remarks.

i) The intended interpretation of K(i ..,in)p is, of course, that i

150 1

knows that i2 knows that ... that in knows the event that p is true

(occurs).
ii) Note that Hi is the equivalent class under = Then, it is clear that
the "if" part of Definition 4 is equivalent to (¥*) for

E={ wel: wp)l1}.

The next theorem establishes the equivalence of our two definitions of
player’s knowledge. It shows the consistency of our definitions of players’

deductive knowledge and their information partitions.

Theorem 1.
For any w € I, any proper sequence 6 = (il’iZ""’in) and any p € P, the
following two statements are equivalent:

i) w(Ki Ki ...Ki p) = 1;

1 72 n
l,12,...,1n)p holds at w.

ii) K(i
For the sake of notational simplicity, we have the following convention

here and in Appendix 3: For any o, € Ai (i=1,2) and any w € 2, we write

f(ai) in stead of fi(ai), and write Tw[ai] instead of Tw(B(fi<ai))) provided

that it is clear whose 0.D. is indicated by o, and aj.

Proof of i) - ii). We prove by induction. For n=1, 8 = (il) (116{1,2}).

Hence, (ai (w)) is the unique a-sequence with 8 at w, and the w-sequence
1

with 8 at w is (wl), where w, is a state satisfying w = . Suppose that

1 1
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w(K, p) =1, i.e., p € D (a (w)) (= M(T [z, (w)] U T)). Then, by the
1 ! N1
G.C.T.2 (in Section 3), w'(p) = 1 for all w' (€ Q) that satisfy Tw[ai (w)].

Let us show that wy satisfies Tw[ai (w)]. By the definition of = and B(.),
1

w, =, w means that w.(q) = w(q) V q € B(f(a, (w))). Hence, by the
1 i, 1 i

definition of Tw(.), wl(q) =1 Vqe Tw[cxi (w)], i.e., w, satisfies

1

T [, (w)]. Thus, we get w,(p) = 1, namely, K(i,)p holds at w.
w' iy 1 1
Suppose that the assertion holds for n = k-1 (k=2). Let 6 =

(i,,i,,...,1i,) be a proper order and assume that w(K, K, ... K, p) =1, i.e.,
1’72 k i i i
1 2 k 11 2 k k
for any a-sequence (a¢ ,a ,...,a ) with 8 at w, p € Dw(a ,a& ,...,ax ). Take
any w-sequence (wl,wz,...,wk) with 6 at w. Let us show that wk(p) =1

Here, we need the following lemma.

Lemma 1.
Let 6 = (11,12,...,1k) be any proper order and (wl,w2,...,wk) be any

w-sequence with 8 at w, then (ail(wo), aiz(wl), a 3(wz),..

an a-sequence with 8 at w = wo. (Proof is in Appendix 3.)

Al A2 N
Let (a7, ,...,a ) = (ail(wo), a, 2(wl),..., aik(wk_l)), where wy = w. By
lemma 1, (&l,&z,...,& ) is an a-sequence with 8 at w. Hence, by assumption,
we have p € D (&1,A2,...,&k). Therefore, by G.C.T.2, w'(p) = 1 for all
Al 2 Ak 1

w' (e 1) that satisfy D (a ,a ,...,« )N B(f(a ). Thus, in order to

establish that w (p) =1, it suffices to show that wy satisfies

D (&1,A2,.. Ak 1) N B(f(& )). Note that (&l,Az,...,&k_l) is an a-sequence

with proper order <i1’i2”"’ik—l) at w. Hence, by the induction

hypothesis, if q € D (81,62,...,&k-1), then wk_l(q) = 1. On the other

hand, by the definition of w-sequence, wk-l zik W s hence, f(ea. k( k- 1)) =



f(&k) = f(ai (wk)) and wk_l(q) = wk(q) vV q€ f(ak). Therefore, wk_l(q) =

k
wk(q) VY qe€ B(f(ak)). Thus, we obtain wk(q) =1 Vvqe Dw(&l,az,...,&k-l) N
B(f(&k)), i.e., w, satisfies Dw(&l,&z,...,&k-l) N B(f(&k)). Q.E.D.
Proof of 1i) - 1). We show the contrapositive. For n = 1. Suppose that

there exist w € Q, a proper order 6 = (il) and p € P such that w(Ki p) = 0,

1

i.e., p & Dw<ai (w)). Then, by G.C.T.2, there exists w' € Q which

1
satisfies Tw[ai (w)] but w'(p) = 0. Define wy € Q by: wl(q) = w'(q) V qe

1
P and aj(wl) = aj(w) (j=1,2). Then, Wy zil w, while wl(p) = 0, meaning
K(il)p does not hold at w. For n = 2, suppose that there exist w € Q, a
proper order 6 = (il’i2""’in)’ P € P and an a-sequence (al,az,...,an) with
® at w such that p ¢ Dw(al,az,...,an). Here, the following Lemma 2 and
Lemma 3 are needed to construct the w-sequence (wl,wz,...,wn) with 6 at w,
where wn(p) = 0.
Lemma 2.
For any p € P, any a-sequence (al,az,...,ak+l) with a proper order
(il’iZ""’ik+l) (k =2 2) and any w, w' € Q, if w' satisfies Dw(al,az,...,ak)
n B(f(ak+1)), then there exists an w'’ (€ Q) such that w'’'(q) = w'(q) V q €

k+ 1 2
a ,..

f(a l) and w'' satisfies D (a, .,ak'l) n B(f(ak)).

(Proof is in Appendix 3.)

Lemma 3.

1 2 . .-
For any p € P, any a-sequence (a ,a ) with a proper order (11,12) and any w,
w' € Q, if w' satisfies Dw(al) N B(f(az)), then there exists an w'’' € @ such

that w''(q) = w'(q) V q € f(az) and w'' satisfies Tw[al].
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(Proof is in Appendix 3.)

*
Since p & Dw(al,az,...,an), by G.C.T.2, there exists an w which satisfies
1 2 n-1 n *
Dw(a ,a ..., ) N B(f(a)) but w (p) = 0. Let w, be the state such that
() =w(q) ¥V qeP () =a® and &, (0w ) = o 1. Define w
“ntd @ 4 d ’ ain “n in-l n ) k
(k=n-1,n-2,...,2,1) inductively as follows:
for 2 = k < n-1,
w (@) =w''(q) VYqEePp,
a. (o) = ak, and
i k
k
k+1
a; (@) =a 7,
k+1
where w'’ is the state referred in Lemma 2 for w' = wk+1; and
w;(q) =w''(q) VY qe€P,
1
a, (w,) = a, and
i 1
1
a., () = a2
12 1 ’
where w'’ is the state referred in Lemma 3 for w' = w, -
Then, w, € @ (k=1,2,3,...,n-1), and we can verify that w =, w, =, o
k 1 1 i, 2
.. 1
SRR ~in_1 w1 ~in w - By the definition of a-sequence, ail(wl) =a =

a, (w), thus, f(a, (w)) = f(a. (w,)). Since, by definition, w, satisfies
i i, i 1 1

Tw[al], we have wl(q) = w(q) V q € f(ai (wl)). Further, by the definition
1

of a-sequence, a; (wl) = a2 € g; (ai (w),a, (w)). Hence, by Assumption 3

2 1 b2 !

and a; (wl) = a; (w), we get gi (ai (wl),ail(wl)) = gil(aiz(w),ail(w)).

1 1 1 2
Therefore w =, w,. Consider k = 2,3,...,n-1. By definition, a, (
11 1 1k

k
a = aik(wk) (hence, f(aik(wk_l)) = f(aik(wk)) and wk(q) = wk_l(q) V q €

“p-1) =

f(ai (wk)). By the definition of a-sequence, ak+1 c 8 (ak-l’ak

k k

). Hence,
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ak+1,ak) = g. (ak_l,ak). By definition,

k
a = a, (w,), a =a, (w,), a = a, (w ) and a = a, (w ) ). Thus
1k+1 k i k i1 k-1 i k-1

we have gi (ai (wk),aik(wk)) = g. (a, (wk_l),ai (wk_l)). Therefore

k  Tkel v k-1 Kk

@, z.k @y - We can easily verify that w. zin w_ - Thus we obtain the

w-sequence (wl,wz,...,wn) with © at w, where wn(p) = 0. Q.E.D.

5. Characterization of Information Partition

In this section, we characterize the information partitions in terms of
the structure of the Observation Device Model. First, we consider the
condition on fi(') and gi(.,.) (i=1,2) for one player’s information
partition to be a refinement of the other’s. Next, we see some cases in
which a player has special observing abilities, and examine the properties
of the information partitions corresponding to those cases.

The concept of the coarsening or refinement5 of one information
partition to another represents one player’s informational superiority.

Proposition 1 seeks the reason of this informational asymmetry.

Theorem 2.

For i, j € (1,2} i#j, Hi is a refinement of Hj iff

a) Va, € A, and Va, € A,, f.(a.) D f.(a.);
i i j R iti i3
and b) Vai € Ai and Vaj, aj € Aj’ gi(aj,ai) = gi(aj ,ai) implies that
(a.,a') = g . (a.,a'') and f.(a') = f.(a'').
gylagay) = gylag,e; (50 = e

For any partitions II and II' of Q, we say II is a refinement of I’
(equivalently, II' is a coarsening of II) if VvVx € I, 3n' €e II', =~ C =n'.



The first condition states that, at any types of the players’ 0.D., the set
of i’'s observable objective propositions includes that of j's. The second
condition states that, at any type of player i's 0.D., if i1 cannot
distinguish two types of j’s 0.D., then j cannot recognize any difference in

his observations from each of the two types.

Proof of if - part. It suffices to show that, for any w and w' € Q, if w =

w', then w zj w'.

By definition, it is written as follows:
If 1) f,(a;(w)) = £, (a;(w")),

ii) w(p) =w'(p) VYV p € £ (a;(w)), and

1i1) g;(ag(w),a (@) = gyla ('), a; (w")),
then

iv) fj(aj(w)) = fj(aj(w')),

v) w(p) =w'(p) VopE fj(aj(w)), and

vi) gj(ai(w),aj(w)) gj(ai(w ),aj(w')).
From condition a), i) and ii) implies v). Further, Assumption 2 and iii)
means that aj(w') € gi(aj(w),ai(w)), so that we have

gi(aj(w),ai(w)) = gi(aj(w’),ai(w)) by Assumption 3. Hence, by condition

b), we get
(L) gj(ai(w),aj(w)) = gj(ai(w),aj(w'))
and fj(aj(w)) = fj(aj(w')). Thus we have iv). On the other hand, from the

equality gi(aj(w),ai(w)) = gi(aj(w'),ai(w)) we obtained above and iii), we

get gi(aj(w'),ai(w)) = gi(aj(w'),ai(w')). Hence, from i) and Assumption
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4, we have

() gyla;(@),a; (@) = gsla;(w),a; ().
Summing up (1) and (2), we obtain vi). Q.E.D.

Proof of only if - part. Suppose that condition a) does not hold.
Then there exist a, € A, and a. € A, such that f (a,) 7 f.(a.). Let
1 1 J J 11 J ]

P € fj(aj) - fi(ai). Let w and w' be the two states which assign the same
truth value on P - {p}, Ai and Aj but not for p. Then w zj w'does not
hold, while w = w does. Next suppose that condition b) does not holds.
Then, there exist a, e Ai and ay, ah € Aj such that gi(aj,ai) = gi(aj ,ai)
but g.(a.,a!) = g.(a.,a'') or f.(a') = £.(a'’). Let w and w' be the two

Bylag.ay) # Bylag.0y jleg) = Eylegh)
states such that w(p) = w'(p) V p € P, w(ai) = w'(ai) = 1 but w(aé) =1

and w'(aé') = 1. Then w = w', however, w =, w' does not hold. Q.E.D.

In our framework, we denote a player (say i)'s observing ability in
terms of fi and g;- Hence, by using special fi and g;, we can formulate the
situations in which a player (i) has special observing abilities. It will
be worthwhile to examine the properties of information partitions
corresponding to those situations. We consider here the following three

cases.,

5.1. Complete Observation

let f.(a.) = P and let g.(a.,a.) = {a,} for all a. € A, and a, € A,
it i~7j1 i i i j j

(i,j € (1,2}, j=i). Then player i will have complete observation. He
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observes all the truth value of the propositions, and he knows the true type
of the other player’s 0.D.

In this case, player i's information partition is essentially the point
wise partition of Q, i.e., the partition whose elements consist of a single
state.

Suppose that there exists an element of player i’s information
partition which contains more than one state, say w and w' (w # w'). Then,
since w ol w'and player i has complete observation, w and w' assign the same
truth values on P and Aj (j=i). Let aj € Aj’ a, ., ai S Ai be respectively
the types of j and i’'s 0.D. such that w(aj) = w’(aj) =1, w(ai) = 1 and
w’(ai) = 1. Then, since fi(ai) = fi(ai) =P, w(g) = w'(q) V¥V qge P. And,

furthermore, since gi(aj,ai) = (aj} = gi(aj,ai), by Assumption 4, gj(ai,aj)

= g.(a',a.). Therefore, w =, w'.
Byl ay) ]

Eventually, the difference between w and w' is only the "names" of the
types of i’s 0.D. associated with them. The two types causes no difference
on i's actual observation. Further, player j cannot distinguish the
difference of the two types, and w and w’' assigns the same truth values on
P. That is, the two types are essentially the same.

In Example 1, if we erase ay, then player 1 has complete observation.

In that case, the states w w., and w, vanish, and players 1 and 2 's

3 Y40 9y 8

information partitions are as follows:

I = { {eg), (wz}, (ws), fwe) 1,

(w {(w

1)1 21"‘)6}) 5} }'
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5.2. Purely Private Observation

Let gi(aj,ai) = Aj for any a; € A.l and any aj € Aj (i,j € (1,2}, i=j).
Then player i has purely private observation since he observes nothing about
j's 0.D.

*
In this case, if there exists a type aj € Aj which stands for no
. . * *
observation, i.e., f.(a.) = @ and g.(a.,a.) = A. V a, € A., then there
i ] A S i i i
exists an element in j’s information partition which intersects all the
elements of i’'s information partition. The reason is as follows: Since i
has no information on j's 0.D., every elements of i’s information partition
*

contains a state at which aj is the type of j's 0.D. Such states are

*
indistinguishable for j because of no observation at a,.

In Example 1, if gl(bi,al) = gl(bi’aZ) = {bl,bz} for 1 = 1,2, then
player 1 has purely private observation. It will be such a situation in
which 1 knows that 2 is standing there, but 2 wears sun glasses, so 1 cannot
know whether 2 opens his eyes or not. Hl is as follows:

Hl = { {wl,wz}, {w3,w4,w7,w8}, {ws,w6l ).

It will be worthwhile to recall Hz:

H2 = { {wl}, {wz,wa,w6,w8}, {w3), {ws}, {w7) ).

At states Wy W, We and wo s player 2's 0.D. is b2 which stands for no

observation.
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5.3. Null Observation

Let fi(ai) = & and gi(aj,ai) = Aj for all a, € Ai and aj e Aj (i,j €
{1,2), i#j). Then player i has no observation with any oy € Ai'

In this case, i's information partition is { Q }.

In the intended situation of Example 1, player 1 will be in this case

if he locked in a box out of which he cannot see.
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Appendix 1.
We will prove the two facts which were stated in Section 3 without

proof. The next lemma is the essence of them.

Lemma A.1l

For any Q, R c P, if Tw(BO(Q)) Cc M(R U T), then Tw(B(Q)) Cc M(RUT).

Proof. We show that Tw(Bn(Q))) CM(RUT) for n=20,1,2,... The case in
which n = 0 is the assumption. Suppose that Tw(Bk(Q)) c M(R U T). By the
definition of B(.) (in Section 3), if p € Tw(Bk+l(Q))’ then there exist q, r
€ Bk(Q) and we can write p=q A Tr, q-2>71r, qvr, ~(qA7Tx), ~(q~r1),

or ~(q vr)y. If p=gqAr, then w(p) = 1 means that w(q) = w(r) =1, i.e.,
q, r € Tw(Bk(Q))' Then, by the induction hypothesis, q, r € M(R U T). On
the other hand, q - (r » ( @ A r)) 1is a tautology. Applying modus ponens
twice, we have p = ¢ A r € M(R U T). We can prove the other cases in the

same way. The truth values of q, r and the tautologies used in those cases

are as follows. For p =q = r, w(q)

Il

0 (hence, ~q € Tw(Bk(Q))) or w(q) =
w(r) = 1, and the tautologies are ~q - (q » r) and q - (r » (q = 1)),
res?ectively. For p=qvr, w(qg) =1 or w(r) =1 and the tautologies are
q- (qgqvryx)yand r » (q v r), respectively. For p = ~(q A 1), w(q) = 0 or
w(r) = 0, and the tautologies are ~q - ~(q A r) and ~ r » ~(q A 1),
respectively. For p=~(q > 1), w(q) =1 and w(r) = 0, and the tautology
is q = (~r = (~(q » ©))). For p = ~(q v r), w(q) = w(x) = 0, and the

tautology is ~q = (~r - (~(q v 1))). Q.E.D.



A2

Proposition A.1l.

For any § ¢ P, T (B(M(T _(S) U T))) = M(T (5) U T).

Proof. By definition, BO(M(Tw(S) UT) = M(Tw(S) UT) U {~p: p € M(Tw(S) U
T) ). In modus ponens, if w(p) — 1 and w(p = q) = 1, then w(q) = 1. So,
©(P) =1 V¥ peMT(S)UT). Hence, T (B (M(T _(S) U T))) = M(T_(S) UT).
Therefore, T (B(M(T_(S) U T))) D> M(T _(S) U T). Further,

Tw(BO(M(Tw(S) uT))) = (© M(Tw(S) U T) leads the converse inclusion by

Lemma A.1. Q.E.D.
Proposition A.2.
For any S C P,

Tw(B(S)) CcM( {p: p€Sand w(p) =1 ) U {~p: p€ S and w(p) =0 ) UT).

Proof. Since BO(S) =S U {~-p: pes), Tw(BO(S)) = {p: p €S and w(p) = 1)

U {(~p: p € S and w(p) 0 ). Hence, Tw(BO(S)) is included by

M( {p: p € S and w(p)

l)u({~-p: peSand w(p) =0 ) UT).

By Lemma A.1l, we complete the proof. ' Q.E.D.



A3

Appendix 2.
We need the following Lemma A.2 through Lemma A.6 and a famous theorem

called Deduction Theorem to prove Generalized Completeness Theorem 1 and 2.

Lemma A.2.
i) If w (e Q) satisfies S (€ P) and p € M(S U A), then w(p) = 1.

ii) S (Cc P) is consistent if there exists w (€ Q) which satisfies S.

Proof of 1). By the definition of M(.), it suffices to show that w(q) =1
vV qe€ Mn(S UA) forn=20,1,2,... For n = 0, we get it by the assumption.
Suppose that w(q) =1 V q € Mk(S U A). Let q € Mk+l(s U A). Then, q €

Mk(S U A) or there exists r € P such that r, r - q € Mk(S U A). In the

latter case, by the induction hypothesis, w(r) 1 and w(r - q) = 1, so that

w(q) = 1. Q.E.D.
Proof of ii). Suppose that S is inconsistent, then there exists q € P such
that q, ~q € M(S U A). By i), w(q) = w(~q) =1, a contradiction. Q.E.D.
Lemma A.3.

S (C P) is consistent iff any finite set S’ (C S) is consistent.

Proof. We can obtain the contrapositive of the only if part from the fact
that S’ ¢ S implies M(S' U A) C M(S U A). Let’s prove the if - part.

Suppose that S is inconsistent. Then there exists p € P such that p, ~p €
M(S U A). Hence p, ~p € Mn(S U A) for some sufficiently large integer n =

0. Here, let us show that, for n = 0,1,2,..., if q € Mn(s U A), then there



exists a finite set S’ (C S) such that q € Mn(S’ U A). For n=0, this
assertion holds for S’ = {q}. Suppose that the assertion holds for n = k.
For n =k + 1, let q € Mk+1(S U A). Then, q € Mk(S U A) or there exists r €
P such that r, r - q € Mk(S U A). In the latter case, by the induction
hypothesis, there exist finite sets S’, S§’’ (c S) such that r € Mk(S' U A)
and r -+ q € Mk(S" U A). Then, S’ US’' is a finite subset of S, and r, r
-+ q € Mk(S' U S’ U A), which completes the induction. Hence, if p, ~p €
Mn(S U A), then there exist finite sets Sl’ 82 (c S) such that p € Mn(S1 U

A) and ~p € Mn(SZ U A). Therefore, we have p, ~p € Mn(S1 US,UA), i.e.,

2

there exists a finite set S1 U S2 (c S) which is inconsistent. Q.E.D.

Lemma A.4.
Let S ¢ P. If, for any finite set S’ (cC S), there exists a state which
satisfies S’, then the following two assertions a) and b) hold.
a) There exist functions fn: { P; S PO: i<n } » (1,0} (n=1,2,3,...)
each of which satisfies:
i) if m < n, then fm(pi) = fn(pi) V i< m;
ii) for any finite set S’ (C S), there exists an w (€ 1) such that it
satisfies S’ and w(pi) = fn(pi) V i< n.

b) Define wy as wo(pi) = f (pi). Then w, satisfies S.

i+l 0

Proof of a). Suppose that the assertion holds for n = k. For n = k + 1,
let fk+l(pi) = fk(pi) for i =0,1,2,...,k-1. And let fk+l(pk) =1. If ii)
holds for this fk+l’ then the assertion holds for n = k + 1. If not, then
let fk+l(pk) = 0. We can show that ii) holds for this fk+1' Now, ii) does

not hold for fk+1 which takes 1 for Py - It means that there exists a finite

A4
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set SO (C S) which is not satisfied by any w (€ Q) such that w(pi) =

(pi) V i <k and w(pk) = 1. Take any finite set S’ (C S). Since S, U

fk+1 0

S’ is a finite subset of S, by the induction hypothesis, ii) holds for fk’

That is, there exists an w (€ 1) such that it satisfies S, U S’ and w(pi) =

0

fk(pi) V i < k. From the condition of SO’ that w must be w(pk) = 0. Hence,

the w satisfies S’ and w(pi) = f V i < k+1. That is, ii) holds for

11 Py

fk+1 we can show the assertion in the same way as f

For n = 1” by using

k+1

the assumption of this lemma in stead of the induction hypothesis. Q.E.D.

Proof of b). Take any p € S. By the definition of P, p consists of
finitely many atomic propositions. Let n be large enough that all those

atomic propositions are contained in {pi €P 0<1i=<n-1). Note that,

0"
for any w (€ Q), the value of w(p) is determined by the value of w(po)
through w(pn_l). Since, {p) is a finite subset of S, by ii) of a), there
exists an w (€ Q) such that w(p) = 1 and w(pi) = fn(pi) V i <n. By the
definition of wy, we have wo(pi) = w(pi) V i < n, so that wo(p) = w(p) = 1.
Q.E.D.
Lemma A.5.
Let S ¢ P. The necessary and sufficient condition of that there exists a

state which satisfies S is that, for any finite set S’ (C S), there exists a

state which satisfies S'.

Proof. Necessity is trivial. Sufficiency is established by constructing wg

stated in Lemma A.4 for this S. Q.E.D.



Lemma A.6.

For any p, 9y, 9ps ---0 9y € P, the following three statements are
equivalent.

i) p € M((ql,qz,...,qn} U A).

ii) q; ~ (q2 - ... (qn = p) ... ) € MA).
iii) For any state w which satisfies {ql,qz,...,qn}, w(p) = 1.

Proof. i) - ii) is given from i) of Lemma A.1l. Let us prove that iii) =

ii). Let r = q; ~ (q2 - ... (qn -+ Pp) ... ). By Completeness Theorem

(Section 3), it suffices to show that r is a tautology.

Take any w € Q.

Suppose that there exists an j (1 < j < n) such that w(qj) = 0. Let k be

the smallest one of all such j’'s. Then w(qi) =1 for i

1,2,...,k-1. and

w(qk - (qk+1 - ... (qn + p) ... )) =1. Hence w(r) = 1. Suppose that w(qi)
=1V 1=<1i=<n, then, of course, w(r) = 1. Thus r is a tautology. 1ii) -

i) is verified as follows: if ii) holds, then q; - (q2 - ... (qn = p) ... )
€ M((ql,qz,...,qn} U A); applying modus ponens n times, we have i). Q.E.D.

Deduction Theorem.

For any p,q € P and S ¢ P, if q € M(S U {p} U A), then p =+ q € M(S U A).

(See, e.g., Mendelson (1979).)

Proof of Generalized Completeness Theorem 1.

First we prove the case in which S is finite. The if - part of this

theorem has already been established in ii) of Lemma A.2.

Let us show the

only if - part. Suppose that there is no state which satisfies S. Then,

taking any q, € P, both of the following two statements are true.
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For any w (€ Q) which satisfies S, w(qo) = 1;
For any w (€ 1) which satisfies S, w(~q0) =1,
Therefore, by iii) - i) in Lemma A.6, we have qo, ~q0 € M(S U A), i.e., S is
inconsistent. Let us prove the theorem for infinite set S (C P). We can
show that the following i) through iv) are equivalent among each others.
i) S is consistent.
ii) Any finite set S’ (C S) is consistent.
iii) For any finite set S' (¢ S), there exists a state which satisfies S'.
iv) There is a state which satisfies S.
i) ¢ ii) is shown in Lemma A.3. We have proved ii) « iii) above. 1iii) e

iv) is given in Lemma A.5. Thus we completes the proof. Q.E.D.

Proof of Generalized Completeness Theorem 2.

The only if - part of this theorem has already been proved in ii) of Lemma
A.2. We show the contrapositive of the if - part. First we show that if p
¢ M(S U A), then S U {~p} is consistent. Suppose on the contrary, i.e., S U
{~p} is inconsistent, then there exists q € P such that q,~q €

M(S U {~p} U A). By Deduction Theorem, we have ~p » q, ~p = ~q € M(S U A).
It éan éasily verified that (~p - q) » ((~p - ~q) = q) 1is a tautology.
Hence, we have p € M(S U A). Therefore, if p ¢ M(S U A), then S U {~p} is
consistent. If S U {(~p} is consistent, by G.C.T.1l, there exists an w (€ Q)
which satisfies S U {~p}. This w satisfies S, but w(p) = 0, which

completes the proof. Q.E.D.



Appendix 3.

We need the following three lemmas to establish Lemma 1.

Lemma A.7.
* *
For any w', w € Q, if w' =W (ie{1,2})), then, for j (j = i, je(l,2)),

*
gj(ai(w ),aj(w )) = gj(ai(w ),aj(w .

Proof of Lemma A.7. In the light of Assumption 4, it suffices to show that
* *
£i(ag (@) = £;(a; (@) and g (ay(w'),a;(0")) = g;(a (@) ,a;(w)). The
*

first equality is directly obtained by the assumption that w’ =0

Further, from the definition of ~;, we get
1 , , * *
(a.1) gi(aj(w ),a;(w')) = gi(aj(w ) ,a (w ).
By Assumption 2, aj(w') is contained in the left hand side so that we have

* *
aj(w') e gi(aj(w ),ai(w )). Hence, from Assumption 3, we get

gi(aj(w*),ai(w*)) - gi(aj(w'),ai(w*)). Thus, by (a.l), we obtain

By (@ (@), (0))

Lemma A.8.

Let k be an integer = 3. If (ik—3’ik-2’ik-l) is a proper order and wk_3,

W, o be the states such that w3 zik_z @ g
g. (c, (0, ,),a. (0, ) = g. (a, (0, ), c, (o, 5)).
i1 koo k-2 i1 k-2 o1 1k, k-3 i1 k-2

then

Proof of Lemma A.8. Since, by Lemma A.2., we have

“k-3 71
g, (a. (w_D,a. (o)) =g (a, (o . (o ,)). Since,
k-3 k-9 k-2 lk—3 k-2 1k-3 lk-2 k-3 11{_3 k-2

w ’
2 k-2

*
gy (@5 (") ,ay (@), Q.E.D.
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(ik-3’ik-2’ik-1) is a proper order, we can replace i by and obtain

Tk-1
the equality in question. Q.E.D.

k-3

Lemma A.9.

Let k be an integer = 3. If (1k-2’lk-l’lk) is a proper order and w

k-37
W gr ©p and w, are the states such that w3 ®y WLy T w1 then
k-2 k-1
a, (.)€ g, (a, (0, 2),a, (0, 5)).
i k-1 e oo k-3 i1 k-2
Proof of Lemma A.9. By Assumption 3, we get
a. (w ) ) € 8. (. (w ) ), a. (w ) )). Since w L = w , the right
i k-1 e Iy k-1 i1 k-1 k-2 Y k-1

hand side is equal to . (o, (w ), a. (w )). Thus, we have
&y i k-2 i k-2

a. (w ) € g. (a., (w ) ), . (w ) ). From the fact that i, =1 (by
i k-1 i, iy k-2 i k-2 k k-2

the definition of proper order) and Lemma A.8, we have

(a., (w ), a. (w )) = g. (a. (w ), a. (w )), which
k-1 i k-2 i1 k-2 i1 I k-3 i1 k-2

completes the proof. Q.E.D.

Proof of Lemma 1. For k =1, by definition (ai (wo)) is the unique w-
1

sequence with (il) at w = w,. Let us consider the case k = 2. By Lemma

A7, we get g. (a, (wa),a, (w.)) = g. (o, (w;),a, (w,)). By Assumption 2,
11 12 0 11 0 1l i, 1 11 0

a; (wl) is contained in the right hand side of this equation. Hence,
2

a, (wl) € gi (ai (wo),ai (wo)), which means that (ai (wo),a. (wl)) is an a-

2 ) ) 1 1 )
sequence with (il'iZ) at w = wg - Suppose that, for k = 3,
(ail(wo),aiz(wl),...,aik-l(wk_z)) is an a-sequence with (11’12""’lk-1> at
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w. Since, w =, w =, w , by Lemma A.9, we have
k-3 iy k-2 i1 k-1

(a (wk_3),ai (wk_z)). Hence, by the induction

a, (w ) Eg .
i k-l k-2 k-1

k-1

hypothesis and the definition of the a-sequence,

(a, (W),a, (W,),...,c. (w Y,a. (w )) is an a-sequence with
i 0 i, 1 i1 k-2 i k-1
(il,iz,...,ik) at w, which completes the induction. Q.E.D.

We need more two lemmas to establish Lemma 2 and Lemma 3.

Lemma A.1O0.

For any S ¢ P and any q € P, if S U {(q} is inconsistent, then ~q € M(S U T).

Proof of Lemma A.10. Suppose that ~q ¢ M(S U T). Then, by G.C.T.2,

there exists an w’' € Q1 which satisfies S but w'’(~q) = 0. It means that this

w' satisfies S U {q). Hence, by G.C.T.1, S U {q} is consistent. Q.E.D.
Lemma A.1ll.

Suppose that S1 C P and that 52 = {rl,rz,...,rm}, where ri € P
(i=1,2,...,m). Let r' = ry A r, A...A ro

Then M(S1 UusS,uUrT) = M(S1 U {r'}y UuT).

2

Proof of Lemma A.l1ll1l. By G.C.T.2, q € M(Sl V] 52 U T) iff w(p) = 1 for all

w (€ Q) that satisfy S1 U] 52, and q € M(Sl U f{r')uT) iff w(q) = 1 for all

w (€ Q) that satisfy Sl U {(r'}. Here, for any w € Q, w(ri) =1

<
=
m
w

iff w(xr') = 1. Therefore, { wel: w satisfies S1 U] 82 } =

{ weQl: w satisfies S1 U {r'} ), completing the proof. Q.E.D.



Proof of Lemma 2. Throughout of this proof, we denote Dw(al,az,...,ak-l) N

B(f(ak)) by D. Suppose that there exists no w'’ € 1 such that w'’'(q) =
w'(q) V q € f(ak+1) and w'' satisfies D. Then, there exists no w'’' (€ Q)
which satisfies D U Tw,(f(ak+1) U {~p: p € f(ak+l) }), since w'’'(q) = w'(q)

v q € £(a*™) is equivalent to that w'’'(q) =1 V q € Tw,(f(ak+l) U (~p: p €

£y )). Hence, by G.C.T.1, D U Tw,(f(ak+1) U (~p: p € £y 1y is

. - . k+1, . o
inconsistent. Here, from Assumption 5, f(a ) is a finite set, so we can

1

choose r T € P such that Tw,(f(ak+l) U {~p: p € f(ak+ )y }) =

12T

1N T
~r' € B(f(a**1y). Furthermore, by Lemma A.11, we have M(D U Tw,(f(ak+1) U

{rl,rz,...,rm}. Let ¥r' =1, A Y, A...A rm. Then, w'(~r’') = 0 and

{~p: p € f(ak+1)}) UT) = M(DU {(r'}) UT). Hence, DU {r’'} is inconsistent,

which means, by Lemma A.10, that ~r’ € M(D U T). That is, ~r' €
M(Dw(al,az,...,ak-l) n B(f(ak)) UurT) = Dw(al,az,..
2

.,ak). Consequently, we

have w'(~r') = 0 and ~r' € Dw(al,a a5y 0 BT which is a

contradiction to the assumption of w' in Lemma 2. .E.D.
P

Proof of Lemma 3. Suppose that there exists no w'’€ I such that w'’(q) =

w'(q) V qe f(az) and w'' satisfies Tw[al]. It means that there exists no

w'' (€ O) which satisfies Tw[al] U Tw,(f(az) U {~p: p € f(a2) }). Let D =

T [al]. Let Tw,(f(az) U {~p: p € f(az) 1)

w

{rl,rz,...,rm) and let r

I
lai

A r2 AN rm, then in the same way as the proof of Lemma 2, we have w'(~r')
=0, ~r' € B(f(az)) and ~r' € M(Tw[al] UuT) = Dw(al). That is w'(~r') =0
and ~r' € Dw(al) N B(f(az)), which is a contradiction to the assumption of

w' of Lemma 3. Q.E.D.

All



