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Aumann’s notion of correlated equilibrium is extended to games with
payoff uncertainty. In this paper, an action correlated equilibrium is defined
to be a probability distribution over types and actions which is consistent with
the prior distribution over types and is self-fulfilling when each player
observes its type and action from the distribution. This definition is broader,
and mathematically simpler, than the one previously studied by the author,
which was a correlated equilibrium for the ex ante game in behavioral
strategies. The action correlated equilibrium correspondence is shown to be
continuous with respect to the prior distribution of types, proving existence.
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1. Introduction

Some authors have claimed that the Nash equilibrium concept is too restrictive
to include all outcomes of a game which follow from the hypothesis that the
Bayesian rationality of players is common knowledge. Aumann (1974, 1987)
introduced the notion of correlated equilibrium as a remedy to this problem. A
correlated equilibrium allows players to base their actions on a set of observations,
known as a correlation device, which are not included in the original description of
the game. Aumann (1987) showed that a correlated equilibrium is a probability
distribution over the set of players’ actions such that each player optimally chooses
to follow its observed action from that distribution. Similar notions of equilibrium
with correlated strategies have been based on the hypothesis of common knowledge
of rational behavior [Pierce (1984), Bernheim (1984), Brandenburger and Dekkel
(1987)], which was also used by Aumann (1987) to motivate correlated equilibrium.

One question left unanswered by the above literature is how to define correlated
equilibrium for games with payoff uncertainty. Without practical loss of generality
each player’s information about that uncertainty can be taken to be a signal, with its
realization known as the player’s type. Though Aumann’s definition of correlated
equilibrium includes a state space and a signal for each player, these are part of the
equilibrium rather than the original description of the game. If there are states of
nature which affect payoffs, however, then any correlated equilibrium must include
those states.

The purpose of this paper is to provide a definition of correlated equilibrium for
games with payoff uncertainty which preserves the Bayesian rationality of players.
Another such definition has been previously discussed by Cotter (1989b). In that
paper a correlated equilibrium was defined to be a correlated equilibrium for the

game in type-dependent (behavioral) strategies. This solution concept was shown to



have two advantages over the standard Bayesian-Nash equilibrium. First, the set of
correlated equilibria is robust with respect to misspecifications of the underlying
state space. Bayesian-Nash equilibria, unlike strategy correlated equilibria, are
effected by the degree of correlation of player types, which in turn is very sensitive to
small perturbations in the game. Second, the existence of Bayesian-Nash
equilibrium, even in otherwise well-behaved games, is an open question, while
correlated equilibria were shown to exist for such games.

Two problems arise with this definition, known in this paper as strategy
correlated equilibrium. First, the set of behavioral strategy profiles is not generally
compact with respect to any topology for which expected payoffs are continuous.
This complicates the use of probability distributions on the set of strategy profiles,
which is overcome at the expense of some advanced mathematics. Second, there
may be additional opportunities for correlation which are not included in the
definition of strategy correlated equilibrium. Since correlation is defined over
behavioral strategies, any correlation of actions which does not result from the
correlation of types must be independent of the type space.

In this paper, a further extension of correlated equilibrium for games with
payoff uncertainty is introduced. An action correlated equilibrium is a probability
distribution over the set of types and actions such that each player, drawing its type
and action from the distribution, optimally chooses to follow that action. Action
correlated equilibria have the same advantages over Bayesian-Nash equilibrium
that were previously described for strategy correlated equilibria, and are
mathematically simpler.

Both correlated equilibrium concepts can be supported by the use of a correlation
device in addition to the types of players. The difference between them is that in a
strategy correlated equilibrium, the correlation device must be independent of the

types of players, i.e., the prior uncertainty in the model. By contrast, the correlation



device is permitted to depend on players’ types in an action correlated equilibrium.
One interpretation of such a correlation device is that it represents players’
information which was not properly specified in the model. If a correlation device
is interpreted as a mechanism to which players report their types, however, then the
equilibrium would require that players truthfully reveal their types to the
mechanism. This incentive compatibility issue will not be discussed in this paper.
The outline of this paper is as follows. Section 2 provides an example of a game
with a discussion of its strategy and action correlated equilibria, and presents some
basic concepts for later reference. The formal model, with a review of known
results, is presented in Section 3. Action correlated equilibrium is defined in Section
4, while the relationship between the prior beliefs about the game and the resulting

set of equilibria is studied in Section 5. All proofs are in Section 6.

2. An example

Consider a game with two players, 1 and 2, and two states of nature, x and y.
Player 1 believes both states are equally likely, while player 2 observes the state
before play begins. Let Al = {U,D} and A2 = {L,R} be the sets of possible actions for

the players. The payoff matricies are

X L R Y L R
ul an (0,0) ujp 0,0 1,1)
Df ©0 adn D| 40D 0,0)

Following standard terminology, each player’s type is its private observation about
the state of nature. In this game player 1’s type space T; = {t;} (say), while player 2’s
type space T, = {x,y}.

Aumann (1975, 1987) defined a correlated equilibrium for a game without payoff

uncertainty to consist of a correlation device (Z,xZ,n), with n a probability



distribution on Z,xZ,, and for each player i, a function g;:Z; — A, such that g(z,)
maximizes player i’s expected payoff given z, and the function g_; chosen by the other
player. Aumann (1987) showed that without loss of generality, Z, = A, and g; is the
identity function. Therefore a correlated equilibrium is a probability distribution v
over A;xA, such that each player optimally follows its observation 4;.

In this paper, a correlated equilibrium for games with payoff uncertainty is
defined in the same way, except that each z; must include player i’s type. Assume
without loss of generality that Z, = T xA; and g, is the projection onto A,. An action
correlated equilibrium (a.c.e.) is a probability distribution ¢ over the set of types and

actions, {x,y}x{U,D}x{L.R}1, which satisfies the following conditions:

(A1) the marginal distribution of ¢ on {x,y} equals the prior distribution,
(A2) each player, drawing its own type and action from the distribution,

optimally follows that action.
Consider an a.ce. ¢ = (GXUL,O'XUR,GXDL,GXDR,GyUL,GyUR,GyDL,GyDR), with

C L = o(x,U,L) O UR = o(x,U,R) o

DL = o(x,D,L) C.DR = o(x,D,R)

xU

S,y = o(y,U,L) OyuR = o(y,U,R) S,py = o(y,D,L) S,pR = o(y,D,R)

Player 1 draws its action from the distribution, since its type space is degenerate,

while player 2 draws its action and the state of nature. Condition (A1) can be written

S uL*Sxur* CxpL*CxDR = CyuLtOyur* SypLOypr = 1/2- 1

Condition (A2) requires that if player 1 observes U, then the conditional expected

payoff from choosing U is at least as large as from choosing D:

Pl(x,L) 1 U] + Pl(y,R) 1 U] = P[(x,R) 1 U] + P[(y,L)I U] so S uLtOyur > S UROyuL (2a)



and conversely if D is observed:
P[(x,R)| D] + P[(y,L) 1 D] = P[(x,L)! D] + P[(y,R) | D] so SpR*ODL > S,pr*OypR: (2b)

If player 2 observes (x,L) or (y,L), then the conditional expected payoff from choosing

L must be at least as large as from choosing R:
P[U | (x,L)] = P[D | (x,L)] SO0 11 20,p1 (20)
P[DI(x,R)] 2 P[U ! (x,R)] S0 6, pr 2 0,1 1R (2d)
and conversely if (x,R) or (y,R) is observed:
P[D I (y,L)] 2 P[U | (y,L)] SO GyDL > S,ur (2e)
P[UI(y,R)] =2 P[D | (y,R)] S0 S, R > S,DR: (2f)

Any o satisfying (1-2) is an a.c.e. for this game.

Two special cases of a.c.e., both of which restrict the correlation device, have
been studied in the literature. A Bayesian-Nash equilibrium (b.n.e.), introduced by
Harsanyi (1967-8), is an a.c.e. for which Z, is independent of Z ; and T .. A b.n.e.
satisfies (A1-A2) and the following:

(A3) Conditional on any profile of types, the actions of players 1 and 2 are
independent.
(A4) For each player i, the distribution of its action given the profile of types of

all players depends only on player i’s type.

Since this equilibrium concept is well known, the details of calculating the b.n.e.

for this game are omitted. They are the two pure strategy equilibria

S.ur = Syur = 1/2 (3a)



DR = Oypr = 1/2 (3b)

and all distributions of the form

SxuL = SxpL = SyuL = SyDL Sxur = OxDRr = Syur = Sypr- (3¢)

The other special case of an a.c.e., introduced by Cotter (1989a), is a strategy
correlated equilibrium (s.c.e.). An s.c.e. is an a.c.e. for which the correlation device
consists of the type space and a second correlation device which is independent of
the type space. This restriction cannot be stated in terms of the distribution ¢ over
types and actions, but requires the use of state-contingent behavioral strategies?. A
behavioral strategy for player i is a function from its set of types to its actions®. Player
1’s set of behavioral strategies is its set of actions {U,D}, while player 2’s set is
{(Lx,Ly),(Lx,Ry),(Rx,Ly),(Rx,Ry)}. A new game can be defined for which each player
chooses a behavioral strategy and its payoff function is the expected payoff from both
players’ strategies. Cotter (1989b) proved that an s.c.e. is a correlated equilibrium for
this game in behavioral strategies. Each player observes its strategy from the
distribution and its type, then optimally chooses the corresponding action.

Consider an s.ce. p = (pULL’pULR’pURL’pURR’pDLL’pDLR’pDRL'pDRR) for the above

game, with
puL, =PULL)  pypr =pULLR)  pypy =pURLL)  pyrg =pPURR)
PpLL =PD.LyL)  pprr=PD.LR)  pprp =pPD.R,L)  pprg=pPD.RR)
Player 1 always follows its observed strategy if

P[(Lx,Ly) U] + 2P[(Lx,Ry) [U] + P[(Rx,Ry) U]
> P[(Rx,Ry) LU] + 2P[(Rx,Ly) |U] + P[(Lx,Ly) Ul sopr2PURL (4a)



P[(Rx’Ry) l D]+2P[(Rx,Ly) |D]+P[(Lx,Ly) | D]

ZP[(LX,Ly) | D]+2P[(Lx,Ry) | D]+P[(Rx,Ry) | D] SO Ppri 2 PDLR (4b)

while player 2 always follows its observed strategy if
PlU| (Lx,Ly)] 2P[DI(L,L y)] and P[D| (Lx,Ly)] > P[UI (Lx,Ly)] sopy =PprL 0
PDI (Rx,Ry)] > P[U (Rx,Ry)] and P[U! (Rx,Ry)] >P[D| (Rx,Ry)] SO P rr =Pprr @)
PlU| (Lx,Ry)] >P[DI (Lx,Ry)] SOpLR 2 PpLr (4©)
P[DI (Rx,Ly)] > P[UI (Rx,Ly)] SOPprr 2PurL: “D

Any p satisfying (4) is an s.c.e.

The distributions p and ¢ are related in the following way:

Seur = PurL * Purr)/2 Sur = Purr + Purr)/?
Sypr = ¥prr * Pprr)/2 S.pr = Pprr *+ PprR)/2
S,ur = Purr + Pure)/? S,ur = Purr * Purr)/?
S,pr = Pprr + Ppre)/2 S,pr = Pprr * PDRR)/2 (5)

The difference between an a.c.e. and an s.c.e. is that in an s.c.e.,, each player
observes its own type and behavioral strategy, as opposed to its own type and action
in an a.c.e. The latter conveys less information since it is a many-to-one function of
the former. There are several consequences of this distinction.

First, if p is an s.c.e., then the distribution ¢ given by (5) is an a.c.e.. To prove
this, equation (1) holds automatically, and (2a,b) are implied by (4a,b) respectively.
Equation (2¢) is implied by (4c,e), (2d) by (4d,f), (2e) by (4¢,f), and (2f) by (4d,e).



Second, given a distribution ¢ over types and actions, there need not exist a
distribution p over behavioral strategies which satisfies (5). Condition (A4) is

required, which implies the following restrictions:
PlUlx] =P[Uly] S0 O ;1 + O R = GyUL + GyUR (6a)
P[D1x] =P[Dly] 50 6,p1 *+ OxpR = Sypr * OyDR (6b)

Third, if o satisfies (A1, A4), there will generally exist more than one p which
satisfies (5). The reason is that there are eight equations in eight unknowns, but two
linear dependencies, so the system is undetermined. Since p > 0 is also required, the
solution may be unique in special cases, as shown below.

Finally, even if ¢ is an a.c.e. which satisfies (A4), there need not exist an s.c.e. p

which satisfies (5). Consider the following a.c.e.:

S =%wpr =14 Sur=%pr=0 S,y =%,ur =%pL=Oypr =1/8 7)

Despite the fact that o satisfies (A1,A2,A4), there is no s.c.e. which generates it. The

unique solution to (5) and p 2 0 is

=1/4 =0. ®

Purr = PurLr = PDpRL = PDRR Purr =Purr =PbpLL =PDLR

This p is not an s.c.e. since it violates (5¢,d).

One objection to the a.c.e. given by (7) is that it cannot be interpreted as a
mechanism to which players truthfully report their types. Player 2 can manipulate
its information about the observed action by player 1 through its report to the
mechanism. If player 2 reports x, then the mechanism would send (U,L) with
probability 1/2 and (D,R) with probability 1/2, so player 2 would know which action

was received by player 1. If player 2 reports y, then the mechanism would send each



of (U,L), (U,R), (D,L), (D,R) with probability 1/4, so player 2 would not know which
message player 1 received. Therefore player 2 should always report x.

Despite this failure of incentive compatibility, there are two reasons for studying
action correlated equilibria. First, they reflect outcomes in games for which the state
space may have been misspecified in the original model. Assuming that each
player’s type space may actually be T;xZ; rather than T, there is no reason to believe
that Z, must be independent of the types of other players. In this interpretation of
an a.c.e., the mechanism already “knows” players’ types, so it does not depend on
truthful reporting of those types. A second reason is that when each player has a
finite number of types, an a.c.e. is also a correlated equilibrium for the nonstochastic
game constructed by Harsanyi where each type of each player is a distinct player.
This statement does not hold for s.c.e.. Finally, a.c.e. are mathematically simpler

objects than s.c.e., or for that matter, b.n.e..

3. The model
Consider a game with uncertainty and a finite set of players I= {1,...,I}. To
economize notation I denotes both the set and the number of players, and i € I'is a

generic player. Each i has an

action space A, a compact metric space.
privately observed type t; e T, a complete separable metric space.

payoff function uiT<xA —> R, where A=l AandT= IIT

iel el t

For any metric space X, let A(X) be the set of probability? measures on X with the
usual topology of weak convergence. By Theorems I1.6.2 and I1.6.4 of Parthasarathy
(1967), A(X) is a compact (resp. separable) metric space if and only if X is compact

(resp. separable). The information of players about the types of others is given by an

information structure e A(T).



Let pu. be the marginal of p on T,. The assumptions about the payoff function are
i 24 i p pay

straightforward.

Assumption 3.1: For each i,
(a) the mapping t — u(-4) is measurable for each g € A,
(b) the mapping a — u(t,) is continuous for each t € T,

(c) the mapping t — sup lui(~,a)| is integrable.
ae

The standard way of modelling equilibrium for this game has been to transform
it into a nonstochastic game in type-dependent strategies, then apply standard
equilibrium concepts to the transformed game. Player i’s strategy as a function of ¢,

can be defined as either a

distributional strategy ;€ A(T;xA;) such that the marginal of 6;0on T;isu, or a

behavioral strategy s;T; = A(A;) measurable.

Distributional strategies have been used by Milgrom and Weber (1985), while
behavioral strategies have been studied by Radner and Rosenthal (1982), Balder
(1986), and Cotter (1989a).

Given a distributional strategy o, there exists, by Theorem V.8.1 of
Parthasarathy (1967) and the fact that T, is a complete separable metric space, a
regular conditional probability distribution o[- 1¢] on A; given ¢, unique up to a.e.
equivalence. Therefore any distributional strategy is equivalent to a unique
behavioral strategy. The converse result also holds. These statements are

formalized below>.

Theorem 3.2: (a) For any distributional strategy o, there exists a unique (up to a.e.
equivalence) behavioral strategy S; such that Si(ti)(Bi) = Gi[Bi I ti] for measurable Bi c Ai and

a.e. ti'

10



(b) For any behavioral strategy s, there exists a unique distributional strategy o, such

that Gi(WiXBi) = _[wisi(ti)(Bi)ui(dti) for measurable W, cT,; and B,c A,

Let S, be the set of distributional (or behavioral) strategies for player i, and SP =

I1 S.. Define Ui:Sp — R to be the expected payoff to player i:

el

Usy,--8) =_[ J _[ ult,a)s (t)(day)...s (t)(dapuldt). (9a)
T A "4,
ugo,,...,.0) = ITIAI...IAIui(t,a)Gl[dal It,]...0/lda; 1 t]u(d?). (9b)

In effect, U; is defined in terms of behavioral strategies regardless of whether
behavioral or distributional strategies are used.

The original game with payoff uncertainty can therefore be transformed into a
nonstochastic game for which player i’s payoff function and strategy space are U and
S, respectively. Most definitions of equilibrium for Bayesian games have been
constructed by applying standard equilibrium concepts to the transformed game.
Two such definitions are given below.

Use the convention that for any s € sP (resp.ae A, te T), S (resp. a, t-i) is the

profile of strategies (resp. actions, types) of players other than i.

Definition 3.3: A Bayesian-Nash equilibrium [Milgrom and Weber (1985), Radner
and Rosenthal (1982)] is a Nash equilibrium for the transformed game, i.e.,, s esP

such that for each i and 5; € S i Ui(s*) > Ui(si,s_*i).

Definition 3.4: A strategy correlated equilibrium [Cotter (1989b)] is a correlated
equilibrium for the transformed game, ie., v e A(SP) such that for each i and

measurable §:5. — S,

j & Us)ods) = ISP U,(3,(s)),s_)vds). (10)

11



Equivalently [Cotter (1989b)], an s.c.e. is a product space of separable metric spaces Z =
'HI Z,, a probability distribution n € A(Z), and for each i, a measurable function
1€

r::Ti X Zi - A(Al.) such that for all measurable ri:Tl. X Zi — A(A 1.),

*

J ZJ TJ- Aui(t,a)[r ((tz)(da)-r (¢ zi)(dai)]r:(t_i,z_i)(da_i)u(dt)n (dz) = 0. (11)

1'/

Equation (11) states that an s.c.e. is a b.n.e. for the game where each player's type
space is T xXZ, and the information structure on TxZ is uxn. Therefore an s.c.e.
allows players to base their actions on observations which are not part of the

original model and independent of the types of other players.

4. Action correlated equilibria

A major problem with solution concepts that rely on the transformed game
{(U,S)) liel} is that the expected payoff function U, is not generally continuous with
respect to any metric on SP for which SP is compact. For example, give S; the
topology of weak convergence as a subset of A(T,xA)), and SP the product topology.
Then S, and SP are compact metric spaces but U, is not continuous with respect to SP.
An example was constructed by Milgrom and Weber (1985, Example 2). See Cotter
(1989a) for a more detailed interpretation of this problem.

As a consequence, existence of Bayesian-Nash equilibria for this model remains
an open question. Existence of strategy correlated equilibria was proven by Cotter
(1989b), but at the expense of some advanced mathematics which makes the concept
more difficult to apply.

To motivate an alternate definition of correlated equilibrium, suppose players
use an arbitrary correlation device which includes their type spaces, as described in

Section 2.

12



Definition 4.1: A joint distributional strategy is 6 € A(TxA) such that the marginal

distribution of ¢ on T is Q.
Definition 4.2: A joint behavioral strategy is a measurable s:T — A(A).

By Theorem 3.2, there is a one-to-one equivalence between joint distributional and

joint behavioral strategies.

Definition 4.3: An action correlated equilibrium (a.c.e.) is a joint distributional
strategy o, or equivalently, a joint behavioral strategy s, such that for each i and

measurable function o TIxA; > A,

f u.(t,a)c(dtxda)zj u(t,a
Al TxA 1

(t.,a),a )o(dtxda), or (12a)
Tx !

11U

ITxAui(t,a)s(t)(da)u(dm) > ITxAui(t,oc.(t.,a .),a_i)s(t)(da)u(dco). (12b)

v

Let v be an s.ce.. Player i observes (¢,s;) from the distribution on TxSP, then
optimally chooses s,(t). Consider the mapping ®:TxSP - TxA defined by
CD(tl,...,tI,sl,...,sI) = (tl"‘"tlfsl(tl)""fsl(tI))' and the resulting distribution ¢ on TxA. It

is easy to verify that ¢ is defined by, for Wc T and Bi C Ai for each 1,

G(Wxle...xBI) = '[Sp [stl(tl)(Bl)...sI(tI)(BI)]U(ds). (13)

If each player i were to observe (ti'si(ti)) rather than (ti'si)' then its observed action
would still be optimal since less information is conveyed. This proves the

following result.

Theorem 4.4: If v is an s.c.e. and G is the joint distributional strategy defined by (13),

then o is an a.c.e. In particular, every Bayesian-Nash equilibrium is an a.c.e.

13



Since the mapping ® is many-to-one, there are in general many distributions on
SP which generate a particular joint distributional strategy, and not every a.c.e. can
be generated by an s.c.e.. This was demonstrated in Section 2.

Another way of explaining the difference between action and strategy correlated
equilibria is that an a.c.e. satisfies equation (11) except that t and z need not be

independent. This is seen by taking Z, = A,.

5. Similarity of game characteristics

It is useful to know the extent to which the equilibria of the game depends on its
underlying characteristics. Let G be the set of parameters of the game, and A(TxA)
the set of possible outcomes. The dependence of the game on its parameters can be
posed in terms of the equilibrium correspondence §:G -»— A(TxA). The most
important such properties are upperhemicontinuity and nonempty-valuedness.
Though many possible definitions of G exist, in this section attention will be
restricted to G = A(T), the set of information structures p on T. Consider a sequence
(1"} < A(T). Milgrom and Weber (1985) required some complicated requirements on
{u"} to obtain convergence of a corresponding sequence of Bayesian-Nash equilibria.
Therefore the Bayesian-Nash equilibrium correspondence has closed graph with
respect to a complicated topology on A(T). In this section, the action equilibrium
correspondence is shown to be continuous, as well as nonempty and compact valued.

The following lemma provides a test for a.c.e. which may be easier to verify

than Definition 4.3.

Lemma 5.1: A joint distributional strategy o € A(TxA) is an a.c.e. if and only if for all

continuous functions 8;:TxA. — A(A),

1

JTJAui(t,a)o(dtxda) > ITJAIAiui(t,ai,a_i)Sc.(ti,ai)(dai)c(dtxda). (14)

14



In addition, if for each i, A, is a convex subset of Eleor some ¢, then G is an a.c.e. if and only

if (12a), or equivalently (12b), holds for all continuous a..

The following assumption is required to ensure that expected payoffs are

defined for all probability measures on T.
Assumption 5.2: In addition to Assumption 3.1, u; is uniformly bounded.
The main results of this section follows.

Theorem 5.3: The action equilibrium correspondence &:A(T) > — A(TxA) is
upperhemicontinuous. In addition, & has convex graph, i.e., if W, W € A(T) and c € §(u),
c e &), then Ao + (1-A)c” € EAn + (1-A)U") forall 0 <A < 1.

Using the fact that the set of probability measures with finite support is dense in
A(T) and that any such information structure has a Bayesian-Nash equilibrium, the

following result is immediate.
Corollary 5.4: An a.c.e. exists, so & is nonempty-valued.
A consequence of Theorem 5.3 and Corollary 5.4 is the following.
Theorem 5.5: The action equilibrium correspondence & is lowerhemicontinuous.
6. Proofs
A key technical result is the following.

Lemma 6.1: For each m € A(A), the mapping t — IAui(t,a)n(da) is integrable.

Proof: By Theorem I1.6.3 of Parthasarathy (1967), there exists a sequence (n"} c

A(A), each with finite support, that converges to n. By Assumption 2.1(a),

15



IAui(t,a)n"(da) is integrable. Since {JAui(t,a)n"(da)} converges to JAui(t,a)n (da) for
each t, the latter is integrable by Assumption 2.1(c) and the dominated convergence

theorem.

Proof of Theorem 3.2: Given a distributional strategy o, there exists, by Theorem
V.8.1 of Parthasarathy (1967) and the fact that T, is a complete separable metric space,
a regular conditional probability distribution o,[- 1£,] on A, given ¢, unique up to null
sets. Define s5;:T; = A(A)) as in (a). Given a continuous ¢;A; > Randde R, let O, =
(e A JAici(ai)ni(dai) <d). Then s O, = (t,] IAici(ai)c [da, | £] < d) which is a
measurable subset of T, since ¢,[- 1£.] is regular. Since all sets of the form O; generate
the weak topology on A(A)), s; is measurable. This proves (a).

Conversely, let s; be a behavioral strategy. Given an closed set K;c A, let K? =
{al. € Ail pi(ai’Ki) < 1/n}, which is open [Parthasarathy (1967, Theorem 1.1.1)]. By the
Tietze extension theorem [Munkres (1975, Theorem 3.2, p. 212)] there exists c;' e
C(A) with 0 < c? <1, c? = 0 outside K?, and c? =1on K, Then for every t, e T,
si(ti)(Ki) < IAiC?(ai)si(ti)(dai) Ssi(ti)(Ki) + si(ti)(K?\Ki). Since {K?\Ki} is decreasing to the
empty set, 71111);30 si(ti)(K?\Ki) =0so Si(ti)(Ki) = 7111_7)730 J. Aic?(ai)si(ti)(dai). Therefore the map
t; = s,(t)(K,) is measurable as the limit of measurable mappings. Now let 4, =
{Bi c Ai | Bi is measurable and the map t,— Si(ti)(Bi) is measurable}. As just shown,
,‘Zli contains the closed sets, and is obviously closed under complementation and
finite unions, and contains the empty set. Now let {B;’} < A; be increasing to B, a

measurable subset of Ai' Then for every t.e T, s(t)(B.) = lim s(t)(BM, so B.e 4.
1 1 11 1 1—00 11 1 1 1

16



Therefore A4, is a monotone class containing the closed sets, which is the Borel sets
of A ;S0 t; > si(ti)(B i) is measurable for every measurable Bi c A - Defining G; as in

(b) completes the proof. .

Proof of Theorem 4.4: Let a:TxA; > A, be measurable and define Si:Tl.xAl. - A(Ai)

such that for all (t,a,), 8(t,a,) places probability one on a(t;a,). Then
ITIAui(t,ai(ti,ai),a_i)c(dtxda) = ITJAJA.ui(t,ai,a_i)ﬁi(ti,ai)(dai)c(dtxda)
1

-] SP[I TfA_ifA JA u (k0,8 )8, (t,a)(do)s (t)(das (¢ )(da_ udn)]v(ds)

< I s”[‘[ TJ A-ij Aiui(t,a)si(ti)(dai)s_i(t_i) (da_)uld H]v(ds)

= J J uta)o(dtxda) (15)
TA'?
which completes the proof. ..
The following intermediate results will be needed to prove Lemma 5.1:

Lemma 6.2: A joint distributional strategy ¢ € A(TxA) is an a.c.e. if and only if for each

i and measurable Si:TixAi - A(Al.),

ITJAui(t,a)c(dtxda) > JTIAJAiui(t,ai,a_i)Si(ti,ai)(doci)c(dtxda). (16)

Proof: Sufficiency is obvious. To prove necessity, let ¢ be an a.ce. and 8:T;xA; —

A(Al.) be measurable. Let ¢i:TiXAiXAi — R be defined by

i

Q)i(t a.,o i) = I ; "[A _”i(t'ai'a-i)c-i[dt-iXda-i | ti,ai] (17)
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where G-i[dt-iXda-i|ti'ai] is the conditional probability distribution on T xA ;. By

(t

1

hypothesis, ¢.(t.,a L i) < ¢i(ti'ai'ai) for a.e. (ti’ai)' Then

il

fTIAJAiui(t,ai,a_i)8i(ti,ai)(doci)cs(dtxda) = JTi,[AiJAi¢i(ti,ai,ai)6i(ti,ai)(dai)ci(dtixdai)

< jTiin¢i(t a,a,)c(dtxda,) = .[T,[Aui(t,a)c(dtxda) (18)

il
completing the proof. ..
Lemma 6.3: Let X be a compact metric space and Z be a metric space. Let Y < Z be

closed, and let f:Y — A(X) be continuous. Then there exists a continuous f*:Z — A(X) such

that f*(y) = f(y) foreveryy € Y.

Proof: Let {cl,cz,....} be a countable dense subset of C(X), the set of real-valued
continuous functions on X with the uniform convergence metric. Then the
mapping ®:A(X) — [0,1]” defined by ®(n) = (JXcl(x)n(dx),_[Xcz(x)n(dx),...,) is a
homeomorphism of A(X) onto a compact convex subset of [0,117 [Parthasarathy
(1967, proof of Theorem 11.6.4)]. Identify A(X) with its image under ®. Let g:[-1,1] —
[0,1] be continuous, strictly convex, and satisfy g(b) = 0 if and only if b = 0, and let
G:[0,11” - [0,1] be G(w) = rglfng(w") where w™ is the n'" component of w. Note that
G is continuous. Letn,, M, € A(X) satisfy N, # N, and G(w—nl) = G(w-n?_). Then for A
e (0,1), Gw-An,-(1-A)n,) < AG(w-n,) + (1-A)G(w-n,) = G(w-n,). Therefore for fixed w,
the minimum of {G(w-n) | ne A(X)) exists and is unique. Define r:[0,1]” — A(X) to be

r(w) = argmin{G(w-n) | ne A(X)}. By the above arguments, r is defined everywhere,
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continuous, and maps A(X) into itself. The result follows from Munkres (1975,

Exercise 11, p. 221). .

Proof of Lemma 5.1: Necessity follows from Lemma 6.2. To prove sufficiency,
suppose (14) holds for continuous 8?, and let 6:T;xA; - A(A,) be measurable.

Choose € > 0, and let y be such that for all M; ¢ T,xA; with (M) <,

IJ Jd)l(tl,al,oc)& a)(dai)ci(dtixdai)|<e. (19)

z i’

By Lusin’s theorem [Royden (1968, Exercise 3.31)], there exists an open subset
M, c T;xA; with 6,(M,) <7 such that 3, restricted to the complement of M, is
continuous. By Lemma 6.2 there exists a continuous SIC.:TixAi — A(A)) which equals

o ; outside of Mi‘ Then

JTJAui(t,a)G(dtxda) > jTiJAi¢i(ti,ai,ai)ci(dtixdai)
>J .[ J ¢1 ta,a)87(t,a)(do)o(dt xda)

>j J J ¢1(taa)8(ta)(da)c(dtxda) €

i1

=J J _[ utoa_)d(t,a)da)o(dtxda) - €. (20)
TAA 1

i1

Taking € — 0 completes the proof of the first statement. If A, is a convex subset of
Euclidean space for each i, then the same proof can be applied to any function

ai:TiXAi - Ai’ .

Proof of Theorem 5.3: That & has convex graph is obvious. Let {u"} c A(T) be a
sequence converging to i e A(T), and for each 7, let 6" be an a.ce. for u”. Then

. s n
given & > 0 there exists a compact K, T such that u"(K,) < ¢ for every n
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[Parthasarathy (1967, Theorem I1.6.7)]. Therefore Gn(stA) = u"(Ka) < ¢ for each n, so
by the same theorem, {c¢"} is relatively compact in A(TxA). Therefore a subsequence
of {c"} converges to, say, 6 € A(TxA). Renumbering if necessary, denote the
subsequence {c""}.

The equilibrium correspondence £ is obviously convex-valued, so it remains
only to be shown that ¢ is an a.c.e. for pu. It is easily verified that ¢ is a joint
distributional strategy for p. Finally, to verify (14), choose i, and let Sf:TixAi - A(Ai)

be continuous. Given g, for sufficiently large n,

JTJAui(t,a)G(dtxda) > JTJAui(t,a)cn(dtxda) -€

111

2 jTIAIAiui(t,ai,a_i)Sq(t a.)(dai)cn(dtxda) -€

> JTJAIAiui(t,ai,a_i)Sf(ti,ai)(doci)c(dtxda) - 2¢. (21)

Equation (14) follows by letting € — 0, proving that £ is upperhemicontinuous.

Proof of Theorem 5.5 First the domain of £ must be extended to include signed
measures. For any metric space X let A(X) be the set of signed measures L on X that
are countably additive, regular, and are of bounded variation, such that p(X) = 1.

A A ~
Let A(TxA) = {o € A(X)!for every measurable W < T and B < A, and continuous

A A
bounded f:TxA — XK, [ijgf(t,a)c(dtxda)][IWJAf(t,a)G(dtxda)] > 0}. Both are complete
metric spaces. Define the action correlated equilibrium correspondence &: A(X) - —
A . A N N
A(TxA) where (1) = {c € A(TxA)| o satisfies (12a) for every a;}. The proofs of
Lemmas 5.1, 6.2, and 6.3, Theorem 5.3, and Corollary 5.4 are unchanged. Note also

that if p e A(T), then E(1) < A(TxA), so the definition of & is unaffected on A(T).
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To prove that & is lowerhemicontinuous let p e A(T), 6 € &(u), and {u"} < A(T)

~ - ~ A ~
converge to u. For each nlet i = n(u” - p) + u. Then i” € A(T). Let 6" e £("), and
o = (1/n)/(;" + (1 - (1/n))o. By Theorem 5.3, 6" € §(u”), and it is easy to show that

{6"} converges to 6. This completes the proof. ..
g p P
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Footnotes
“Support from NSF grant IRI-8609208 is gratefully acknowledged.
IPlayer 1’s type is suppressed since it is degenerate.

2Distributional strategies can be used in the same way. The relationship between

distributional and behavioral strategies will be discussed in Section 3.

3Strictly speaking, a behavioral strategy is a function from types to probability
distributions over actions. Any randomization over actions can be handled by the

correlation device, so the restriction to pure strategies entails no loss of generality.

“When no other qualification is stated, all measures are Borel, and measurability

of sets and functions refers to Borel measurability.

5Milgrom and Weber (1985) claimed incorrectly that there is a many-to-one

correspondence between behavioral and distributional strategies.
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