DISCUSSION PAPER NO. 84

COST EVALUATION OF STORAGE SCHEMES

by
Jair M. Babad, V. Balachandran

and
Edward A. Stohr

May 10, 1974

COST EVALUATION OF STORAGE SCHEMES

. by

X * . # i
Jair M. Babad , V. Balachandran® and Edward A. Stohr

*
Graduate School of Business, University of Chicago
5836 S. Greenwood Avenue, Chicago, Illinois 60637
Tel.: 312-753-3601

#

Graduate School of Management, Northwestern University
Nathaniel Leverone Hall, Evanston, Illinois 60201
Tel.: 312-492-3603

Suggested SIG: SIGIR - Alternative SIG: SIGBDP

ABSTRACT

In this paper we present a methodology for the cost evaluation of file
system performance. The cost structure we consider takes into account
~the various operations that are required during the processing of data
in the system. The cost evaluation approach is then applied to several
systems. A new storage scheme--a partially ordered file--is proposed,
and experimental data which demonstrate its performance are presented.
Finally, the cost evaluation approach is applied to this proposed
storage scheme. :

COST EVALUATION OF STORAGE SCHEMES
by

7

Jair M. Babad, V. Balachandran and Edward A. Stohr

1. Introduction

In this paper we present a methodology for the cost evaluation of file system
performance. The demands on a file system consist of four basic data processing
operations: insertion-and deletion of records, searching for a specific record,
and sequential processing of the file in some predetermined order. Sequential pro-
cessing is usually preceded by a sorting operation according to the required order.’
Accordingly, an evaluation of a file system has to take in account the cost of in-
sertions, deletions, searching, sorting and sequential processing, as well as the
frequency of these operations. - These costs depend on the organization of the file
and the processing algorithms used; however, the file organization will usually
determine which algorithms should be selected. As a result, we can associate a cost
structure with each file organization. Furthermore, the cost of the sequential pro-
cessing is independent of the file organization, once the records are sorted in the
desired order. Therefore, this cost may be ignored when the cost performance of
the system is considered.

Many authors discuss the evaluation of storage schemes; see Katter (27 or
Lancaster [4] for detailed reviews and references. However, the "micro" approach
we present here, which goes down to individual operations on the file system is
hardly ever encountered. One such example is given by Lefkovitz [5] whose analysis
-is concerned with list structures on disk devices. A similar approach is found in
Babad [1] where the costs of sturage and different storage devices and of individual
—operations--on-the file-system-are minimized by -a partition of the file into subfiles
and subrecords. '

An appropriate cost structure, and the underlying assumptions, are described
in Section 2. The model might be applied to many file organizations, but for ex-
pository purposes we limit our discussion to sequential file systems, e.g., file
directories or tape systems. The usual sequential file organization, in which the
information is always stored in some predetermined order, is analyzed in Section 3.
An alternative organization, which utilizes partial ordering, is described and examined
in Sections 4 and 5. 1In this scheme, the records are stored as a heap (Knuth [37).
Since this is an unusual storage scheme we also describe the processing algorithms,
and include results of some performance tests. '

2. The Cost of Data Processing

As was mentioned above, four basic operations have to be taken into account:
insertions, deletions, searches and sorting (sequential processing). These will be
-denoted by the subscripts i, d, s and p, respectively. Let n, be the average number
of type x operations per time period, and cy the average cost of one type x opera-
tion. cy might be measured in many ways, e.g., number of records accessed before the
operation is completed, cost in monetary units, time, etc. For simplicity, we chose
to measure it as the average number of records accessed, since the required pro-
cessing time and monetary expenses are directly related to this measure. In addi-
tion, we assume that the average size of the file, i.e., the number of records N,
is relatively stable. The costs c, are clearly dependent on the size of the file, but
due to this assumption we may suppress this dependence in the following discussion. .

-2- .

Finally, we assume that requests for service from the file system are satisfied
individually as they arrive; as a result, insertions, deletions, and searches in our
cost equation pertain to individual records. :

Using this notation, we get as the average processing cost per time period

=n,c, +nec, +nec +nc ' 1
¢ i’i dd S s .PP (1)

The cost coefficients c, are dependent on the file organization, and our aim is

to find a file organization that would minimize the total expected cost C, subject

to the exogenous data as ‘given by the nx's. '

It is worth noting that the need for sorting .depends heavily on the order in
which the file is kept. Specifically, if a sequential processing has to be done in
the same order in which the file is usually maintained, there is no need for sorting.
Therefore, we assume that one specific order is the main ordering for sequential pro-
cessing, and we denote by n; the average number of sequential processing require-
ments according to this order. Accordingly, we also denote by n, the average number
of other sequential processing requests during a time period. However, some updating
processing might be needed even for the n, requirements, as is illustrated in the
next section. Therefore, we replace the c, cost value by ¢, and Cyo which are the
costs associated with nj, and n, respectively. Equation (1) is then rewritten as’

=n.c. +n + n + n +n ¢ 2
¢ 101 dcd scs n’m a a (2)

3. The Cost of Sequential Processing

In order to illustrate the usage of the cost structure as described above, we
apply it to sequentially stored data. For example, such data might be the directory,
or index, of a file system. Such a directory is usually ordered according to some
key, and major efforts are invested in keeping it updated; thus, insertions and
deletions result in considerable processing. Several approaches for the updating
problem are known, and some will be described below; we, however, assume that
indirect addressing or linkage schemes are not used.

Consider first the case when the directory is updated by insertions in place
and by physical deletion of deleted records. As a result, deletions and insertions
entail shifting of records. On the average, half the directory has to be shifted for
each insertion or deletion (assuming that these operations pertain to records whose
key is uniformly distributed in the directory). This shifting thus requires N oper-
ations -N/2 for getting a shifted record, and N/2 for putting it in its new place.
In addition, a search is associated with insertions and deletions, in order to find
the location in which the record has to be inserted or the deleted record. Thus

<y = 4 = cg + N

The cost ¢y of searching depends on the searching algorithm that is employed, and
this in turn depend on the storage media on which the directory is stored. If the
directory is stored on a sequential device, a sequential search is needed, and this
takes on the average N/2 accesses. On the other hand, if random access is available,
binary search might be used and cg is reduced to about Log N (logarithm in base 2 is
assumed throughout this paper). As for sorting, we note that ¢, = 0, while ¢, is pro-
portional to N log N, with a proportionality constant k, say. Summing up all the cost
elements according to (2) we get as the expected total cost

C = N(3ni + 3nd + ng + 2knaLogN)/2 (3)

1s

-3-
for a sequential directory on a sequential storage device, and

= +
Cpp =Ny +0y d

for a sequential directory on a random access device. As is clear from the con-
text, Clr < C1

Another strategy for updating the dlrectory marks the deleted records, rather
than deleting them physically. In this case, prior to any sequential processing
the directory is "cleaned" by copying the unmarked records into a new directory.
In this case, the file size changes from time to time. Specifically, it is N
immediately after a sequential processing, and it increases, by the number of deleted
records, till the time of the next sequential processing. Assuming uniform pro-
cessing requirements over the time periods, the number of deleted records between
two consecutive sequential processings is nd/(na + n,). Therefore sequential pro-
cessing is preceded by the reading of N + ng/(n, + ny) records and the rewriting of
N records into the '"clean" directory, which might later be sorted. In other words,
c; and ¢, as given above have to be incremented by N + N + na/(na + ny). Similarly,
the file size for searching and insertions is on the average N + nd/Z(na.+ nm). The
cost of deletion has to be modified into 1 + ¢4, of which c¢g is attributed to the
search for the record to be deleted, and the deletion itself is done by one writing
operation of the marked record. Summing up all the cost elements of the equation (2),
we get after some algebraic manipulation that the expected total cost is

+ knaLogN) + (ni +n, + nS)LogN %)

C, =N(@GBn, +n, +n_+4n + 4n_ + 2kn LogN)/2
2s i d s a m a _ (5)
+ + 1+ + + +
+nd(3ni. ny 1 n, 4na Anm)/h(na nm)
for a directory on a sequential storage device, and
= + + + + + + +
C,. N(ni knaLogN Zna an) + (ni n, na) Log(N nd/Z(na nm)) ©

+ + 1+ + +
nd(ni 1 Zna 2nm)/2(na nm)

for a directory on a random access device. As before, we know from the context that
Cyp < C2g- A direct comparison of Cq,. and Cy,., for example, is notationally hard.
However, once the exogenous data of N and the nx's is known, the choice of the up-
dating strategy is immediate.

Other updating strategies might be used. For example, insertions might be put
at the end of the directory, which is updated and rewritten every time a sequential
processing is done. Alternatively, rewriting of the directory might be deferred and
be done less frequently. Similarly, insertions and deletions might be accumulated,
and the directory updating in this case consists of merging the old directory with
the batched transactions. 1In this case, though, searching might yield erroneous
results, since the file is not updated. Or, several of these strategies might be
combined. The cost equation can be easily written for every given strategy, and
the most appropriate strategy can be chosen for given exogenous data However, we
will not discuss this file organization further here.

4. A Partially Ordered File - Description and Experimental Results

In the preceding section we saw that the costs of insertions and deletions are
relatively high. Since these operations are of the utmost importance if the file
has to remain updated, a strategy which reduces the costs of insertions and deletiocns

-4~

seems attractive. From the discussion in the last section it is clear that the main
obstacle for such a strategy is the ordering restriction that was imposed on the file.
Thus, a storage scheme in which the file is partially ordered suggest itself.
Clearly, some tradeoffs exist between the processing of ordered and partially
ordered files. 1In a partially ordered file, sorting, or partial sorting, is always
needed; thus the costs, c_ , associated with n; go up, relative to an ordered file.
“As for ¢y, it is the same for both storage schemes, because in either case a full
sorting is required. In addition, the searching costs in a partially ordered file
might increase, relative to an ordered one, since binary search cannot be used with-
out a full underlying order. On the other hand, a judiciously chosen partial order
might considerably reduce the cost of insertions and deletions. Thus, for many com-
binations of exogenous data of N and nx’s, a partial order will be preferrable.

The partially ordered storage scheme which we propose is the heap structure
(Xnuth [3]). Such a storage scheme might be described as a balanced binary tree, in
which the value that is stored at the root of any subtree is greater than (or equal
to) the values that are stored in other nodes of the subtree. The heap structure,
in contrast to many other tree schemes, may be used without any additional links,
with consequent savingzs in storage. Specifically, the "sons" of a root have the
indices 2 x index (root) and 2 x index (root) + 1. 1In addition, the construction
of a heap scheme, and its conversion into an crdered file, can be done rather fast.
In particular, insertions into a heap take at most LogN data shifts and comparisons,
while sorting is proportional to NLogN (Knuth [3]). We also would expect that dele-
tions in a heap are proportional to LogN.

In order to confirm these conjectures and to derive numerical relations, we
experimented with files of various sizes. For this experiment, we prepared a sub-
routine which manipulated the heap structure; specifically, this routine inserted,
deleted and searched for records, and also sorted the heap into an ascending ordered
file (see the Appendix for details). Various h2aps were constructed randomly, with
sizes varying from 1000 to 6000 records. Several thousand operations of of dele-
tions, insertions and searches were randomly performed on each heap. For each
operation, we measured the number of index comparisons, data value comparisons, and
data shifts. The results are discussed in the following paragraphs

Search: Since the data is not ordered, it seems plausible to use a linear search,
which requires about N/2 data comparisons. However, we might utilize the
heap structure, and search the tree in a more efficient manner. We chose
the following strategy: search the root; then the subtree with the smallest
son as a root, and then the remaining subtree; such a search was accom-
plished with the aid of a stack of size [LogN] + 1 (where [x] is the
largest integer not exceeding x). A regression analysis revealed that

Figure 1: An example of a heap structure

~5-

= number of value comparisons = 0.4245N - 20.69 (7)
(0.0175) (57.20)

with coefficient of correlation of 0.9916 where the numbers in parentheses
are the standard deviations of the coefficients.

€2

Insertions: Using the standard bubbling operation of the first phase of the heap

sort (Knuth [3]), we found that the number of index comparisons, value
comparisons and data shifts were essentlally constant (1ndependent of N).
The results we got were:

Table 1 - Insertions

_ - mean standard deviation
index comparisons 1.25 0.0129
value comparisons 0.751 0.0113
data shifts 0.751 0.0117

These results are easily explained. About half of the heap elements are
stored in the lowest level of the tree, and about three quarters are
stored in the two lowest levels; thus, we expect that an insertion will
store a new record in the lowest level in about half of the cases, and
in the two lowest levels in about three quarters of the possible cases
(with similar observations for higher levels). This is true for any
value of N, and therefore we would expect that these measures will be
independent of N.

Deletions: Our strategy for deletions is as follows. Once a to be deleted record

Sorting:

has been found (after a search), we insert in its place the last element

of the file. We then check whether we have to bubble it up (as in the
insertions case) or to bubble it down (as in the second phase of the heap
sort). As was the case with insertions, and for similar reasons, we

would expect that the measures for bubbling up or down would be independent
of N. For bubbling up we obtained the same results as for insertions,
while for bubbling down we obtained

Table 2 - Deletions

mean standard deviation
index comparisons - 2.15 0.0148
‘value comparisons 1.36 0.0270
data shifts 0.82 0.0134

Notice that these measures differ from those for insertions, and especially
from those for comparisons. This is easily explained: while for inser-
tions (and bubbling up) the record is compared with its "father'", we com-
pare the record in the deletions (and bubbling down) case with its sons.

For the partially ordered heap scheme, a full order might be achieved by
performing the second phase of the heap sort, as given by Knuth [3]. as
Knuth asserts, all the operations are proport10nal to NLogN. Our results
are given in the table below:

-6-

Table 3 - Partial Sorting Regression

Coefficient of NLogN Constant
index comparisons 0.95251 -181.2
(0.0028) (111.97)

value comparisons 1.6188 -1368.0
' (0.6075) (299.39)

data shifts 0.87496 -443.9
(0.0029) (116.03)

(the values in parentheses in this and the next table are the standard
deviations of the coefficients); all regressions had 1.0 as coefficient
of correlation).

For a full sort, as required for the n, cases, we obtained

a

Table 4 - Full Sorting Regression

Coefficient of NLogN Constant
index comparisons 1.2046 696.3
(0.0069) (273.58)
value comparisons ©1.7933 -833.5
(0.0040) (159.05)
data shifts 1.0496 94.039
(0.0019) (76.86)

Our results may be compared with Loeser's [6] observations. He measured the per-

formance of various sorting routines, among them TREESORT3 which is similar to the
~heap .sorting routine. He counted the (value) comparisons, stores and fetches. The
results we got for value comparisons with his findings for large random arrays. How-
ever, while we got the same coefficient of NLogN over the whole range of tested
files, his coefficients for smaller files are smaller than ours. Our results for
data shifts have to be compared with his values for 'stores'. We got consistently
smaller values, mainly because our routine was optimized in this respect. Again,

our values were consistent on all the tested range of file sizes, in contrast to
Loeser's results.

5. The Cost of Processing a Heap File

Using the results of Section 4, and the formulations of Section 2, we get the
following cost values for a heap storage scheme:

c; = 0.751 x 2 = 1.52 (we multiplied by 2, since each data shift involves -
both read and write operations).

c,: here we have to take into account the cost of searching, as well as the
costs of data shifts both for bubbling up and for bubbling down. But,
the values for data shifts in both cases are quite similar--0.75 and 0.82
Being conservative, we employ the higher value, yielding
cg =cg +0.82 x2=c + 1.64.

c : we notice that the constant in the regression equation (7) might be

ignored, and so cg = 0.424N (we do not have to multiply here by 2, since

searching involves reading only). .

c ¢ 2 x 0.875 NLogN = 1.75 N Log N from Table 3 (again, we ignore the

regression constant).

-7-

Similarly ¢, = 2 x 1.05 N LogN = 2.1 N Log N from Table 4. Thus, the total expected
processing cost for one period is '

= (1.52n, +1.64n) +N [o.azs(nd +n) +(1.75n_ +2.1n) LogN] (8)

We note that the factor k that was used in equations (3)-(6) is equal to 2.1, as

was derived for c

a above. It is hard to compare the results of (8) with the former

results; however, for any given exogenous data such a comparison can easily be made.

6.

Conclusion

In this paper we presented a simple and effective approach for the performance

evaluation of .a storage scheme, and demonstrated its usage for several file struc-
tures. We proposed a new file organization, its associated maintenance strategy,

and analyzed--experimentally--its performance. Much work remains to be done in this
area: more detailed cost structure, more accurate estimations of the cost coefficients,
extensions to linked and multi-linked files, and so forth. An additional direction

for research is to extend our work to dynamic, non-stable files. As our results
suggest, a partial order scheme might be advantageous for dynamic files, due to the
relatively low cost associated with insertions and deletions in such schemes.

References

Babad, J. M. '"A Record and File Partitioning Model". Research Report No. 7358,
Graduate School of Business, University of Chicago, Chicago, Ill., 12/73.

Katter, R, V. "Design and Evaluation of Information Systems'. 1In Annual Review
of Information Science and Technology, Vol. &4, Encyclopedia Britannica, Inc.,
Chicago, I1l., 1969.

Knuth, D. E. The Art of Computer Programming. Vol. 3, Addison-Wesley Publishing
Co., Reading, Mass., 1973.

Lancaster, F. W. and Gillespie, C. J. "Design and Evaluation of Information Systems'.
In Annual Review of Information Science and Technology, Vol. 5, Encyclopedia
Britannica, Inc., Chicago, Il1l., 1970.

Lefkovitz, D. File Structure for On-Line Systems. Spartan Books, New York, 1969.

Loeser, R. "Some Performance Tests of Quicksort and Descendants'. Communication
of the ACM, Vol. 17, No. 3, 3/74, pp. 143-152.

Appendix: Hezp Maninulation Routine

Below we list the routinme which

ture. This routine inserts records

searches for a specific record, and

sort a file which is not structured

purpose,

and the reader is referred

we used for the manipulation of the heap struc-
into the heap, deletes records from the heap,
sorts the heap. However, this routine does not
as a heap. Many routines exist for the latter
to Knuth [3} or Loeser ({6].

SUBROUTINE HIZA2 (X eMXgNXsY]1eISsMSINOP)

Comem PARTIALLY GROERED HEAR MANIFULATIONS ROUTINE
Coeme HEAP Xy MaX, GIZE MXs USED SIZE NX
Comem © Y1l INPUT VALUE 10 8E MANIPULATEDs REDUNDANT FOR SORT
Comem STACAK = ISs SIZE MS = CEIL(LOG(MXA))3 uUSED IN SEARCH
Cowe= NUP DESIGMNATES OPERATION ON INPYT:®
Comme 1=StARCHy - 2=UELETEs 3=IMSERTs 4=50FT
Comeam ON RETURNs NOP FLAGS ROUTIMNE#S SUCCESS: :
Comm= 0=SIZE ERRORy =1i=FAILED SEARCH/DELFTEs 2=INDEX FOR
"Commm= : SUCCESSFUL SEARCH/DELETE, UNCHANGED FOR SUCCESSFUL
Comem . INSERTION/SORT
Ceem- TEMPORARY. VARTABLES NAMES ARE DERIVED FROM MAIN VARIABLE
Coma- FIRST LETTER. INGEX PRECECED BY K
DIMENSION X{MX)sIS(MS)

Coem- CHECK INPUT PARAMETERS :
’ T IF{MAGGT a0 ANDeMS o GTeUANDeNXosGE«DeAND NX.LE MXoAND
1 NUP e GE2 1 o ANDNOPSLEL4)GO TO 10

Comm= ERROR IN INPUT OR ARRAYS SIZE OR ARRAYS FILLED .
5 NOP=0
RETURN : : N i
Comemm PARAHMETERS (Ol.Ke BRANCH TO OPERATION
- 10 GO TO (7G+70922C+15) sNOF . o
C>>>>>>>>>>>>> SORT == FINAL STAGE =~ HEAP TO ASCENDING ORDER
Commn METHOD == RCOT MOVEC TO ENGse WHILE LAST ELEMENT
Come= BUBtLED FROM RGOOT TO LEAVES
15 KX=NKX
20 IF(KXeLEel)RETURN
X1=x{KX)
X(KX)=4(1)
CKX=KA=]
Kx1=1

30 KX2=KX]1+KK1

IF (KX2=KX) 40450460
40 TF{X(KX2)eLTeX{KX2+1))IKX2=KX2¢1
50 IF(X1eGE«X(KX2))GO TO 60

Coma= BUBBLE VIA LARGEST SON
X(KXx1)=X{KX2)
KX1=KX2 T
Come=- TRY TO BUBBLE TO LOWER LEVEL
G0 10 30
60 X{kxly=xl
GO T0 20 R
C>>>>>»>>>>>>>> SEARCH +ee¢ KX 0 IF NO LUCKe ELSE INDEX
70 KX=0 C
KNOP=NOP
" Comw- TEMPORARY FOR NOP NOP IS SET FOR FAILURE
NOP=-1
IF (NXeLE«O)RETURN
KS=0
Kx1=1
Comm= KS STACK POINTERs KX1 CURRENT NODE (INITIALLY ROOT)

80 IF(Yl=X{(KX1))G0+140+130
90 KXI=KX1leKX1
Cocem SEARCH SONS
IF{kX1=NX)100+804+130
100 KX2=KX]1e¢1l

Comum= COMPARE BROTHERS ASSUME MAX = RIGHT ONE
IF(X{(KX1)eLE«X(KX2))GO TO 110
KX1=KXx2
Cowmm MAX = LEFT BROTRHER
Kx2=Kxl1-=1
110 ®KS=KS5+]
Conmw MAL SUMN TQ TOP OF STACK

\

IS(KS)=KXZ2
GO 79 53

135 IF(KSeLELLIRETYRY
Comm= = TURN ON EMPTY STACKS ELSE TAKE NODE ON TOP
KX1=1S5(K>2)
- KS=KS-1

GO TV 8§
140 KNCPR=rX}
Come- SUCCESSFUL SEARCH
CIFAKNUP eEu e 1) RETURN
C>>>>>>>>>>>3> PDELETE .
IF(NXeGTWL1IGO TO 170
"Commm=- DELETC LONE ELEMENT
NX=0
FP.U“\
170 x1=x1{NX) : .
Coma- NGT LONE ELEMENT INSERT LAST ONF IN PLACE OF DELETED

MESNA=]

KI:L ’;':,

FiRALEL1)CO TO 1890

Kv?-.(,; 7
Ceem- ComFarE WITH FATHER
) IF(X1=X(KA1))180+2L09250
Cove- LSS THAN FATRER BUBRLE AS IN SORT
180 KX1=XAexX o
IF{KAL-MAYIS50eZ200+210
160 TF{X(XX1)aLTe X(KXI*I))K!A Klel
200 IF{RL.3EX{KAIIGD TO 210
X{KAIT=X{KAL)
KA=KAL
GO0 70 1890

210 2{xx)=x1
RETURN
C>>>>>>>>>>>>> [NSERT -- BUBBLE TO ROOT
o ALSD LSED 8Y DELETE
220 IF(NASCLMAIOD TO 5
yi=vi g L .
NX=NXA+]
KX=NAX
240 TFIKX.LE«1)GO TO 260
KX1=KX/2 : ' ' i o .
Commm KX1 IS FATHER
O IF(X1eLE«X{KX1))GO TO 260
250 X(KX)=X{KX1) '
KX=x Xl _
Covu=- TrY TO CONTINUE BUBBLING
) GO0 70 240
260 X{KX)=X1
RETURN
END

