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by
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Abstract

This paper uses "genecralized numerical representations” to extend some of
the ideas underlying classical utility theory, applying them to imperfectly
ordered preferences in general and semiordered preferences in particular.
It offers a wunified geometric approach, where the representations help
visualize the relationship between suborders, interval orders, semiorders,
and weak orders: increasingly stringent conditions on the preference
relation give rise to increasingly intuitive association between the stated
preferences and the "utility numbers" assigned to alternatives. Technically,
the main new results are axiomatizations for fixed threshold representations
of the "just noticeable difference” when the set of alternatives is not
necessarily countable. For the special case of "lottery spaces"”, additional
axioms that relate to the special properties of the space characterize the
semiordered preferences whose (fixed threshold) representation can be

made to conform with the familiar "expected utility" structure.



NUMERICAL REPRESENTATIONS OF IMPERFECTLY ORDERD PREFERENCES
(A UNIFIED GEOMETRIC EXPOSITION)

1.INTRODUCTION.

The representation of pairwise preferences by assigning numerical values to
alternatives is central to the scientific study of choice behavior. The classical
representation assigns "utility numbers” to all elements in a given set of alternatives
so that the number (utility) u(x) assigned to an alternative labeled x is higher than
the number u(y) assigned to any alternative y if and only if x is preferred to y. This
paper is concerned with the modern extensions of utility theory, dealing with
preferences that are not completely ordered and thus do not admit a classical

representation.!

The significance of partially ordered preferences in almost all of the social
sciences can hardly be overstated: they are prominent in such diverse fields as the
study of stimulus-response behavior in psychology, collective choice in economics
and political science, and multiple-criteria decision-making in management science.
But results on the representation of imperfectly ordered preferences have typically
been somewhat fragmented (and have sometimes involved only "partial”
representations). In an attempt to enhance and unify the theory, we use in this
paper a formal structure that we call "generalized numerical representation” of
preferences, offering the following contributions.

A unified framework that puts the individual results in proper perspective.

A geometric interpretation that makes the results, and especially the relationships
between them, more intuitive.

A separation of wvarious distinct elements which are inherent in the classical utility

representation, showing how each of these is associated with different properties of

1 Besides the forthcoming KLST, surveys with extensive references are given in, e.g.,
Roberts (1970) or Fishburn (1970b, 1985).



the preferences that are to be represented.

A strengthening of some of the ecarlier results, especially for very rich sets of
alternatives (sets of high cardinality).

A characterization of the semiordered preferences over lotteries which can be

represented by utility numbers that satisfy the mathematical expectations structure.

The classical representation of preferences by a utility function u(.) comprises
a number of intuitive features, which have been treated jointly for so long that their
distinct characteristics are often overlooked. Suppose that some alternative x is
(strictly) preferred to another alternative y. A classical utility function satisfies all of

the following properties.

p—

u(x)>u(y).

2. If z is not preferred to y, then u(z)<u(x).

3. If x is not preferred to z, then u(z)>u(y).

4. u(z)>u(w) if and only if there is some alternative t such that t is preferred to w but
not to z, or z is preferred to t while w is not.

5. If z is not preferred to w, then u(z)-u(w)<u(x)-u(y).

6. There is a positive number & such that if z is not preferred to w then

| u(z)-u(x) | + |u(w)-u(y) | >¢.

We shall show below that these features can be attained also for preferences that do
not admit a classical utility function. We shall also identify which properties of the

preference relation are essential for the attainability of each of these features.

The six conditions stated above do not imply one of the key features of classical
utility, namely that u(z)>u(w) only if z is (strictly) preferred to w. As will be shown
below, in the generalized numerical representations u(z)>u(w) can somectimes reflect
an advantage of z over w which is implicit in the stated preferences even though it is

not explicitly expressed. In such cases, the failure to give a clear preference
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statement can be attributed to limited powers of discrimination, e.g. the advantage of z
over w may be said to be below the "just noticeable difference (jnd)". Our discussions

below include both variable-jnd and (the more restrictive) fixed-jnd representations.

An especially extensive research ecffort has been devoted in the literature to
representations of preferences that reflect attitudes towards risk. In this case the
objects of choice are '"lotteries”, specified by alternative probability distributions
over a common set of "outcomes". The classical analysis concentrates on the so-called
"expected utility hypothesis”, i.e. the specification of conditions on the preferences
over lotteries (e.g. transitivity, continuity and independence) that guarantee that the
utility value assigned to a lottery can be written as the expected value of utility
numbers corresponding to the possible outcomes. Here the modern extensions tend to
relax the "expected utility" structure, but typically they maintain the basic premise of
classical utility, i.e that the utility number assigned to one lottery be higher than the
number assigned to another lottery if and only if the first is preferred to the second.
In this paper we also show how (and when) "non expected utility" can be extended in
a different way that maintains the mathematical expectations structure, but relaxes
the classical condition that any two lotteries for which no preference is stated be

assigned exactly the same utility value.

The paper is organized as follows. Section 2 gives some preliminaries on
framework and notation. Section 3 gives a first overview of our geometric
interpretation and unified perspective of numerical representations in the limited
context of countable sets. We show how increasingly stringent conditions on the
preference relation give rise to numerical representations that exhibit increasingly
intuitive properties of monotonicity between the stated preferences and the
numerical values assigned to alternatives, as indicated by properties 1-5 above. This is
based to a large extent on previously published results, but the unified framework

makes these results more intuitive and they are also often stated in slightly stronger



versions than before. We also note that property 6 above is in effect non-restrictive
in the context of countable sets. Section 4 introduces the notion of "limited
discrimination preference order". It is shown how such preference orders can be
partially ranked by their "powers of discrimination” (and also how some seemingly
intuitive ways to devise such a ranking can ecasily fail). Section 5 extends and
modifies the analysis of section 3 to uncountable sets. Section 6 is devoted to
preferences over the (uncountable) set of all lotteries with a common set of outcomes,
showing when a limited discrimination preference order can be represented by a
(generalized) utility function that maintains the expected value structure. The last
section 7 offers a few concluding remarks on "uniqueness", more specifically on the
range of permissible transformations of generalized numerical representations. The

formal proofs of our results are presented separately in an appendix.

2. BINARY RELATIONS ASSOCIATED WITH PREFERENCES.

The notational framework for this study is as follows. Let A be a non-empty set
of alternatives. Preferences among alternatives are considered as pairwise
comparisons; comprehensive collections of such comparisons are formalized by
binary relations. A binary relation on A is a subset B of the set AZ=AxA of all
ordered pairs of alternatives. xBy is synonymous with (x,y)e B, i.e. the said relation
applies in a comparison between the alternatives x and y. We also adopt the useful
notation whereby a concatenation B1B2 of any two binary relations By and B2 (on a
common set A) denotes a binary relation on A by

B1B2={(x,y)e A2 : xBjz and zBpy for some ze A}

This concatenation can be extended recursively.

Our primitive binary relation, to be denoted by P, will be strict preference,
which is asymmetric (i.e., xPy implies [not yPx]). Absence of preference in both
directions is denoted by I, viz.

I={(x,y)e A2 : not xPy and not yPx}



The relation 'T' is commonly referred to as indifference. Note that here it includes
pairs which in common parlance might be considered "incomparable": our choice of
strict preference as the primitive relation shuns the distinction between pairs from
which choice seems impossible, and pairs from which it is considered a matter of
indifference. As defined, indifference is necessarily reflexive (xIx for all xe A) and
symmetric (xIy implies yIx), but not necessarily transitive (xly and ylz need not

imply xIz).

The pairwise preference statements are often taken to reflect to one degree or
another some underlying well ordered "standings” of all alternatives. This is clearly
the case when P is a weak order, i.e. PP implies P and II implies I (equivalently
(Pul)(Pul) implies Pul). But even when P is not itself a weak order, there are some
inferences that can be drawn from the stated preferences about the presumed
underlying standings of the alternatives. To formalize this, let

xQy if xPz and not yPz, or zPy and not zPx, for some ze A.
ie. Q=P(PUl)u(PUI)P=PIUIPUPP.

Borrowing a term from consumer demand theory, we interpret Q as "revealed
preference”: xQy may apply even when xPy does not, in which case an advantage of
x over y is indirectly revealed by comparisons with some other alternative.! Since I
is reflexive, P implies Q, i.e. Q augments the stated preferences P by pairs of
alternatives from 1 whenever an implicit preference is detectable. As defined, Q is
irreflexive but not necessarily asymmetric. The symmetric part of Q represents pairs
of alternatives for which there is contradicting evidence as to their relative
standing: one alternative appears to be better in some contexts (comparisons with

some z) while the other alternative seems better in other contexts (in general, the

IThe concept of implicitly revealed preferences appears in the literature in various
forms and under a variety of different names. Luce (1956) suggested PIUIP, calling it
"the relation induced by P", and Fishburn (1985) termed the asymmetric part of this
relation "the sequel of P". KLST call the dual of the complement of Q "the two-sided
quasiorder induced by P".



implicit preferences may even contradict the stated preferences, as xPy does not
preclude yQx). Such contradictions do not appear in the asymmetric part of Q and in
the symmetric complement of Q, defined by

xP*y if xQy and not yQx

xEy if [not xQy] and [not yQx].
The relation Q need not be transitive even when P is (for example, consider
A={x,y,a,b,c} with P={(a,b),(b,c),(a,c)}, where xQb and bQy but not xQy). On the other
hand, the complement of Q is always transitive, even if P is not (this is apparent when
one observes that [not yQx] applies if and only if yPz=xPz and zPx=zPy). It follows
that P* is always transitive: suppose xP*y and yP*z, then [not zQy] and [not yQx] imply
[not zQx], and ecither xPw(Pul)y, implying [not zPw] and subsequently xQz, or
x(Pul)wPy, implying wPz and again xQz. Thus P* gives a (possibly partial) ordering
of the underlying standings of all alternatives on the basis of uncontradicted

evidence, either direct (in P) or implied (in Q).

When xEy the two alternatives are said to be "equivalent”, because there is no
evidence, not even implied or contradictory, of any advantage of one over the other.

Indeed, E is an equivalence relation, being reflexive, symmetric and transitive.

Remark: It is possible to extend the inferences about the relative standings of the
alternatives to the transitive closure of Q (rather than limit them to the one-
intermediate-step comparisons used for Q). This can only generate contradicting
inferences, and only for pairs in E (not for pairs in P*).] We shall not follow this
line, but only note that the subsequent results on the numerical representation of Q

also apply to the extended interpretation of revealed preference.

When there are no contradictory inferences about the relative standings of

the alternatives, i.e. when Q=P*, the preference relation P is a "semiorder”, a concept

1., if the transitive closure of Q is denoted by Q, and its asymmetric part and its
symmetric complement are denoted by P* and E, respectively, then P*=P* and E cE.



that is discussed at some length in the next section. When P is a weak order then it is
readily verified that also Q=P and E=I, so that all potential inferences are not only

non-contradictory but also explicitly stated.

3. NUMERICAL REPRESENTATIONS OF PREFERENCES
OVER COUNTABLE SETS.

The essence of numerical representation for preference relations is the
assignment of numbers ("utilities") to the decision-relevant alternatives so that the
assigned utilities represent the given preference relation as intuitively as possible
on the basis of the familiar ordering of the real numbers. In this section we show
how increasingly stringent conditions on the preference relation give rise to
increasingly intuitive representations. To put the analysis in clearest perspective, we
separate issues that are associated with the level of consistency in preference from
the more technical difficulties that can arise if the set of alternatives has very high
cardinality. Accordingly, we start by limiting the discussion in this section to
preferences over countable sets, i.e., sets which are either finite or denumerably
infinite (like the integers). The presentation is based on previously published results,
some of which are given here in slightly stronger versions. The proofs for the

strengthened versions are indicated in the appendix.

The following basic notion is the cornerstone of our analysis.

Definition G1 A generalized numerical representation (GNR) of a binary

relation BcAZ2 is a pair (v,S), where v:A— %R is a mapping from A to the real line %% and

S is a subset of ®2, such that (x,y)e B if and only if (v(x),v(y))eS.

Example. Figure 1 below gives a binary relation comprising pairwise comparisons
based on the encounters in a chess tournament (the "candidates” - for world
championship - tournament held in Bled, Yugoslavia, 1954). The left side gives the

conventional representation used in the chess world (1 means a win for the row



player and 0.5 means a draw), and the right side a GNR where each player is simply

assigned his serial number on the list.

123a]5l67[8 )

1. Benko -10{0|011101010

2. Fischer 1[-[5]5[1]o]5]0 - -
3. Gligoric 1]5]-To].5l.5[1]o B B
4. Keres 1lsli]-11]o]sh oE = =
5. Olafson ololslo]-{1]o]o0 B

6. Petrosian 1{1]5]1]0]-10]5 & o :
7. Smyslov 11510{5]1(1]- (O

8. Tal 1 ft]o]1]5]1]- a=8 oDRaA

. . . V(X
(a) Conventional statement of pairwise (x)

comparisons in a chess tournament (b) A GNR of the chess
tournament data

Figure 1

Observation 3.1 Every binary relation on a countable set has a GNR.

Classical utility theory deals with numerical representations where S takes the

special form H, defined by

H= {(0,B)e R2 : o>}
and thus xPyo (v(x),v(y))e He v(x)>v(y). When it is possible, such a representation is
very attractive, because it directly associates "higher" (utility) with "better"
(alternatives). When this is not possible, it would still be desirable to maintain at least
some of the intuitive monotonicity between the underlying preferences and the
numbers that represent them. Without it, a numerical representation would be

merely a labeling of the alternatives, devoid of any connotation of "utility".

Looking for a reasonable monotonicity condition as a starting point, we note
that in any GNR (v,S) the asymmetry of P implies that (v(x),v(x))¢ S for all xe A, hence
xPy=v(x)2v(y). Therefore, the condition xPy= v(x)>v(y) suggests itself as a minimal
monotonicity requirement. This condition means that the relevant part of S, i.e.

S (range v)2, should be included in H, and (since the irrelevant part of S can be



chosen at will) this suggests the condition ScH. The preferences that admit

representations satisfying this condition constitute a familiar class.

Definition P1 An asymmetric binary relation P is a suborder if xiPxj4+1 for i=1,...,n
implies [not xp+1Px1]. Any binary relation whose asymmetric part is a suborder is

termed acyclical.

The results on the representation of suborders will be stated in two versions. The
distinction between them highlights an important difference between our
generalized utility representations by pairs (v,S) and the weaker representations by

a numerical function v alone.

Theorem 3.2 (Adams, 1965).

Let B be a binary relation on a countable set A. Then there is a functon v:A—> 3R such

that v(x)>v(y) whenever xBy if and only if B is a suborder.

Theorem 3.2(a)

A relation B on a countable set has a GNR (v,S) such that ScH if and only if B is a

suborder.

The function v in theorem 3.2 is only a partial representation of the binary
relation B, because it is not guaranteed that one can fully recover B from the
numerical representation. For example, suppose that a suborder P on the set A={a,b,c}
is represented by a function v where v(a)=1 and v(b)=v(c)=0. If this function is only
known to be a partial representation as in 3.2 then it is consistent both with
P={(a,b),(a,c)} and with P={(a,b)}. But if v is known to be part of a GNR as in 3.2(a)
then it is consistent only with P={(a,b),(a,c)}, not with P={(a,b)}. To qualify for a GNR,
a function v must satisfy the preliminary condition that v(x)zv(y) whenever (x,y)¢ E.
As we shall see in section 5 below, the distinction is crucial when A is not a countable

set.
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Note that the acyclicity and asymmetry of a suborder are obviously necessary
for ScH. The more substantive contribution of theorems 3.2-3.2(a) is the observation
that this is also sufficient. A similar relationship between necessity and sufficiency

seems to apply also in the other characterizations that follow.

The next definition introduces additional aspects of monotonicity.

Definition G2.

(1) A GNR (v,S) satisfies upward monotonicity if (o,B)e S implies (a',)e S
for all a'>a.

(ii) A GNR (v,S) satisfies downward monotonicity if (a,p)e S implies (a,p)eS
for all B'<f.

(iii) A GNR (v,S) satisfies bilateral monotonicity, or in short is monotonic,

if it satisfies both upward monotonicity and downward monotonicity.

v(y) v(y) v(y) .

v(x) v(x) v(x)
Upward monotonicity Downward monotonicity Bilateral monotonicity
Figure 2

By the asymmetry of P, either part of definition G2 implies the minimal
monotonicity condition ScH. To have representations that satisfy these stronger
conditions, it is not sufficient that preferences be acyclical. The next two theorems
specify precisely when such representations are possible. Each of these is preceded

by a definition that summarizes the corresponding conditions.
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Definition P2. An asymmetric binary relation P is an interval order if PIP implies P

(i.e. xPy, ylz and zPw imply xPw).

Remark. Fishburn, who introduced the term ‘interval order’, motivated his
suggestion by the following example, which dates back to Norbert Wiener. Suppose
that the set A represents events in time, where each element xe A is defined by a real
time interval [b(x),e(x)]cR, and suppose that the relation P stands for 'precedence in
time' with xPy defined to apply between x and y whenever e(x)<b(y). Then it is
readily verified that P satisfies the "interval order condition". Furthermore, given
any set A with a binary relation P on A, the above condition is necessary for the
possibility of assigning real intervals to alternatives in A so that xPy if and only if

the interval assigned to x precedes the one assigned to y (in the sense defined above).

Theorem 3.3 (version of Fishburn, 1970b).

For an asymmetric relation P on a countable set, the following three statements are
equivalent.

(i) P is an interval order.

(ii) P has a GNR that satisfies upward monotonicity.

(iii) P has a GNR that satisfies downward monotonicity.

Definition P3. An asymmetric binary relation P is a semiorder if PQ implies P,

equivalently [PIP or PPI] implies P.

Figure 3 illustrates the difference between the semiorder condition and the interval

order condition (preference is indicated by an arrow).

X ® X o W
e W
y
Z y z
(a) Violation of [PPI implies P] (b) Violation of [PIP implies P]

Figure 3
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Remark. The term 'semiorder’, introduced by Luce, has its most common use in
psychological measurement theory: e.g., if a person attempts to identify which of two
stimuli is the stronger but can discriminate between the two only if the difference
between them is sufficiently large (exceeds the 'just noticeable difference’) then the
stated comparisons form a semiorder. Luce motivated his introduction of semiorders
by observing that the semiorder definition is a necessary condition for the possibility
of assigning numbers to alternatives in such a way that the interval spanned by two
alternatives for which preference applies is never a subinterval of the interval
corresponding to two alternatives for which indifference applies. This is readily seen
to be equivalent to bilateral monotonicity, a property which is the focus of the next

theorem.

Theorem 3.4 (a stronger version of Luce, 1956).

An asymmetric relation on a countable set has a monotonic GNR if and only if it is a

semiorder.

Every inference that can be drawn from a preference relation P can of course
also be recovered from its GNR, and in this sense a GNR for P also gives a full
representation of the revealed preferences Q. It would clearly be desirable to make
these inferences more "direct" by applying a certain degree of monotonicity also to
the representation of Q. In general, however, it would not be possible to let v(x)>v(y)
whenever xQy, because xQy does not preclude yQx. Therefore, the most that one can
hope to achieve in general is an intuitive representation of P* and E. The next two
extensions to our earlier theorems 3.2(a) and 3.3 state the maximal monotonicity that

can be guaranteed for suborders and for interval orders.

Theorem 3.2(a)*. A suborder P on a countable set has a GNR (v,S) such that v(x)>v(y)

whenever xPy or xP*y and v(x)=v(y) whenever xEy.
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Theorem 3.3* An interval order P on a countable set has a GNR (v,S) satisfying

upward monotonicity (alternatively downward monotonicity) such that v(x)>v(y)

whenever xP*y and v(x)=v(y) whenever xEy.

When the stated preferences P are semiordered the revealed preferences
exhibit no contradictions (i.e. the symmetric part of Q is empty and Q=P*).l In this
case Q is a weak order, being an asymmetric relation whose complement is transitive
(see, e.g., Fishburn, 1985).2 A GNR for P can then be made to reflect Q as intuitively as

classical utility representations do for weak orders. This merits a special definition.

Definition G3 A generalized utility representation (GUR) of an asymmetric
binary relation P is a monotonic GNR (u,S) of P which satisfies xQyeu(x)>u(y).
(The notational substitution of u for v is used to emphasize the fact that a GNR under

consideration is indeed a GUR).

Theorem 3.5 (a stronger version of Luce, 1956). An asymmetric binary relation on a

countable set has a GUR if and only if it is a semiorder.

Remark: While P has a GUR if and only if it has a monotonic GNR, P may also have
monotonic GNRs which are not GURs. In a monotonic GNR for a semiorder P v(x)>v(y)
is mandatory whenever xQy (because if v(x)<v(y) then xPz implies yPz and zPy
implies zPx, hence [not xQy]), but there may be pair(s) x,y such that v(x)>v(y) while

xEy (rather than xQy).

For monotonic GNRs and GURs the boundary of S plays a prominent role,
because it visibly separates S from its complement. In the special case of weak orders
with S=H, the boundary of S is the "diagonal" in %2, defined by

D={(o,B)e R2 : a=P}.

IFor a semiorder, x(IUP)zPyQx implies zPx, y(IUP)zPxQy implies zPy, and xPzIyPwlIx
implies yPz, three contradictions that exhaustively preclude xQyQx.

2In fact, Luce (1956) gives proof that Q is a weak order if and only if P is a semiorder.
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We are interested in utility representations with similarly simple boundaries for

preferences that are not weak orders.

Definition G4. A 6-threshold GNR (GUR) is a monotonic GNR (GUR) (v,S) such that

boundary(S)={(a,B)e R2 . o=B+8}.

The O-threshold GNRs are precisely the (u,H) classical utility representations
of weak orders. 3-threshold GNRs with (strictly) positive &, or in short positive-
threshold GNRs, also exist for some, but not all, weak orders, as well as for some
preferences which are not weak orders. The following characterization of positive-

threshold GNRs is a famous old result.

Theorem 3.6 (Scott and Suppes, 1958).
A binary relation on a finite set has a positive-threshold GNR if and only if it is a

semiorder.

That the Scott-Suppes theorem does not apply for infinite sets is apparent from
the observation that the following axiom, which is trivially satisfied for finite sets but

not so for infinite sets, is a necessary condition for P to have a positive threshold GNR.l

Axiom A1 For every we A and every infinite sequence x1,x2,...€ A, if xiPxj+1 for i=1,2,...

then for some n wPxp, and if xj4+1Pxj for i=1,2,... then for some n xpPw.

The Scott-Suppes theorem was first extended to denumerable sets by Manders
(1981). Theorem 3.7 below is a simpler and more straightforward characterization (in
the following sections we give further extensions of this important theorem to non-
denumerable sets). Once again, the obvious necessary conditions are found to be also

sufficient.

1 An example of a semiorder that does not satisfy axiom 1 was already used by
Fishburn (1985) to demonstrate the limited domain of the Scott-Suppes theorem, but to
the best of our knowledge the present study is the first time that the axiom is given
an explicit statement.
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Theorem 3.7 (improved version of Manders, 1981)

For a binary relation P on a countable set, the following statements are equivalent.
(i) P is a semiorder which satisfies axiom Al.

(ii) P has a positive-threshold GNR.

(iii) P has a positive-threshold GUR.

Remark. If (v,S) is a GNR for an asymmetric binary relation, then clearly S must not
intersect the diagonal D in R2 (as defined above). It is interesting to note as a

corollary to 3.7 that if a binary relation has a monotonic GNR (v,S) such that S is

bounded away from D then it also has a positive-threshold GUR.

When (v,S) is a O-threshold GNR (i.e. a classical utility representation) then
S=H is open in ®2. In GNRs or GURs which have a positive threshold, or ones which
are just bilaterally or unilaterally monotonic, S may be open, closed, or neither open
nor closed.! In conformity with the classical utility representation, there has been a
traditional tendency to use, whenever possible, representations where S is open. If
(v,S) is a GNR for a binary relation P on a set A such that (v,S) satisfies upward
monotonicity and S is open then we can set, for every xe A,

o(x)= inf{o-v(x) : (a,v(x))e S}=0
and then zPxe (v(z),v(x))e Se v(x)+o(x)<v(z). Alternatively, if (v,S) satisfies downward
monotonicity and S is open we can similarly assign to every xe A some {(x)=0 such
that xPye v(y)<v(x)-{(x). In either case, we can assign to every xe A a closed real
interval such that xPy if and only if the interval assigned to y fully "precedes” (as in
Wiener's example above) the interval assigned to x. Indeed, Fishburn's celebrated

results for interval orders are coined in precisely these terms.

Similarly, the traditional statement of the Scott-Suppes theorem corresponds to

1A representation where S is an open set is sometimes termed strong, and one where
S is a closed set is termed strong*. The term weak then referes to representations
where S is neither open nor closed.
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a positive-threshold representation with S open. Our next and essentially last result
for this section states that for countable sets this distinction is immaterial.
Modifications are necessary for uncountable sets, and we will get to these in due

course.

Theorem 3.8

For a binary relation P on a countable set A, the following statements are equivalent.
(i) P has a positive-threshold GUR.
(ii) There is a real valued function u on A such that xPyesu((x)>u(y)+1.

(i11) There is a real valued function u on A such that xPyou(x)2u(y)+1.

Furthermore, in parts (ii) and (iii) onc can add or omit the stipulation xQye u(x)>u(y).

An analogous result can be shown to apply for interval orders.

For completeness, we conclude this section with a restatement of a central

result from classical utility theory. In content, this can be traced to Cantor (1915).

Theorem 3.9

An asymmetric binary relation on a countable set has a O-threshold GNR if and only

if 1t i1s a weak order.

We note that every O-threshold GNR is necessarily a GUR.

4. LIMITED DISCRIMINATION PREFERENCE ORDERS

We have noted previously that when P is a weak order then I=E, so that the
absence of stated preference between two alternatives can be safely interpreted as
evidence of their equivalence. But in general the absence of a stated preference
between two alternatives can be accompanied by indirectly revealed preference in
either direction, and even in both directions simultancously. Any contradiction in

the revealed preferences (xQy and yQx) leaves the underlying standings of the
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alternatives undetermined. Indeed, this can happen even when P is a strict partial
order (where PP implies P but II does not necessarily imply I), a prominent example
being the Parcto aggregation of n weak orders (i.e. xPy if xPjy for some je {1,...n} and
[not yPgx] for all k=1,...,n).] On the other hand, when P is a semiorder Q is a weak
order, and gives a coherent specification of the relative standings of all alternatives.
Here if xIy while not xEy the failure (of P) to give a clear preference statement
cannot be due to undetermined relative standings, and it is most natural to attribute
this failure to a limited ability of the decision-maker to discriminate between the two

alternatives and identify the one which is inherently better.

Generalized utility representations reflect this notion of limited discrimination
power by specifying for cach alternative the upper and lower "just noticeable
difference” in utility terms. For &-threshold GURs these minimal differences are all
the same (the "threshold constant” §). Of course, the distinction between constant and
variable thresholds may well be spurious. One prominent example is Weber's law,
which states that for a class of real-valued stimuli the just-noticeable-difference is
proportional to the stimulus. This can be directly represented by a variable-threshold
GUR, but with a logarithmic representation of the stimuli the discrimination

threshold becomes constant.

Another important point relates to spurious distinctions between O-threshold
and positive-threshold representations. When a weak order satisfies axiom Al (as does
the natural ordering of the integers), it can be given representations that have
either zero threshold or positive threshold. Therefore, a positive-threshold
representation does not, per-se, reflect limited powers of discrimination. We shall let
the term limited discrimination preference order stand for preference

relations that have generalized utility representations but where P does not fully

IFor strict partial orders xQy and yQx can occur simultaneously only if xly, whereas
in general this can occur also with xPy (or yPx).
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coincide with Q. Such preferences do not have O-threshold (classical) utility

representations.

One question that immediately suggests itself is when can a comparison of two
preference relations indicate that one of them exhibits "stronger discrimination
power" than the other. The essence of the concept that we are looking for is that the
two relations under consideration differ only in their power to identify differences
between (the relevant aspects of) some pairs of alternatives, but not in the
underlying attitudes that the respective preferences reflect. Such a comparability (if
one is established) must obviously involve only a partial ranking of preference
relations because, e.g., if xPly and yP2x then the discrepancy between Pl and P2
cannot be attributed to different powers of discrimination. We shall first indicate how
seemingly intuitive definitions of the notion of "stronger discriminating power" can

easily fail, and then suggest a definition that seems to work.

Basic intuition might suggest that Pl can be said to have stronger
discriminating power than P2 if P2 is a (proper) subset of Pl: the two arc never in
explicit conflict, but there are some pairs of alternatives for which Pl can give a
clear statement of preference but P2 cannot. Consider, however, the following
example. Suppose that A={x,y,z}, and let P1={(x,y)}, P2={(x,y),(y,z),(x,z)} and
P3={(x,y),(z,y),(z,x)}. Here Pl is a subset of P2 and at the same time a subset of P3, yet
Pl cannot be positively identified as a version of P2 with lower powers of
discrimination and at the same time be positively identified as a version of P3 with

lower powers of discrimination, because P2 and P3 are in clear conflict.

A similar difficulty is encountered in the next example, but here it appears in
the opposite direction and in a more subtle guise. For A={x,y,z} as above, let
P1={(x,z),(y,z)}, P2={(x,z)}, and P3={(y,z)}. Here both P2 and P3 are subsets of P1, but

they cannot be considered lower discrimination versions of Pl, because the indirectly
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revealed preferences associated with P2 and P3 are in conflict, with xsz and yQ3x
(note that P, P2, and P3 are all semiorders, and recall that for semiorders the implicit
preferences are weak orders and thus asymmetric). This example can be made more
paradoxical by denoting the alternatives by numbers rather than letters. Letting x=6
y=4 and z=0, it appears as if both Pl and P2 seck the higher-valued alternatives, but
while Pl is able to discriminate between alternatives whose values differ by more
than 3, P2 can discriminate only between pairs that differ by more than, say, 5. The
more "neutral” representation by letters highlights the symmetry between P2 and P3

and indicates that the above interpretation is premature.

The above examples show that a comparison of the "discriminating power"
expressed by two binary relations can be meaningful only if it can be ascertained
that the two relations are guided by the same underlying standing of the alternatives.
This leads to the following suggested criterion for (partially) ordering binary

relations by their presumed power to discriminate between “"similar" alternatives.

Definition D4.1 A binary relation P! has stronger discriminating power than a

binary relation P2 if P2cP!, P2#P1, and Q!=QZ2.

5. NON-DENUMERABLE SETS.

This section is devoted to numerical representations of preferences over
arbitrary sets which are not necessarily countable. This discussion is inherently
more technical. The special case of lotteries has additional structure which permits

more direct characterizations, and this is dealt with in the next section.

A binary relation P on an uncountable set may fail to admit any GNR, let alone
one satisfying monotonicity of one kind or another. For example, suppose that A is
the collection of all subsets of the real line R, and let xPy if xcy. Here if (v,S) is a GNR
for P then v must be a one-to-one mapping of A into R - an impossiblity which is

summarized by the statement that the collection of all subsets of ® has higher
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cardinality than that of R, denoted by X (Aleph). On the other hand, high

cardinality of A does not per-se inhibit a numerical representation: if there are very
many alternatives that are equivalent to each other then it is always possible, and in
fact desirable, to assign to all of them the same numerical value. To concentrate on
the more relevant aspects, we shall in what follows simply consider all alternatives
which are equivalent to each other as one element (an "equivalence class”) in a
modified (or "reduced") set of alternatives, for which preferences are defined in the
obvious way. The modified set is marked by the property that no two distinct elements
are equivalent, and we shall refer to pairs (A,P) satisfying this property, i.e. xEy=x=y,

as irreducible. Every related set, i.e. pair (A,P), has a unique irreducible form.1

Observation 5.1

(a) A related set (A,P) has a GNR if and only if its irreducible form has a GNR. Every
GNR (v,S) for the reduced form can be trivially extended to apply for (A,P),
satisfying v(x)=v(y) whenever xEy..

(b) An irreducible related set (A,P) has a GNR if and only if the cardinality of A does

not exceed Aleph.

If the irreducible form of a related set (A,P) has sufficiently low cardinality,
then it has some GNR (v,S). When the irreducible form is countable then all the
results of section 3 apply, and the degree of monotonicity that the GNR can be made to
have depends only on the degree of "consistency” in the stated preferences (from
suborders up to weak orders). On the other hand, when the irreducible form is
uncountable then the existence of a GNR and the consistency of the preferences are
not sufficient to guarantee that the GNR can be made to have any of the desirable

monotonicity properties. A famous counterexample from classical utility theory, due

1Formally, the irreducible form, say (A,P), of an arbitrary related set (A,P) is defined
as follows. A=AIE, i.e. A is the collection of E-equivalent classes in A, defined by
A={x cA: x=#¢, and xex implies [ye x if and only if yEx]}, and then P is defined on A by
P={(x,y)e A2: xPy for some xex, yey}.
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to Debreu (1954), is the lexicographic ordering of the real plane R2, viz.
(x1,x2)P(y1,y2) if x1>y1 or [x1=y1 and x2>y2], which is a weak order on a set of
cardinality Aleph that does not have a classical utility representation (nor indeed any
representation with ScH). The key property, which will be seen below to be central

for all numerical representations, is "separability”, defined as follows.

Definition P4

A binary relation B on a set A is separable if A contains a countable subset C such
that whenever y and z are two (distinct) elements in A but not in C and yBz there is

some xje C satisfying yBxj and xiBz (the set C is said to be "B-dense in A").

The classical condition for the representability of non-denumerable weak

orders is again traceable to Cantor (1915):

Theorem. A weak order has a O-threshold GNR, equivalently has a GUR, if and only if

its irreducible form 1is separable.

In contrast to the above, separability of the stated preferences is neither
necessary nor sufficient for the representation of an imperfectly ordered set by a
GNR with a lower degree of monotonicity. Here there is a crucial difference between
complete representation by a GNR (v,S) and partial representation by a numerical
function v alone. Separability is sufficient for a partial representation, as stated in

the next theorem.

Theorem 5.2 (Richter, 1966).
If the irreducible form of a suborder P on a set A is separable, then there is a real

valued function v:A— R such that v(x)>v(y) whenever xPy.

But separability is rot sufficient for a complete representation by a GNR (v,S)

satisfying ScH, as demonstrated by the following example. Suppose that A=%x{0,1} and
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(x,1)P(y,j) if x>y and [i=j or x-y=1]. This irreducible suborder is clearly separable, and
indeed v(x,i)=x satisfies the partial representation condition of theorem 5.2. But a GNR
(v,S) must also satisfy v(x,0)#v(x,1) for all xeR (because the two are not equivalent),

and if ScH then also v(x,i)>v(y,j) whenever x>y, which is impossible.l

On the other hand, separability of the stated preferences is clearly not
necessary, not even for a complete representation by a GNR. This is evident from the
semiorder where xPy applies whenever x-y>1, which is not separable but has a trivial
numerical representation with ScH. The following counterpart to theorem 5.2 gives a

necessary condition for representations that exhibit any degree of monotonicity.

Definition PS5

An asymmetric binary relation P on a set A is weakly separable if A contains a
countable subset C such that whenever y and z are two (distinct) clements in A but

not in C and yPz there is some xje C satisfying [yPxj or yIx;] and [xiPz or xjlz].

Theorem 5.3
If there is a function v:A—-R such that v(x)>v(y) whenever xPy then P is weakly

separable.

Since the weak separability in theorem 5.3 is a necessary condition, it is also,

afortiory, a necessary condition for the existence of a GNR with ScH.

For the representation of semiorders, there is a separability condition that is
both necessary and sufficient. Unlike the previous results, this involves not the
separability of the stated preferences P, but rather the separability of the revealed

preferences Q.

IThe intervals [min{v(x,0),v(x,1)},max{v(x,0),v(x,1)}], xe R, would have to be an
uncountable collection of disjoint intervals of positive length, which is impossible.



Theorem 5.4.

(a) (Version of Fishburn, 1985) An irreducible semiorder P has a monotonic GNR
(alternatively GUR) if and only if Q is separable.

(b) An irreducible semiorder P satisfying axiom A1l has a positive-threshold

representation if and only if Q is separable.

Separability of the revealed preferences Q does not, however, resolve the
representability of less well structured preferences. The example following theorem
5.2 shows a suborder that does not have a GNR (v,S) with ScH, even though Q (as well
as P) is separable. For unilaterally monotonic representation of interval orders, it is
necessary and sufficient that both the relation PI and the relation IP (rather than

just their union Q) be separable (Fishburn, 1985).

We conclude this section with a discussion of conditions for P to have a GNR
(v,S) where S is an open set in ®2, or such that S is closed, or possibly representations
of both kinds, as in theorem 3.8 above. This depends on appropriately defined notions
of continuity of the preference relation. A number of equally plausible formulations

will do, and we clect to use the following definitions:

Definition P6.

a. An alternative xe A is a P-gap-edge-point if there is ye A such that
yPx and not yPQx.
b. An alternative xe€ A is an I-upper-edge-point if there is ye A such that

yIx and not yIQx.

Theorem 5.5

(a) An irreducible semiorder P satisfying Al has a GNR (v,S) where S is open if and
only if Q is separable and the set of P-gap-edge-points is countable.

(b) An irreducible semiorder P satisfying Al has a GNR (v,S) where S is closed if

and only if Q is separable and the set of I-upper-edge-points is countable.
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We note that in both parts of theorem 5.5 "GNR" may be replaced by "GUR".

6. DECISION UNDER UNCERTAINTY

This section is devoted to the special case in which the set of alternatives A is
a space of lotteries, i.e. the space of finite-support probability distributions over
some given set of outcomes. We are interested in representations that maintain the
attractive structure of "expected utility” even though preferences are only

semiordered. This context is of sufficient special interest to merit special treatment.

Let us assume, then, that A is the mixture space of finite-support
distributions over an arbitrary set of outcomes O. That is, an alternative xe A is
defined by a tuple ((p1,01),...,(Pn,0n)) where n is some positive integer, and for
i=1,....,n 0je O and pje (0,1], with Zp;=1. For x,ye A and ae (0,1), the "mixture” ox+(1-a)y
gives an clement in A, with the probabilities of outcomes being defined by the
appropriate convex combinations of those under x and under y. As before, the
binary relation P represents stated preferences over A, and Q represents the

associated revealed preferences.

"Expected utility” representations are characterized by axioms that relate the
structure of preferences to the special structure of the mixture space. We start with
two standard axioms, commonly used for the characterization of the classical
VonNeuman-Morgenstern expected utility representation of weak orders (Fishburn
1970a). Although we have not to this point restricted the class of preferences under
consideration, these axioms will be used only when P is a semiorder, so that one may

think of Q as a weak order.

L1 (Q-independence): For all x,y,ze A and ae(0,1), xQy o [ox+(1-a)z]Q[ay+(1-a)z].

L2 (Q-continuity): If xQyQz there are o,Be(0,1) for which

[ox+(1-0)z)Qy Q[Bx+(1-B)z].
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The key property for positive-threshold expected-utility representations is given

by the next axiom.

L3 (spread-dependent indifference): For all x,ye A and a,a’,B,8°€(0,1),

if a’'—a=p-B then [ox+(1-a)y]I[Bx+(1-B)y]le [ax+(1-a")yI[B'x+(1-B")y].

Finally, we note that A is uncountable and introduce two alternative continuity
axioms that are associated with alternative topological properties of S. Again, the

axioms make use of the special structure of the mixture space.

L4 (open preference): If xPy then for every ze A there is some ae (0,1) such that

[ax+(1-a)z]Py and xPlay+(1-a)z].

L5 (open indifference): If xIy then for every ze A there is some o€ (0,1) such that

[ax+(1-a)z]ly.

The above axioms lead to the following theorems on the existence of nicely
structured expected utility representations for (some) imperfectly ordered

preferences over alternatives with uncertain outcomes.

Theorem 6.1 The following statements are equivalent:
(1) P is a semiorder satisfying Al and L1-L4.
(ii)  There is a function u:0 —»R such that

xPy & E[u(xX)]-E[u(y)] >1 and xQy < E[u(x)] >E[u(y)].

Theorem 6.2 The following statements are equivalent:
(1) P is a semiorder satisfying Al, L1-L3, and LS.
(11)  There is a function u:0 —-R such that

xPy e E[u(0)]-E[u(y)] 21 and xQy & E[u(x)] >E[u(y)l.

Note that Al cannot be omitted from statement (i) in either of these theorems.

For instance, if P=Q and all other axioms but Al are satisfied statement (ii) (of either
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theorem 6.1 or theorem 6.2) is false. However, in the presence of L3 one can replace
Al by the condition that P#Q. Our choice of the formulation that uses Al was dictated
by the desire to emphasize a feature common to this case and to the more general

theorems stated earlier.

It is also worthy of note that in the representations (of non-trivial
preferences) axiomatized here there must be two alternatives, say x and y, such that
u(x)-u(y)=2. For instance, suppose that O={a,b} with xPy if and only if
E[u(x)]>E[u(y)]+1, and suppose further that (contrary to the above) u(a)=1.5 and
u(b)=0. Then for o,Be(1/3,2/3) [aa+(1-a)b]E[Ba+(1-B)b], whereas E[u(.)] cannot be

constant over that interval. This also shows that the example must violate axiom L1.

7. SOME COMMENTS ON UNIQUENESS.

One of the natural questions that arise once the existence of numerical
representations is established is their uniqueness. It is interesting to investigate the
extent to which one can change a given numerical representation, and identify the

features shared by all numerical representations of a given preference relation.

We start with the following question: suppose a preference relation P has a
GUR (u,S°) where S°={(c,B) : a—B>1}, to what extent is the generalized utility
function u unique? To identify the permissible transformations of u, consider
any strictly increasing function f:[0,1)—[0,1), and let Tf:R—>R be defined by

Te(o)=L ot J+f(o-L o)
where | o] denotes the largest integer not exeeding a. Then clearly (Tfu,S°) is also
a GUR for P. It is not difficult to see that when (range u)=R the class of
transformations Tf described above, in conjunction with arbitrary choices of
origin, exhausts all the transformations that can be applied to the utility
repesentation u while maintaining S©. Defining similarly S®={(a,B): a—f21}, the

same analysis applies to closed fixed threshold representations (u,S°).
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However, we also wish to investigate to what extent SO (alt. SC) is unique
(beyond the obviously permissible changes of scale). By the previous analysis one
might tend to expect that some properties must be shared by all equivalent
representations. In particular, if (v,S) is equivalent to (u,S°) as a GUR for P then we
might expect S to be monotonic, bounded away from the diagonal D in %2, and open
(or closed for S€). But in fact none of these properties is strictly necessary: S need
only be monotonic in its intersection with (range v)2, it does not have to be
bounded away from the diagonal for P to satisfy Al, and rather than being open
(alt. closed) it may include (alt. exclude) a countable set of points from the
intersection of its boundary with (range v)2 and any subset of the boundary not in
(range v)2. Given that these properties are not necessary, we may still wonder
whether in some sense they are sufficient. The answer is a qualified yes, depending

on the precise sense in which the equivalence is sought, as follows.

Theorem 7.1

(a) Let (v,S) be a GUR for a preference relation P. If S is monotonic, bounded away
from the diagonal D in R®2, and open (alt. closed), then there is some strictly
increasing transformation T:R—®R such that (Tv,SO) (alt. (Tv,S¢)) is a GUR for P.

(b) Let (u,S°) (alt. (u,S€)) be a GUR for a preference relation P, and let ScR2 be
monotonic, bounded away from the diagonal D in %2, and open (alt. closed). If the
boundary of S is the graph of a strictly increasing, unbounded and continuous
function on R then there is a strictly increasing transformation T:R >R such that

(Tu,S) is a GUR for P.

To see that the additional qualification in part (b) of thoerem 7.1 is indeed necessary,
let A=R with xPy whenever x-y>1, and consider S={(a,B): a>1 and B<0}, which is
monotonic, bounded away from the diagonal, and open. But if (v,S) is a GNR for P
then xP(x-2) implies v(x)>1 and (x+2)Px implies v(x)<0, a contradiction which proves

our point. Another counterexample with a different slant involves the same related
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set (A,P) as above and S'={(o,B) : a—B>1 and [a>3 or B<1]}. If (v,S) is a GUR for P then v
must be strictly increasing and (since P satisfies A1) unbounded both from below and
from above. Hence there are a,be® such that

a=sup{x:v(x)<1}=inf{x:v(x)>1} and  b=sup{x:v(x)<3}=inf{x:v(x)>3}.
Furthermore, b=a+1, since x>b and y<a imply xPy and x-y>1, while x<b and y>a imply
v(x)<3 and v(y)>1 hence (v(x),v(y))2¢S and x-y<l. Then (b+0.1)-(a+0.5)=0.6<1 implies
v(a+0.5)>v(b+0.1)-1>2 while (a+0.5)-(a-0.1)=0.6<1 implies v(a+0.5)<v(a-0.1)+1<2, once

again a contradiction.

Beyond the sheer interest in uniqueness, part (a) of theorem 7.1 is clearly
motivated by the intuitive appeal of S and S®. But the motivation underlying part
(b) may perhaps seem somewhat dubious: if the preference P is already known to
be representable by the highly attractive SO (or S€), why search for other
representations with apparantly less attractive S? The answer is that the intuitive
appeal of alternative representations depends very much on the specific context.
An obvious example is Weber's law, where the proportional-threshold
representation in terms of the stimuli is by no means less attractive than the

constant-threshold representation in terms of the logarithms.

Much has been said and written in classical utility theory about the
distinction between the "ordinal" utility representations that are amenable to any
strictly increasing transformation, and the "cardinal” utility representations of
preferences over lotteries, where in order to maintain the mathematical
expectations structure only positive linear transformations are permissible. As we
have noted here, the fixed-threshold representations of limited discrimination
preference orders exhibit some intermediate degree of "cardinality”: even though
they do not admit all strictly increasing transformations, they are not restricted to
linear transformations alone. One can perhaps say that positive-threshold

representations admit arbitrary monotonically increasing transformations "in the
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small”, but only linear positive transformations "in the large". The range of
admissible transformations "in the large” is reduced further to the choice of
origin alone if one wishes to maintain the discrimination threshold as the unit of
measurment for the "utility scale”. In contrast to the classical utility
representations, where the choice of scale is totally arbitrary, the discrimination
threshold of limited discrimination preference orders offers a natural choice of a
unit of measurement which is indicated by the preference pattern itself. Indeed,
our constructive proof of existence of positive-threshold utility representations

for semiorders satisfying axiom A1l makes direct use of this unit of measurement.

Of course, the whole idea of numerical representation, and especially the
numerical representations that exhibit a degree of monotonicity, is primarily an
appeal to the intuition: from a strictly logical viewpoint any definition of the
preference relation will do. The research on the existence of attractive numerical
representations and on the extent that alternative representations are
interchangeable can be interpreted as an effort to bring the formal analysis and

its intuitive interpretation closer together.
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Appendix: Proofs of the Theorems

Theorem 3.2(a): The "only if" part is immediate. For the "if" part, note
that the transitive closure, PO. of a suborder P is a strict partial order
(i.e., asymmetric and transitive), set {v(x),x € A} sequentially so that

v(x) > v(y) whenever xPOy and v(x) = v(y) if and only if xEy, and then set

S = {(v(x).v(y)) € R°: (x.y) € P}. //

Theorem 3.3: It is easy to see that either (ii) or (iii) imply that P is an
interval order. To show the converse implication, assume P is an interval
order and use Theorems 6 and 8 in Fishburn (1985, pp. 28-29) to conclude
that there are b,e: A - R such that (1) b(x) £ e(x) and (2) xPy iff
b(x) > e(y).

To prove that (ii) holds, set {v(x),x € A} sequentially to satisfy
v(x) > v(y) if and only if [b(x) > b(y) or (b(x) = b(y) and e(x) > e(y))].
Then define S = {(a,v(y))!lax 2 v(x) for some x € A such that xPy}.

The proof for (iii) is symmetric. //

Theorem 3.4: The "only if" part is straightforward. For the "if" part use
Theorems 7 and 8 in Fishburn (1985, p. 29) and construct v and S as in

(either part of) the proof of Theorem 3.3 above. //

Theorem 3.2(a)*: First note that xP*yPz implies xPz (for otherwise yQx) and
xPyP*z also implies xPz (for otherwise zQy), i.e., P*¥P U PP*¥ ¢ P. With the
transitivity of P* (established in Section 2) it follows that when P is a

suborder then P U P*¥ is also a suborder, and we continue as in the proof of
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3.2(a).

Theorem 3.3%: We will show that the construction of Theorem 3.3 satisfies
the additional requirements. First, note that if xEy one may, w.l.o.g.,
assign the same b and e values to x and y, whence v(x) = v(y). Next, to
show that v(x) > v(y) when xP¥y, consider first the upward monotonicity
construction. Knowing that xQy, there is a z such that xPz and not yPz, or
such that zPy and not zPx. In the first case b(x) > b(y) and v(x) > v(y).
In the second case we obtain e(x) > e¢(y) and we still have to prove that
b(x) 2 b(y). However, a close look at the construction of the function b
(see Thoerem 3 on pp. 23-4 of Fishburn (1985)) shows that b(x) < b(y) would
have implied the existence of an alternative z with b(x) < e(z) < b(y),
which would have meant yQx. But this conclusion is contradictory to xP*y,
whence we conclude that b(x) 2 b(y) and (with e(x) > e(y)) we obtain

vix) > v(y).

The proof for the downward monotonicity construction is symmetric. //

Theorem 3.5: Using the same theorems in Fishburn as in 3.4, we only note
that his proof (via Theorems 3 and 4 on pp. 23-25) guarantees that the GNR

is also a GUR. //

Theorem 3.7: The issue of substance here is to show that (i) implies (ii)
and (iii). This proof requires a sequence of intermediate steps. 1[n what
follows, the more self-evident statements will be given without detailed
proof.

We first define QO = Q U E and note that if P is a semi-order, then
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P> PQO and P > QOP. For x,y € A we define a set

+
Mx(y) = {n € N3 ZyrZge e nZ € A such that sz1Pz2P e In—1QX}
Define also

£ +
[ o if M (y) =0,
|

+ ! + +

NX(Y) = | max M (v) if Mx(y) is nonempty and finite,

|
| 4
| o if M (yv) is infinite.
L X

We observe that, for all x,y € A, N;(y) > 0 iff yQx.

Lemma 1: Assume that x,y,z € A satisfy N;(z) = n, > 0 and N;(y) =n, > 0.

1 2

Then

Proof: The left side inequality is implied by P > QP. As for the right

side one, if N;(y) =k > n, +n,, there are w_,..

2 1 .,wk>~1 such that
p3 D ! + >
wa]P . Pwk»le' Consider wn2 and z. 1f wnan, then Nz(y) > n2 + 1,
which is false. Hence onwn and szn ‘" follows which, in turn, implies
2 2

that Ni(z) >k - n, >n

5 1 a contradiction. //

Lemma 2: For all x,y € X, N;(y) is finite.
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Proof: Assume the contrary, and let x,y € A satisfy N;(y) =~ o, Let z € A
satisfy yPzPx (of course, such exists). By Lemma 1, either N;(z) = o Or
N;(y) = o {(or both). In the first case, denote v, 7 2 and consider x and

Vy- In the second, let X, 7 7 and continue with xl and y. Arguing

inductively, one obtains either a monotonically P-decreasing sequence (yi)
which is bounded from below (by Xx) or an increasing one (xj) which is
bounded from above (by y), or both. At any rate, this is a contradiction of

axiom A1. //
Lemma 3: If X,v,z € A satisfy N;(y) > 0 and zPy, then N;(z) > N;(y) +o1.

Lemma 4: Suppose that N;(y) = n > 0 and that szlezp ces Pznule. Then

N(z,) - n- ifor1<i<n- 1.
Lemma 5: Suppose that xIy. Then f or all z € A. IN;(X) - N;(y)i < 1.

Proof: Assume the contrary, e.g., xIy and N;(x) > N;(y) + 2. Suppose

+ +
Pw,P R 4 = ). S = - .
XPw w2P Pwnm107 where n Nz(x) Then Nz(wz) n 2, and (w2Py or

wzly) follows, whence xPy, a contradiction. //

We now proceed to define a new set of functions, to be denoted by

{N_} g0 Z g €A

< xea: First define, for x,y € A, Mx(y) = {n € N|3 z

1%
such that yPz

1P2,P - Pznanx} and



w
9]

=}

M (y) -9,

N;(y) = max M;(y) if M;(y) is nonempty and finite,

8

if M;(y) is infinite.

[ e |

Obviously, N;(y) > 0 iff yPx for all x,y € A.
Lemma 6: For all x,y € A
- " -
< <
N (y) SN (y) <N (y) + 1.
The functions {N;)XGA have similar properties to those of {Nk}

X' X€EA’

Lemma _7: Assume that x,y,z € A satisfy N;(z) = n, > 0 and N;(y) =n, > 0.

Then

roof: Similar to Lemma 5. //
Lemma 8: For all x,y € A, N;(y) is finite.
Proof: Like Lemma 2 or using Lemma 6. //

Lemma 9: Assume N;(y) > 0. Then for z such that zPy N;(z) > Ng(y) + 1 and
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for z such that xPz N;(y) > N;(y) + 1.

Lemma_10: Suppose that N;(y) = n > 0 and that yP21P22 e Pzn_le. Then

N(z.,) =n-ifori<i<n- 1.
X 1

Lemma 11: If xIy, then INé(x) - N;(y)l <1, ¥z €A

We can finally define the functions we are really after. For x € A

define Nx: A - Z by

r +
| Nx(y) if yQx
I
|

N.(y) = : 0 if yEx
b
I -N (x) if xQy
LY

The following lemmata are quite straightforward. The somewhat tedious

proofs (based on a case-by-case study) are omitted.

Lemma_12: If xPy, then N _(x) 2 Ny(y) + 1, ¥V z €A.

Lemma 13: If xIy, then !Ny(x) - N7(y)| <1, ¥z €A

Lemma 14: For all x,y € A, 0 £ Nx(y) + Ny(x) < 1.

Lemma 15: For all x,y,z € A



IN,(v) = N (x) = N_(v)] € 3.

We will now define a real function on A as an average of all functions
{Nx(o)}XGA. We need a measurable structure which will be provided by the
real line. We note here that Q is separable. (This is, of course, trivial
since A is countable, but for later adaptations of the proof it is worthy of
note that the countability of A is used here for the first time and that the
separability of Q is all we need.) We may therefore assume that there
exists v: A - R such that xQy iff v(x) > v{y).

Let C = conv (range (v)) (i.e., C is a (not necessarily finite)

interval in R). For a € C define N A~ 2 by
lod ,
N"(y) = min {N_(y)|v(x) < a}.

Note that Na(-) is well defined, finite and monotonically nondecreasing.
Moreover, for each v € A, Na(y) is a nonincreasing function of o--hence,
measurable. Let g be a probability measure on C with the following
properties:

(i) #(1) > 0 for every positive-length interval 1;

(ii) For some x € A, the integral
I N (x)apu

is well-defined and finite.



38

Note that such measures do exist.
Lemma 16: For every v € A,
uly) = [, N (v)du
is well-defined and finite.

Proof: By Lemma 15, u(y) and u(x) converge or diverge together for every

X,y € A. //
Lemma 17: For all x,y € A,

xPy => u(x) 2 u(y) + 1

xIy => ju(x) -~ u(y)j| < 1.
Lemma 18: For all x,y € A,
XQy <=> u(x) > u(vy).

Proof: Assume xQy, whence v(x) > v(y). For all a¢ € (v(y),v(x)),
Na(x) >1 >0 2 Na(y) whence u(x) > u(y). On the other hand, xEy surely

implies u(x) = u(y). //

Lemmata 17 and 18 in fact complete the proof of Theorem 3.7. //
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Theorem 3.8: (ii) and (iii) surely imply (i). We avoid proving the
converse implications at this point because (in conjunction with Theorem

3.7) they follow immediately from Theorem 5.5 below. //

Theorem 5.3: Suppose v: A - R satisfies v(x) > v(y) for all x,vy € A such
that xPy. It is sufficient to show that there exists a countable C € A such
that v(x) > v(y) implies the existence of 2z € C with v(x) 2 v(z) 2 v(y).
For every pair of rational numbers, a < b, if range (v) N (a,b) # @, choose
X € A with v(x) € (a,b), and denote the set of alternatives thus chosen by
CO' Next define a "hole" to be a positive-length interval which does not
intersect the range of v. Note that every hole is contained in a maximal
hole, and that distinct maximal holes are disjoint, hence there are only
countably many maximal holes. Let {Hl}j be an enumeration of those maximal
holes which are finite open intervals. For each Hi’ there are xl.,yj € A
such that Hj = (v(xj),v(yi)). Define C = CO U UiZl {xi.yi}, and note that

it satisfies the requirement of weak separability. //

Theorem 5.4

a. For the "if" part, assume Q is separable and let v: A - R represent it
(i.e., v(x) > v(y) <=> xQy). Then define § = {(x,8)|a > v(x), B £ v(y)
for some x,y € A such that xPy}, and note that (v,S$) is a monotonic GUR
of P. For the "only if" part, we recall the remark following Theorem
3.5, and conclude that if (v,S) is a monotonic GNR of an irreducible
preference P, then it is also a monotonic GUR and v represents Q,

whence Q is separable. //
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b. The "only if" part follows from part (a). The "if" part is proved

similarly to Theorem 3.7. //

Theorem 5.5

a. First assume that P has a positive-threshold GNR where S is open.
This means that there exists a function u: A - R satisfying xPy <=> u(x) >
u(y) + 1 for all x,v € A. 1t is easily seen that this implies that P is a
semi-order satisfying A1, that u represents Q and that Q is separable. To
see that there are only countably many P-gap-edge-points, let x be one and
let y satisfy yPx where there is no z for which yPzQx holds. Hence,
range (u) N (u(x),u(y) - 1) = @. This means that the u-value of every
P-gap-edge-point alternative is the left endpoint of a positive-length
interval not intersecting range (u). Since P is irreducible, there are only

countably many P-gap-edge-points.

We will now prove the converse. Assume, then, that P is an irreducible
semi-order satisfying A1, with countably many P-gap-edge-points, and that Q
is separable. For x € A we say that x is P-regular if it is not a P-gap-
edge-point, and that it is P-regular of order 2 if for every y € A
satisfying yPx there are z,w € A such that yPzQwQx. Let Ci be the set of

all alternatives which are not P-regular of order i (i = 1,2).

Lemma 1: C, is countable.

Proof: It suffices to show that there are only countably many alternatives

X which are P-regular but not P-regular of order 2. Let x be such an
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alternative. Then there is y € A such that yPx, but yPzQwQx does not hold
for any (z.w) € A2. By P-regularity, there is t € A such that yPtQx. The
alternative, t, itself has to be P-gap-edge-point. Furthermore, there is no
w € A satisfyving tQwQx. This means that there exists a 1-1 function from
Cz\Cl to CT' and the conclusion follows. //

(Note that by the same method one can show that Cj is countable for all
i 2 1, hence also Uiz] Ci is countable.)

We will now extend the set of alternatives and the relations defined on

it as follows. For every x € C, let us introduce two new alternatives,

2
denoted x and x. Let A = A U {x|x € ) U {(x|x € C,). We define P and Q on
A as follows:
(i) For all x,y € A, let xPy <=> xPy and xQy <=> xQy.
(ii) For x € C2 and y € A, v # x, let
xPy <=> XPy <=> xPy; yPx <=> yPx <=> yPx
xQy <=> XQy <=> xQy; y0x <=> yQx <=> yOx.
(iii) For x,v € C X #vy, let

XPy <=> xPy <=> XPy <=> xPy <=> xPy

xQy <=> xQy <=> xQy <=> xQy <=> xQy.
And finally,
(iv) For x € C., let ;QiQx.

For x,vy € A, let xfy if neither xﬁy nor yﬁx. The following needs no

proof:



Lemma_2
(a) P is an irreducible semi-order satisfying A1l;
(b) Q is & separable weak order;
(c) Q>PIUTIP;: P>QPURPQ.

(Note that Q is not necessarily the indirect preference relation
corresponding to P. I.e., 6 may be strictly larger than PT U IP.)

Next we note that for binary relations P and Q which satisfy conditions
(a)-(c) of Lemma 2, all the lemmata in the proof of Theorem 3.7 hold.
Consider the function u: A -» R constructed in the proof. For all x,y € A we

have (Lemma 17)

xPy => u(x) = u(y) + 1
and

xIy => Ju(x) - u(y)] £ 1.

We now have to show that for x,y € A, xPy implies u(x) > u(y) + 1.
However, for such x,y € A there are z,w € A such that xﬁz@wﬁy. Consider
o € (v(y),v(w)) (where v represents Q as in the proof). For such a value «,

N*(x) > 2 where N*(y) < 0. As v(y) > v(w), u(x) > u(y) + 1. Hence P has a

positive-threshold GUR with an open set S, and the proof is complete. //

b. Both parts of the statement are proved similarly to their

counterparts in (a) above. //
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Theorem 6.1: It is trivial that (ii) implies (i). Assume, then that (i)
holds, whence there is a u: X - R such that xQy <=> Eu(x) > Eu(y) for all
Xx,v € A. (One may use Fishburn's (1970a) formulation of the von Neumann-
Morgenstern theorem, applied to Q.) Suppose first that there are Q-maximal
and Q-minimal elements x¥,x, € X. For each y € A there is a unique a(y) €
[0,1] such that v E [ax* + (1 - a)x,], and the conclusion follows from L3
and L4 applied to {ox* + (1 - a)x,lo € [0,1)}. Next, if range (u) has no
sup or inf, choose a sequence {(X?'x*j)}jZ] such that range (u) c U121

//

(u(x*j),u(xy)) and for each i > 1 construct u, as an extension of u -

Theorem 6.2: As 6.1 above. //

Theorem 7.1: (a) Theorem 5.5 implies that P has a GUR (u,SO)(a]t.,
(u,SC)). Because both u and v represent Q, there exist a strictly
increasing T: R - R with u = Tv.

(b) By the provision of the theorem, there exists u: A - R such that
xPy iff u(x) > u(yv) + 1 (u(x) 2 u(y) + 1) and xQv iff u(x) > u(y). Assume
without loss of generality that range (u) = R (otherwise, extend A, P and
u). Therefore, the function v we are looking for is a monotone

transformation of u. Choose an arbitrary x. € A and let v(xo) = u(xo). Let

0
Xy satisfy u(xj) - u(xo) = 1 for i € Z. The value v(xi) is determined by
the boundary of S. (I.e., V(XI) = inf {a!(a,v(xo)) € S}, and so forth).
Define v(x) for {xlu(xo) < u(x) < u(xl)} so that v is some (strictly)
monotonic continuous function of u on [u(xo),u(xl)], and extend v to all A

according to S as above. Since bd(S) is the graph of a strictly increasing,

unbounded and continuous function (defined on all the reals), this procedure
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generates a well-defined v (which is continuous in u) such that (v,$) is a

GUR of P. //



