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Walrasian social choice function for large replications of an exchange economy can be fully
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1. Introduction

A goal of implementation theory is to characterize the results of decentralized decision
making processes, given various information structures. The theory helps us to answer
two questions. First, suppose that for each possible state of the environment, we have an
allocation which we wish to see achieved. Can we structure the interactions of individuals
so that, given their information, they choose actions which result in the desired allocation?
Second, if individuals possess information about the state of the environment and interact
through a given mechanism, what are the properties of the resulting allocation as a function
of the state? In answering these questions, the outcomes of a given information structure
and mechanism are predicted through the application of game theoretic solution concepts.
The relevance of implementation theory depends on the qualities of the mechanisms and

the solution concepts we consider.

Although the theory of implementation has been quite successful in identifying the
social choice functions which can be implemented in different informational settings, a
nagging criticism of the theory is that the mechanisms used in the general constructive
proofs have ‘unnatural’ features. A natural response to this criticism is that the mechanisms
in the constructive proofs are designed to apply to a broad range of environments and social
choice functions . Given this versatility, it is not sux;rising that the mechanisms possess
questionable features. With this in mind, we would hope that for particular settings and
social choice functions we could find ‘natural’ mechanisms with desirable properties. To the

extent that there are social choice functions which we can only implement using questionable

mechanisms, the existing theory of implementation is inadequate.

At this point let us begin to be a bit more specific about what a questionable feature
of a mechanism is. Various solution concepts seem more or less compelling depending on
the the particular mechanism they are applied to. Some of the constructive proofs in the

implementation literature employ mechanisms which push any solution concept to its limit.
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In particular, many of the constructive proofs employ some sort of ‘integer game’ or ‘modulo

game’.! These are employed in situations in which there is some sort of ‘disagreement’
in the messages of agents. In an integer game the agent announcing the highest integer
gets to name the allocation. [For those not familiar with these sorts of mechanisms, a
mechanism with an integer construction is presented in Appendix 1. Example 1 also shows
the implicit use of such a construction.] If there is no unanimous best outcome, then there
is no solution to such a game since there is always someone who can benefit from increasing
their announced integer. In the modulo games the agents announce numbers from some set
and the modulo of the sum of the numbers is taken and the agent who’s identification (say
1) matches the modulo gets to name the allocation. If this allocation is not best for each
agent, then there is some agent who wishes to change their announcement. It is clear that
there are no pure strategy Nash equilibria to a modulo game (in the absence of unanimity),

but there may exist mixed strategy equilibria. Integer and modulo constructions are used

to assure that certain action combinations do not form equilibria.

We give a brief argument for why such constructions are inappropriate for various
solution concepts. [We refer you to Examples 1 and 5 for more concrete illustrations and
arguments.] Let us look at an isolated integer game in a situation where agents are not in
agreement about what the best allocation is. As discgsjsed above, there will be no solution
to the integer game ;;agardless of what solution concept we apply. Agents playing this game
have to choose actions in any case, so all that we can say is that we have no prediction
concerning those actions. Now suppose we take this integer game, and append it to a given

game so that whenever agents choose actions which we wish to rule out as equilibria, they

end up playing the integer game. It does not make sense to say that since there are no stable

! For instance see Dutta and Sen (1988a) (1988b), Jackson (1988a), McKelvey (1985),
Moore and Repullo (1986) (1988), Palfrey and Srivastava (1986) (1987) (1988) (1989),
Postlewaite and Schmeidler (1986), Saijo (1988). Of course integer games can be replaced
with ‘half-open interval’ games where agents announce a number from a half-open interval.
Maskin (1977) does not completely describe an implementing mechanism, but the proof of
his theorem which does, Saijo (1988), involves a modulo game.
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points in the integer game, agents will not choose actions which place them in the integer
game. In a nutshell, it is unreasonable to say that a given solution concept ‘solves’ the
integer game, and likewise, it is unreasonable to say that a given solution concept ‘solves’

a game which is augmented with the addition of an integer game.

A parallel argument can be made against modulo constructions, but only for solution
concepts which look only at pure strategy Nash equilibria or a refinement of pure strategy
Nash equilibria.? [The literature on Nash and undominated Nash implementation considers
only pure strategies. For example, see Maskin (1977), Moore and Repullo (1988), Saijo
(1988), Williams (1984) and Palfrey and Srivastava (1986).] Furthermore, as we shall see,
the class of mechanisms which are problematic for pure strategy Nash solution concepts

goes beyond those with modulo constructions.

The goal of this paper is to begin to understand the impact of restricting the class
of mechanisms considered for implementation, and to start the process of identification of

classes of mechanisms which are appropriate for different solution concepts.

We begin by using a single elimination of dominated strategies as a solution concept.
This sheds light on the problem in several ways. First, it allows us to take the current
theory to its logical extreme: We show that if we place no restrictions on mechanisms, then
we can fully implement any social choice function with-a weak solution concept and a minor
assumption concerning preferences. This implies that either implementation theory can
achieve anything, or that we must have been applying the solution concept to too broad
a class of mechanisms. Example 1 suggests the latter. Second, in using undominated
strategies as a solution concept, the appropriate class of mechanisms for consideration
is easy to identify. We can then examine the implications of restricting our attention
to mechanisms in an appropriate class. Third, performing this exercise for undominated

strategies reveals a very stark contrast between what we can implement when we consider

2 For other solutions, such as undominated strategies, modulo constructions are not a
problem.



the appropriate mechanisms and what we can implement when we consider all mechanisms.
Under a minor assumption on preferences all social choice functions are implementable by
some mechanism, but only strategy—proof social choice functions are implementable by a
bounded mechanism. Thus we have a partial answer to the question we posed: some of the

power of implementation theory is derived from the absence of appropriate restrictions on

mechanisms.

It turns out to be more difficult to identify appropriate classes of mechanisms for other
solution concepts, and we leave these issues largely unresolved. We provide examples which
raise some of the issues which need to be considered for implementation in undominated
Nash or Nash equilibria. One example shows that there exist social choice functions which
are fully implementable in undominated Nash equilibria by unbounded mechanisms, but
which are not fully implementable in undominated Nash equilibria by a bounded mechanism.
Another example raises issues associated with mixed strategy equilibria and their omission
from definitions of implementation. In particular, it demonstrates a mechanism which has
mixed strategy equilibria which always result in outcomes which all agents strictly prefer to
the outcome associated with the pure strategy equilibria considered in the implementation
definitions. These equilibria pose a difficulty for the current definitions of implementation

involving the Nash property, when there are no addtional restrictions on mechanisms.

2. Definitions and Notation

In general, for a given set of scalars or functions {v',...,v™}, define the vectors v,
v™', v/v%, and (v7%,v'), by v = (v},...,0") , v7 = (vl .0 T 0L L ™) | and
Mo = MY — (1 i—1 L di+1 n
/v = (v h) = (v, .ot T T U L),

There are a finite number, N, of agents in an environment. The letters 1, 7, and k are
used to represent generic individual agents. The set of allocations to be considered is denoted
A. We assume that #A > 2, since the implmentation issue is trivial otherwise. Agent 1 has

preferences over the allocations in A which are denoted R*. We assume that R’ is a binary
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relation which is complete, transitive, and reflexive. The set of all such relations is denoted
R(A). The set of possible preferences for ¢ is R*, R* C R(A). Let R = (R*,...,R") be the
vector of agents’ preference orderings and R = R! x --- x R¥ be set of possible preference
vectors. The strict preference relation associated with R’ is denoted P*. That is, P* is the
irreflexive relation defined by aP'b < not bR'a.® The indifference relation associated with

R’ is denoted I’ and defined by al'b < (aR'b and bR'a).

Agents are assumed to know their own preferences. Agents are also assumed to know
the structure of any mechanism they participate in. However, our analysis is independent of
agents’ knowledge about the preferences of the other agents. One of the appeals of a single
elimination of weakly dominated actions as a solution concept is that it does not require
specification of priors or any common knowledge.

An environment is a collection (N, A, R).

A social choice correspondence is a correspondence which associates a subset of A with
each R € R. If a social choice correspondence is single valued then it is called a social choice
function .

A mechanism is an action space M = M! x --- x M¥ and a function g : M — A.

An action m' € M' is weakly dominated at R* if there exists m' € M* such that
g(m/m*) R g(m/m*) for all m € M and g(m/m*)P*g(m/m’) for some m € M. In this case,
we say that m* weé.k]y dominates m' at R*. An action m* € M"* is undominated at R’ if

there is no action in M* which weakly dominates it.

A social choice correspondence F is fully implemented in undominated strategies if

there exists a mechanism (g, M) such that for all R € R *

F(R)={a€ A| a=g(m) for some m € M s.t. Vi m' is undominated at R‘}.

3 We use the notation aR*b to say “a weakly preferred by ¢ to b” (rather than the notation
(a,b) € R).

* We remark that this is quite different from implementation in dominant strategies
(see Dasgupta, Hammond, and Maskin (1979)). There it is required that for each ¢
g(m=, m*)R'g(m~*,m'), for all m' and for all m~".
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3. Unbounded Mechanisms

We first examine the implementation question with no restrictions on the class of

mechanisms we consider.

We say that agents’ preferences are strictly value distinguished if given any R' and
E in R (R # ?), there exist z and y in A such that zP'y and y_PS{:z:. [See Palfrey
and Srivastava (1988).] Many interesting preference classes satisfy strict value distinction.
For instance, it is satisfied if preferences are strict or if A is a convex subset of IR’ and

preferences are continuous and locally not completely indifferent.®

THEOREM 1. If agents’ preferences are strictly value distinguished, then any social choice

function can be fully implemented in undominated strategies.

The proof of Theorem 1 appears in Appendix 1.

Theorem 1 can be extended to cover the case where F is not a function and where
preferences are not strictly value distinguished, with some qualifications. The statement of

the theorem above allows us to work with a relatively simple mechanism.

Theorem 1 provides what appears to be a very strong result, especially given the
weakness of the solution concept. That is, if we agree that a basic requirement of a solution
concept is that agents not choose weakly dominated actions, then the solutions we consider
should be a subset of the undominated strategies.® If the set of undominated actions provide

us with our unique desired outcome, then any (nonempty) subset of the undominated actions

will also coincide with that outcome.

However, there is a problem with considering only the undominated actions of some

mechanisms, as is illustrated in the following example. Example 1 shows that the proof

5 By locally not completely indifferent, we mean that for any z € A, R* € R*, and
neighborhood U of z, there exists some z € U such that either zP*z or zP*z. We do not,
in fact, need that A is a convex subset of R'. If A is a perfect metric space (forany z € A

and € > O there exists z # z such that d(z,z) < ¢) and preferences are continuous and not
completely indifferent, then preferences are strictly value distinguished.
¢ For an alterative view see Bernheim (1984) and Pearce (1984).
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of Theorem 1 relies on the construction of mechanisms which put to question solving for
undominated actions. In particular, the mechanisms have infinite strings of dominated
strategies with no undominated strategy ‘on top’. It turns out that it is this feature which
allows us to fully implement any social choice function . The example below gives an idea

of how this i1s achieved for a particularly nasty social choice function .

EXAMPLE 1

Consider the environment (N, A, R) where N = 2, A = {a,b}, and R is described as
follows: R! = {R'} where aP'b, and R2 = {R?,R°} where aP?b and aP b.

The social choice function F is defined by F(R', R?) = b and F(Rl,ﬁz) = a. This
function violates any sort of incentive compatibility condition we may wish to consider.
Furthermore, is fails to satisfy efficiency, monotonicity (in Maskin’s sense (1977) (1983)),

or even unanimity. However, it can be fully implemented in undominated strategies by the

mechanism pictured below.

ML
m!
m? b a a a a a a a
b a a a b b b b..
b b a a b b b b..
b b b a b b b b..
ve : E
m? a b b b b b b b..
a a a a a b b b..
a a a a. a a b b..
a a a a. a a a b..



The table above describes the outcome as a function of the actions of the agents. The
only undominated action for agent 1 is m!. At R?, the only undominated action for agent
2 is m?, while at R’ the only undominated action for agent 2 is m?. It follows that this

mechanism fully implements F.

This ends Example 1.

We make two remarks about this example.

First, the number of allocations and preferences in this example are finite, and therefore
so is the range of any social choice correspondence defined on this environment. It seems
reasonable to expect that if we can implement a given social choice correspondence on this
environment, that we should be able to do so with a fairly simple mechanism (at least a

finite one). The fact that we need such a large mechanism in Example 1 gives us a clue

that something is wrong.

Second, as mentioned previously, the way in which the undesired actions are ruled out
in the above mechanism is through an infinite string of actions, each one dominating the
previous one (essentially an integer game). In this context it is no longer compelling to
argue that agents will not play weakly dominated actions. If we were to look simply at an
integer game, eliminating dominated actions tells us that there are no actions which agents
can play. [Alternati.\'lely, eliﬁinating dominated acti;ns from the above mechansim when
m? and m® are not in the action space M?, leaves us with no actions.] We should not
take this to mean that agents would not play the game anyway, simply that eliminating
dominated actions cannot predict how agents would play such a game. Given this, it seems
unreasonable to look at a more complicated game which includes an integer construction,

and then say that agents would not choose any actions in the integer construction, since it

has no undominated actions.”

7 Notice that there are no Nash equilibria to the mechanism (in Example 1) at (RI,EQ),
and all the Nash equilibria at (R, R?) give outcome a. However, if we add a third agent
(with any preferences) then we can extend this mechanism so that F' is fully implemented
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The example and discussion above indicate that it does not make sense to apply the
elimination of dominated strategies to the sort of mechanisms used in the proof of Theorem
1, at least for some environments. This raises two questions. First, for what class of
mechanisms is it reasonable to eliminate dominated strategies. And second, which social
choice functions can we implement in undominated strategies by some mechanism in that

class? With these questions in mind, we turn to the next section.

4. Bounded Mechanisms

There is a natural notion of ‘bounded’ which identifies mechanisms which do not have
the property of the mechanism in Example 1. A mechanism (g, M) defined on an envi-
ronment (N, A, R) is said to be bounded if, whenever an action m* € M* is dominated at
some R € RY, there exists an action m' € M* which dominates m' at R' and which is
undominated at R*.

The definition of a bounded mechanism is made with reference to the environment it
is defined on. This is quite natural, since the preferences of the agents determine what the
‘payoffs’ to the mechanism are. Thus the properties of the mechanism are linked directly to
the set of preferences which are possible in an environment. There are mechanisms which
are bounded regardless of the possible preferences: It follows from the transitivity of weak

domination that any finite mechanism (#M < oo) is bounded.
Clearly, the mechanisms in Example 1 and the proof of Theorem 1 are not bounded.®

The notion of bounded mechanisms has very strong implications for the implementation

issue. If we consider the outcome for an agent’s action against a vector of possible actions

in undominated Nash equilibria. This is done in Appendix 5. It is not surprising to find
that identifying undominated Nash equilibria is not compelling when done for the extended
mechanism.

8 We notice that modulo sorts of constructions are possible in a bounded mechanism.
Modulo constructions are not inappropriate with undominated strategies. If we consider a
simple modulo game there exists a solution since all actions are undominated (in contrast to
the non—existence of pure strategy Nash equilibria). Furthermore, mixed strategy equilibria
are not a relevant issue when we use undominated strategies as a solution.
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of the other agents, there has to exist an undominated action which gives an outcome which
is at least preferred to this outcome. The implication of this for implementation is captured

in the following property.

A social choice correspondence is strategy-resistant if for all 1, R € R, ® < R, and
a€ F(R/Ti’{), there exists b € F(R) such that bR'a. If F is a function which is strategy-

resistant, then it is said to be strategy—proof.

LEMMA 1. If a social choice correspondence can be fully implemented in undominated

strategies by a bounded mechanism then it is strategy-resistant.

PROOF: Pick any 1, R € R, ® ¢ R', and a € F(R/F) By the definition of implemen-
tation, there exists (g9, M) and m € M such that m’ is undominated for all 5 at the j**
component of R/ﬁ and g(m) = a. If m* is undominated at R then a € F(R) and strategy—
resistance is satisfied. If m* is dominated at R’ then, since (g, M) is bounded, there exists
some undominated action ' which dominates it. It follows that g(m/m*) R*g(m) and that

g(m/m*) € F(R). Therefore strategy-resistance is satisfied. |}

COROLLARY 1. Ifasocial choice function can be fully implemented in undominated strate-

gles by a bounded mechanism then it is strategy—proof.

It would seem that strategy—proofness should also be sufficient for full implementation
in undominated strategies By a bounded mechanismt.v However, this is not true since we
require full implementation. Strategyproofness makes it easy to assure that there exists a
vector of undominated actions with outcome f(R), but it does not rule out undominated

actions which lead to some other outcome.

The following example shows that, in general, strategyproofness is not sufficient for full

implementation in undominated strategies by a bounded mechanism.

EXAMPLE 2.

Consider the environment (N, A, R) where N = 2, A = {a,b,c,d}, and R is described
as follows: R! = {R'} where dP'aP'bP!c, and R? = {Rz,ﬁz} where al?bP?cP?d and
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al bP dP’c. These preferences are pictured below.

R! R? R
d a-b a-b
a c d

b d c

c

2

The social choice function F is defined by F(R', R?) = a and F(R',R") = b.

Suppose that a bounded mechanism (g, M) fully implements F' in undominated strate-
gies. It follows that there exists m € M such that g(m) = a and m is undominated at
R', R%. Therefore, since g(m) # F(Rl,ﬁz), m? is dominated at R- by an undominated
action m?2. Given the fact that m? does not dominate m? at R?, this implies that there
exists m! such that g(m!',m?) = d and g(m',m?) = c. Since these outcomes do not coin-
cide with F, m! must be dominated (at R!) by an undominated action m!; which implies
that g(Mm!,m?) = d. Since Mm' and m* are both undominated at R, R’ this implies that
de F(Rl,—Ez) which contradicts the fact that (g, M) fully implements F in undominated
strategies. We have shown that F cannot be fully implemented in undominated strategies

by a bounded mechanism, even though it is strategy—proof.

This ends Example 2.

Although Example 2 shows that strategy-proofness is not a sufficient condition for
full implementation by a bounded mechanism on some environments, strategy—proofness is

sufficient when we consider exchange economies, the topic of the next section.

5. Exchange Economies

In this section, we restrict our attention to environments satisfying the special proper-

ties described below. We call such an environment an exchange economy.
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Each agent ¢ has an endowment of [ different goods, ¢ € IR, . The aggregate endow-
ment y . €' is assumed to be strictly positive. It is assumed that the endowments of all the
agents are known and fixed.? An allocation is an Nl-dimensional vector z describing each

agent’s allocation z*, where z* is a vector in IRY, . The allocation set can be represented as

A={x€]RT]Zz" SZe‘}.

Agent 1’s preferences are assumed to depend only on the allocation z*. That is, for a,b,z,y
in A, if zR'y and a* = z* and b = y*, then aR'b. We also require preferences to the be
strictly increasing: if z* > y' then zP'y. [Given /-dimensional vectors u and v, u > v

indicates that uy > v for all k € {1,2,...,1} and ur > v, for some k € {1,2,...,1}]

THEOREM 2. Consider an exchange economy (N, A, R) such that preferences are strictly
value distinguished and N > 3. A social choice function defined on (N, A,R) can be

fully implemented in undominated strategies by a bounded mechanism if and only if it is

strategy—proof.
The proof of Theorem 2 appears in Appendix 2.

A nice feature of the mechanism used in the proof of Theorem 2 is that the unique
actions which are undominated at R, also form a Nash or Bayesian Nash equilibrium at R

(depending on the information structure). This is assured by the strategy—proofness of F.

Corollary 1 (and Theorem 2) show that a very restrictive condition is associated with
implementation in undominated strategies by a bounded mechanism: strategy—proofness.
It is well known (Gibbard (1973) and Satterthwaite (1975)) that if #A > 3 and the domain

R is unrestricted, then a social choice function which satisfies citizen sovereignty (the range

9 Our notion of implementation assumes a fixed allocation space. This derives from the
fact that the mechanism is to be independent of the uncertainty in the environment. {In fact
it is designed to resolve the uncertainty.] Allowing the allocation space to vary is certaintly

an interesting question, but beyond the scope of this paper. For a discussion see Hurwicz,
Maskin, and Postlewaite (1984).
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of F is A) is strategy—proof if and only if it is dictatorial. This result does not carry over to
situations in which preferences are restricted to satisfy certain properties, and in particular
it does not hold for exchange economies. Although strategy—proofness is restrictive, it still
admits social choice functions of interest. We show below that under strong assumptions,

the Walrasian allocation for large replications of an exchange economy is strategy—proof.
First, we develop the notion of replicating an exchange economy.

The k'" replication of an exchange economy E = (N, A, R) is the exchange economy
(kN, A(k), R¥), where A(k) = {z € R*V |3 Y o8 < Y5V ¢}, and e®* = € for all i €
{1,...,N} and n € {1,...,k}. Notice that although a ‘replication’ agent has the same
set of possible preferences as his or her initial counterpart, in any particular realization of
the replicated economy they do not necessarily have the same preferences. For example, if
N =k =2, then R! = R® while it is possible that in a realization of the economy R* # R®.

We use the notation E* to represent the k** replication of E.

Let T(E) = U; pier: (R',€') be the set of possible types of agents in the economy E.
[Notice that T(E) = T(E*) for all k] We can represent a realization of E by a probability
measure on T(E). That is, if u is a probability measure on T'(E), the interpretation of u(t),
t € T(E), is that a proportion u(t) of the agents in the economy are of type t. We consider

the metric d(u,v) = sup,€T>|p(t) — v(t)| (and the topology it induces) on the space of all

probability measures defined on T'(E).

For an exchange economy, E, only some probability measures (defined on the type
space T(E)) correspond to a possible realization of the economy. Let M(E) be that set of

probability measures. We define M to be the closure of UL | M(E*).

We remark that if preferences are continuous, strictly increasing, strictly convex, then
associated with each t € T is a continuous competitive demand function h* : S% | — IR!,
where S, = {p€ R\, | S._, pi = 1}. [So h* is the function such that ht(p) € {a’ €
R, |p-a" <p-e}and h*'(p)Ra’ forall ' € {a* € R, | p-a’ < p-¢€'}, where t =
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(R',e').] This follows from Richter (1989).1°!! Under these conditions, the Walrasian
price correspondence is well defined. The Walrasian price correspondence of an exchange
economy is the correspondence II from M to S! . such that for any p € M
N
M(s) = {pe s, | f B (p)du(t) = > ¢ /NY.
i=1
The Walrasian social choice correspondence W defined on an exchange economy FE is the

correspondence from R to A such that for all R € R
W (R) = {a | 3p € (") such that o' = h(Z ) (p) i},

where u® is the probability measure in M(E) which corresponds to the realization R.

An exchange economy is heterogeneous if its Walrasian price correspondence IT is a
continuous function. This coupled with single valued demand implies a unique Walrasian
equilibrium, and so the Walrasian social choice correspondence is a social choice function

. Roughly, this says no good has an aggregate demand which is becoming arbitrarily large

or small relative to the demands for the other goods.

LEMMA 2. Consider an exchange economy E such that (i) #R is finite, (ii) preferences
are continuous, strictly increasing, and strictly convex,'? (iii) E is heterogeneous, and (iv)
for alli, ift = (R',€!) and t = (F, ¢') then ht(p) # h*(p) for all p in the range of II. There
exists a number K such that for all k > K, the Walrasian social choice function associated

with E* can be fully implemented in undominated strategies by a finite mechanism.

The proof of Lemma 2 appears in Appendix 3.

10 Tn fact, it is not necessary that preferences be strictly convex. We need the weaker
condition Richter defines as >—convexity, which roughly requires that strict convexity hold
only with respect to points which differ in all coodinates. This allows indifference curves to
be flat in sections which are not supported by strictly positive prices (which is ruled out by
strict convexity). This is sufficient to obtain a unique demand point for any strictly positive
price and hence assure that the demand correspondence is a function.

11 Demand is often defined over prices and income. Here we are in fact considering the
Slutsky compensated demand, so that h*(p) represents ht(p,p - ¢*).

12 Again, we need only Richter’s >—convexity.
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To better understand condition (iv), notice that it is equivalent to requiring that in-
difference curves corresponding to different preferences are never tangent at a point where

they can be supported by a strictly positive price.

The intuition behind the lemma is straightforward; it is really just the standard compet-
itive story. Let us think of the Walrasian setting in which agents submit demand functions
to an auctioneer, who in turn chooses a price to clear markets. In choosing a demand to
submit there are two opposing motivations. The first is to influence the price in your favor,
which may involve submitting a demand which differs from your price taking demand. The
second is to assure that at the resulting price to have your best quantity choice, which
involves submitting the price taking demand. There is clearly a tension between these two
motivations. As the economy is replicated, the tension decreases as each agent’s influence
on the price decreases. Eventually, any two demand functions an agent might consider

result in almost the same price. Then an agent is simply concerned with receiving the best

allocation at that price.

Postlewaite and Roberts (1976) show that, for replicated economies, submitting the
competitive demand is limiting individually incentive compatible. [Given any ¢, there is a
large enough replication of the economy so that the incentive compatibility inequality is
satisfied if € is added to the utility of submitting the competitive demand.] Their result
shows that for largeueconomies, there is little incentive to deviate from purely competitive
behavior. In a sense, Lemma 2 is an extension of their results to show that the outcomes of a
sequence of economies with a finite number of agents converge to a competitive equilibrium.

The lemma is of the most interest when information is incomplete (recall that we
have not specified the information structure beyond each agent knowing his or her prefer-
ences). If there is complete information then the Walrasian correspondence can be fully
implemented in Nash, strong Nash, or undominated Nash equilibria (see Hurwicz (1979),

Schmeidler (1980), Palfrey and Srivastava (1986), and Nakamura (1988)). Palfrey and Sri-

vastava (1986b) have a result similar to Lemma 2 showing that there are outcomes which
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converge to the Walrasian allocation, when information is incomplete. In their setting, how-
ever, replicated agents have the same realized preferences as their base counterpart agent.
Here we examine the situation in which as the economy is replicated the state space ex-
pands (replica agents may be different from base agents). Mas—Colell and Vives (1989) also
examine this setting. They use a Bayesian approach and look at games with a continuum
of agents in which the distribution of characteristics is known. The intuition behind their
approach is that uncertainty is negligeable with large numbers of agents. Here, we have
not specified priors or how the distribution of agents characteristics is resolved; instead we
have made use of the fact that the gains from misrepresentation are negligeable in large
economies, regardless of the realization.

We have confined our analysis to situations in which agents know their own pref-
erences. Situations which involve a common value with incomplete information are not
covered. There it seems plausible that an agent may have private information which per-

mits manipulation of the price, despite the size of the economy. [See Jackson (1988b) for

an example along these lines.]

6. Other Solution Concepts

So far, we have restricted our attention to imple{pentation in undominated strategies.
Our success in implementing desired social choice functions by bounded mechanisms is
limited, as is evidenced by Lemma 1 and Corollary 2. Yet we should not be discouraged
since our look at undominated strategies was partly an exercise to help us understand the
importance of identifying an appropriate class of mechanisms for a given solution concept.
We may, in general, be willing to look at stronger solution concepts.

Since our analysis has demonstrated a stark contrast between what we can fully imple-
ment in undominated strategies with bounded mechanisms and without them, we should

be interested in restricting attention to appropriate mechanisms when we use other solution

concepts. However, identifying the right class of mechanisms is not as easy for some solution

17



concepts. Our notion of a bounded mechanism corresponds nicely with undominated strate-
gies as a solution. Although this notion of bounded mechanism rules out integer games,
it fails to rule out the modulo games and other mechanisms which seem objectionable for
instance when Nash or undominated Nash equilibria are considered.

Let us proceed first things first. We begin by looking at the restriction to bounded
mechanisms for implementation in undominated Nash equilibria. Given an environment
(N,A, R) and a mechanism (g, M), an action m is a Nash equilibrium at R if for all ¢
g(m)R'g(m/m") for all m' € M*. An action m is an undominated Nash equilibrium at
R if, for each agent ¢, m' is undominated at R*, and m is a Nash equilibrium at R. [See
Palfrey and Srivastava (1986).] A social choice correspondence F is fully implementable in

undominated Nash equilibria if there exists a mechanism (g, M) such that for each R € R
F(R) = {a | 3m € M s.t. m is an undominated Nash equilibrium at R and g(m) = a}.

The following example shows that considering only bounded mechanisms narrows the
set of social choice functions which can be implemented in undominated Nash equilibria.
EXAMPLE 3.

Consider the environent (N, A,R), where N = 5, A = {a,b}, and R is defined as
follows: R' = R? = {R'} where aP'b, R® = R* = {R'} where bP'a, and R° = {RE’,RS}
where aPb and 6P a. :

Consider F defined by F(R) = b and F(R/ﬁs) = a. Preferences are strictly value
distinguished and F satisfies no-veto power, so it follows from Palfrey and Srivastava (1986)
that F can be fully implemented in undominated Nash equilibria. However, F cannot be
fully implemented in undominated Nash equilibria by a bounded mechanism.

To see this suppose the contrary: There exists a bounded mechanism (g, M) which
fully implements F in undominated Nash equilibria. Thus 3m € M such that g(m) =
b and m is an undominated Nash equilibrium at R. It is clear that m is also a Nash

equilibrium at R/ﬁs. Therefore, since g(m) # F(R/ﬁs), m* is dominated for some 1 at
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R/I_{s. Since only agent 5’s preferences have changed it must be that m® is dominated at R
Since (g, M) is bounded, it follows that there exists an undominated #° which dominates
m® at R . This implies that g(m/m®) = b. Since m/m° is undominated at R/R’ and
g(m/m®) # F(R/ﬁs), m/m® cannot be a Nash equilibrium at R/ﬁs. It follows that there
exists 7 # 5 (since 5 is getting the best outcome under ﬁs) such that g(m/m°/m?)P’b, and
so g(m/m®/m?) = a. Since m is Nash at R it follows that g(m/m?) = b. This implies that
g(m/m? )R’ g(m/m® /M), which contradicts the fact that m® dominates m® at .

We remark that it is not critical to this example that #A = 2. Similar examples can
be constructed with #A > 3. [Consider the addition of a third allocation ¢. All preferences
are unchanged between a and b, and c is always the worst outcome, except for R® which is

such that bP*cP*a.]

This ends Example 3.

Example 3 shows that considering bounded mechanisms for full implementation in
undominated Nash equilibria is a non-trivial restriction. The class of social choice functions
which we can implement in undominated Nash equilibria by bounded mechanisms is strictly

smaller than the class we can implement when we admit unbounded mechanisms.

At this point, we might ask what are the additional conditions necessary for imple-

mentation in undominated Nash equilibria by bounded mechanisms. Given our previous

analysis and knowledge of implementation in Nash equilibria, we check strategy—proofness

and monotonicity.

The following example demonstrates a social choice function which is fully implemented
in undominated Nash equilibria by a bounded mechanism, but is neither strategy—proof nor

monotonic.
EXAMPLE 4.

Consider the environent (N, A, R), where N = 2, A = {a,b,c,d}, and R is defined
as follows: R! = {R!'} where cP'aP!'dP'b, and R? = {R2,§2} where bPZaP!cI?d and
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aP bP I d. These preferences are represented below.

R! R? R
c b a

a a b

d c-d c-d
b

Consider that social choice function F defined by F(R', R?) = a and F(Rl,—éz) =c.
It is easily checked that F is fully implemented in undominated Nash equilibria by the

following mechanism.

m! m! mt
m? b d a
m2 a c a

We remark that F' is not strategy—proof and is not monotonic.

This example is easily extended to situations in which N > 3, simply by adding agents

who have singleton action spaces.

This ends Example 4.

Although monotonicity is not necessary for implementation in undominated Nash equi-
libria by a bounded mechanism, it is sufficient when we confine our analysis to exchange
economies. Furthermore, exchange economies have features which permit implementation
by bounded mechanisms which have no modulo constructions. In addition, we can find
such a mechanism for which all the Nash equilibria are in undominated actions. This is all

captured in the following lemma.

LEMMA 3. Consider any monotonic social choice correspondence F defined on an exchange

economy with N > 3, such that aP*0 for all R € R, a € F(R), and i. F can be fully
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implemented in Nash or undominated Nash equilibria by a bounded mechanism which has

no modulo constructions.

The proof of Lemma 3 appears in Appendix 4.

The mechanism used in the proof of Lemma 3 takes advantage of the properties of an
exchange economy, in place of an integer or a modulo construction. For situations in which
at least two agents choose actions incongruent with the actions of the others, the largest
group of agents with congruent actions evenly split the aggregate endowment, while the
other agents get nothing. [In the mechanism all agents have the same action space R x A,
so two actions are congruent if they announce the same (R,a).] This assures that there
cannot exist an equilibrium with ‘too much’ disagreement.

However, by eliminating the modulo games, we have not eliminated the possiblility
that there are mixed strategy equilibria which we have not considered. These could be a
problem for our notion of implementation, especially if the mixed strategy equilibria result
in an allocation not in the social choice correspondence . The following example provides
a mechanism which has a mixed strategy (undominated) Nash equilibrium which always
results in a better allocation, for both agents, than the pure strategy (undominated) Nash
equilibrium identified for full implementation.

EXAMPLE 5. .. -

Consider the environent (N, A, R), where N = 2, A = {a,b,c,d}, and R is defined
as follows: R} = {R'} where cP'aP!'dP'b, and R? = {Rz,_ﬁz} where aP?cP*bP?d and

cP’aP dP’b. These preferences are represented below.

R! R? R
a a

b b a
c d c

d c d
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Consider that social choice function F defined by F(R', R?*) = a and F(R,E) =c.
It is easily checked that F' is fully implemented both in Nash and in undominated Nash

equilibria by the following mechanism.

m m m
m? a b d
m? b a d
m? d d c

The only (pure strategy) Nash equilibria at R are m and m, which both result in a. At
(Rl,ﬁz), the unique (pure strategy) Nash equilibrium is 7, which results in b. The Nash
equilibria of this mechanism coincide with the undominated Nash equilibria.

Remark that F' is monotonic, and that we can easily extend the example to situations
in which N > 3 (by adding agents with singleton action spaces and having F be independent
of their preferences).

This ends Example 5.

There is a difficulty with identifying the pure strategy Nash equilibria of the above
mechanism as the outcomes. At (Rl,_ﬁz) there is a mixed strategy Nash equilibrium (where
each agent plays m' and m* each with probability .5) which always results in an outcome

(either a or b) whic}: both agents strictly prefer to ¢ (the result of the pure strategy Nash
equilibrium m).

This example points out the basic difficulty we face in assuring that we have a con-
vincing notion of full implementation when the solution concept has the Nash property.
We should be sure that we properly take into account mixed strategy equilibria. There are
alternative approaches to this problem, for example (i) defining a notion of implementation
which accounts for mixed strategy equilibria, (ii) looking only at mechanisms for which only
the pure strategy equilibria are reasonable, or (iii) looking only at mechanisms for which

any existing mixed strategy equilibria result in the same outcomes as the pure strategy
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equilibria. What we view as the ‘proper’ approach to setting up the implementation prob-
lem for solution concepts with the Nash property, depends on how we view mixed strategy

equilibria. We leave this issue for future consideration.

7. Summary and Concluding Remarks

Essentially much of what we have said is captured by a simple rule. Given a solution
concept for an implementation problem, we should consider only those mechanisms for
which the solution concept is appropriate. The difficulty, and the focus of this paper, is
identifying the mechanisms which are appropriate for a given solution concept. We argue
that for undominated strategies the appropriate mechanisms are bounded, in the sense we
defined. We saw that this was a very restrictive property: it narrowed the class of social
choice functions which can be fully implemented in undominated strategies from any social
choice function to ones which are strategy—proof.

We should say that this is does not go against our intuition. A weak solution concept
corresponds to a strong requirement of full implementation. Full implementation requires
that all the solutions of the mechanism be in the social choice correspondence . This is a
great deal to ask of a weak solution. A weak solution concept, in general, will provide us
with a large set of solutions. If we view a weak solution as providing a necessary condition
for solutions to sati;fy, then it may be that some of these solutions can be ruled out on
other grounds. With this in mind, we turned in the last part of the paper to outlining the
problem for other solution concepts. In particular we looked at Nash equilibria (which may
be viewed as another weak solution concept), and combining the two, undominated Nash
equilibria.

We showed that the problem of identifying appropriate mechanisms also had non-trivial
consequences for solutions with the Nash property. Example 3 identifies a social choice
function which can be fully implemented in undominated Nash equilibria, but not by any

bounded mechanism. Example 4, however, indicates the restriction to bounded mechanisms
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will not produce as drastic a reduction in the class of implementable social choice functions
using undominated Nash equilibria as using undominated strategies. Example 4 provides
a soclal choice function which is not monotonic and not strategyproof, but which is fully

implementable in undominated Nash equilibria by a bounded mechanism.

Finally, we discussed a problem which needs to be addressed for solution concepts with
the Nash property, which is not captured by our notion of bounded. Namely, the existence
of mixed strategy equilibria and their consideration in the definition of implementation and

identification of an appropriate class of mechanisms.

There are many issues which we did not touch on. These include looking at restrict-
ing the class of mechanism when we consider subgame perfect implementation (Moore and
Repullo (1986)), implementation in strong equilibria (Dutta and Sen (1988b)), or imple-
mentation in an approximate sense such as virtual implementation (Abreu and Sen (1987))
or approximate implementation (Sen (1988)). We also did not discuss the issues associ-
ated with Bayesian implementation (Jackson (1988a), Palfrey and Srivastava (1987) (1988)
(1989), and Postlewaite and Schmeidler (1986)). The issues we discussed in this paper

should have parallels for these other notions of implementation.

Eventually, the sort of analysis suggested in this paper should be synthesized with
some of the other ar.lalyses concerning the properties of mechanisms used for implementa-
tion. These include looking for mechanisms with action (message) spaces of minimal dimen-
sion (McKelvey (1985), Reichelstein and Reiter (1988), Saijo (1988), Williams (1986)), or
mechanisms which are continuous, balanced, etc. (Hurwicz (1979), Nakamura (1987), Tian
(1985)). Ultimately, our goal would be, given a solution concept, a class of appropriate
mechanisms with desired properties, and a class of environments, to be able to identify the

class of social choice functions which we can implement.

24



APPENDIX 1

PROOF OF THEOREM 1.

We prove the theorem by constructing a mechanism which fully implements an arbitrary
social choice function F. The structure of the mechanism presented in this proof is partly
derived from the mechanisms designed by Palfrey and Srivastava (1986) and (1987) to
prove implementation theorems concerning undominated Nash equilibria and undominated

Bayesian Nash equilibria. Similar notation is used when convenient.

In the following definitions R', B, and R represent distinct preferences in R*, unless

otherwise noted.

Given R’ and R in R*, by strict value distinction we can find z and y in A such that

zP'y and y—pia:. We denote z and y by a(R",ﬁi,i) and a(ﬁ,R‘,i), respectively.
M =[UL (R* x R* x1)] x{0,1,2,...} x A x R(A)

We partition the set M into sets. The function g is defined according to which set an action

belongs. The sets are defined on the left below with the corresponding choice of g given on

the right below.

D,= {m | Vi m' = (R, R,i,0,-,-) or m* = (R, K',i,-,-,-)} g(m) = F(R)

Di={m| I st.Vj#imi= (R",F,i,-,-,-) and either
m'. = (Ri>Risi;O)'s') or m' = (Ri’fé{:i":'y')} g(m) = a(Ri)?ai)

Di={m|3ist.Vj#im’ = (R, R,i,-,) and either

m' = (R{)FH.)'V:') or m* = (F)':is':'a')} g(m) = G(F,Ri,i)
D,={m|m¢ D,, m¢ U;(D; U D) and Vi m} = 0} g(m)=a
Ds={m | m¢ D, UD, and m ¢ U;(D; U D})} g(m) = a(1*)

where @ is an arbitrary (fixed) allocation in A, i* is the unique agent such that mf; + % >
ml + L Vj #i*, and a(i*) is the most preferred m} according to m{ (ties are broken by

choosing the m} with the lowest index ).
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The claims below show that this mechanism implements the arbitrary social choice
function F. Claim 1 identifies conditions which are necessary for an action to be undom-
inated for the given mechanism. The outcomes corresponding to action profiles satisfying
the necessary conditions of Claim 1 coincide with F'. Claim 2 shows that there exists actions

which are undominated, thus concluding the proof.
CLAIM 1. If m' is undominated at R' then m' = (R*, R*,1,0,-,").

PROOF: First we show that if m' is undominated at R' then m' = (R, R*,7,0,-,-) or
m' = (ﬁi,ﬁi,i,o,-,-). Let m' be any action which is not of the specified form. Consider
the action m*, which is the same as m' except that m} = m} + 2, /n{ = R*, and m} R'Gq,
mi R'm} (and miP'm} if possible). We show that m’ is dominated at R by m*. Against
any m~* such that m=*,m' ¢ Dg, m™* m' results in the same allocation. From the con-
struction of /', it follows that m~*,m' € Ds whenever m™*, m' € Ds, and that in this case
g(m=*, m*)R'g(m~*, m*). It remains to be shown that there exists m~* € M~ such that
(m~*,m') € Ds and g(m~*,m*)P'g(m~*,m'). First we note that we can find m™* such
that i* # i and M} + &+ > mi + & > m} + £. Next we note that by the definition of
there exists a € A such that m} P‘a. Now we adjust m~* so that m{ = a and m} € R(A)
such that a(i*) = a. For this m™* the outcome for (m~*,m) is a(i*) while the outcome for
(m~%,m") is a(?). Since a(i)R‘miP'a(i*), the outcome for M’ is strictly preferred to the
outcome for m*.

Next we show that m = (R, R ,1,0,-,-) is dominated at R* by m* = (B, B',1,0,-,").
The only time these actions produce a different outcome is against m~* € M ~* such that
(m“‘,m‘) € Di and (m),m]) = (ﬁ,R‘) for all 7 # 1. In that case, the outcome for m* is

a(R', R ,1) which is strictly preferred to the outcome for m*, which is a(ﬁi, Ri). 1

CLAIM 2. Actions of the form m* = (R', R* 1,0,a,-), such that 3b € A with aP'b, are

undominated at R.

PROOF: First we remark that there always exists such an action. [It follows from strict

value distinction that there exist a and b with aP‘b.]

We partition the set of actions ', which differ from m’, into the six cases listed below.
We show that in the first five cases there exists some m™* where g(m™*,m*) P'g(m~* "),
which implies that m' cannot dominate m' at R'. Since this is true of all the m* which
differ from m*, m' is undominated at R*. In the sixth case, g(m™*,m') = g(m~* ‘) for

all m—*.
CASE 1: i, # 1.
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In this case ' = (R, R’ j,n,-,-) (with the possiblility that R’ = R?). Consider m™*
defined by m? = (R*, R ,i,n+ l,a(F,R‘,i),ﬁj) for all j # i, where R’ has a(R , R',i) as
the unique most preferred in A. The action m/m® is in D} with outcome a(R*, R, 1), while
m/' is in Ds with outcome a(i*) = a(R, R',1). Note that a(R', R ,i)P*a(R, R,1).
CASE 2: il # R', i, = i.

In this case m' = (Ei,-,i,-,,-,-). Consider m~* defined by m’ = (R‘,F,i,-,-,-) for
all j # i. The action m/m' is in D} with outcome a(R*, R ,1), while m/* is in D} with
outcome a(R , R*,i). Again, note that a(R*, R ,i)P'a(R , R',1).

CASE 3: mi = Ri, b # R', i, = i.

. .

In this case m* = (R',R ,%,-,+,-). The argument for this case is the same as the

argument for Case 2.
CASE 4: i, = Y, iy = R, iy = i, i, #0.

In this case m' = (R', R*,1,n > 0,-,+). The argument for this case is the same as the

argument for Case 1.
CASE 5: i = R', i, = R, i, = i, @i, = 0, i}, = c.

In this case m* = (R, R*,%,0,c,-). Consider m~* such that m~* ,m* € Ds. In this case
it must be that i* # i, since m} > 0 for some j # 1 (otherwise we would be in D,). There
exists such a m~* such that for all 7 # 1 m‘,; = b where b is as defined in the claim, and
m] = R’, where aP?bP?c (or just aP?b if b = ¢). Then g(m~*,m*) = aP'b = g(m~*, ).
CASE 6: m{ = R, m} = R, m} =1, m} =0, m{ = a, m # mj.

In this case m' and m* lead to the same allocation, regardless of m~*. This follows

since the sixth part of the action space only matters in Ds when 1 = 1*, which is not possible
given that m} = mi:=0. [ -

Claim 1 shows that any undominated set of actions produces an action in D; with
outcome F(R), where R is the true preference profile. Claim 2 shows that there exists
an undominated set of actions for each preference profile. It follows that the mechanism

presented above fully implements a given social choice function.

This ends the proof of Theorem 1.
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APPENDIX 2
PROOF OF THEOREM 2.
Let F be a social choice function defined on an exchange economy satisfying the con-
ditions of the theorem. Lemma 1 shows that if F' can be fully implemented in undominated

strategies by a bounded mechanism then it is strategyproof. To complete the proof, it is

shown that if F is strategyproof then the mechanism given below is bounded and fully

implements F' in undominated strategies.
M‘. = Ri X [OU (Uj#,'[kj X Rj X _’]])}

We partition the set M into sets. The function g is defined according to which set an

action belongs. The sets are defined on the left below with the corresponding choice of g

given on the right below.

Di= {m | Vi m' = (R',0)} g(m) = F(R)

Di={m|3ist.Vj#imi = (R,[R,R i)
and m* = (R*,0)} g(m):a(R‘,I_?,i)

Di= {m|3Jist.Vj#im = (R [R,R,i)

and m' = (F,O)} g(m) = a(_R—i; R,1)
Di={m |3 st.Vj#im =(R,[R,F,i)
and m’ = (R,0)} g(m) = a(ﬁ;i’Ri’_R{’i)

Di={m |3 and J c {1,2,...,N} st. N =2 > #J > 1,
mi = (R7,[R\,R i) Vj € J,
and m* = (R*,0) Vk ¢ J} g(m) = a(1,J)

D= {m|m¢ D, U (u[D; UD; U Dy U D)} g(m)=0

where a(ﬁi,R‘,?,i) is defined by
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a(é‘,R‘,ﬁ,i) =a(R', R ,1) whenever a(R",—I?,i) R a(?,R‘,i)
a(—l? , R, 1) otherwise,
and where a(1,J)* = Y. €' /(N — #J — 1), for any agent k ¢ J, k # ¢, and a(i,J)* = 0 for
the other agents.
We show that at R* the only undominated action is (R*,0). We do this by showing that

this action dominates all other actions. This establishes that the mechanism is bounded

and that it fully implements F'.

Consider the action m* = (F,O). By strategyproofness, we know that for any m™*
such that m € D,, m/(R',0) € D, and g(m/(R',0))R‘g(m). For any m™* such that
m € D or m € U; Di the outcomes for m* and (R*,0) are the same. For any m™* such that
m € D, U D U DY the outcome for (R*,0) is weakly preferred to the outcome for m*. In
particular, when m? = (R?, {R*,F,i]) for all j # ¢, then m € D} with outcome a(ﬁi, R 1)
while m/(R*,0) € D} with outcome a(H,?,i). This is strictly preferred by . Hence, m*
is dominated by (R*,0).

Consider any action of the form m* = (-, [R?, ﬁ",_ﬂ). We verify that (R*,0) dominates
such an action. For any m~* such that m € D?U Dy, the allocation for 1 is 0 and so m/(R',0)
will do at least as well. For any m~* such that m € DJUD’UD], the outcome is a(R?, F7, 5)
or a(R7, R?, 5), while m/(R',0) € D? with resulting allocation for ¢ a(j,J)' = 3, ¢'. From
the definition of a(-,-,7) it follows that ) .€e' > a(:,-,5). Since preferences are strictly
increasing, agent ¢ strictly prefers the outcome associated with the action m/(R*,0) to the
outcome associated with m. We have shown that m’ is dominated by (R, 0).

This ends the proof of Theorem 2.
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APPENDIX 3

PROOF OF LEMMA 2.

We examine a k*" replication of the economy E. We prove the lemma by verifying that
there exists K such that if & > K, then agent ¢ prefers the Walrasian outcome associated
with 7’s true type to the outcome associated with any demand associated with some other
type in R*. We show that this is true independent of the (announced) types of the other
agents. We need only verify this for the base types in the original economy E. Since there
are a finite number N of base agents and a finite number of possible types of each base
agent, this establishes that for any large enough replication, the Walrasian social choice
function is strategyproof and thus by Theorem 2, is fully implementable in undominated
strategies by a bounded mechanism. [Notice that the assumptions of Lemma 2 assure that
preferences are strictly value distinguished.] Furthermore, it is fully implementable by a
finite mechanism since for a finite # R the mechanism used in the proof of Theorem 2 is
finite.

First we remark that, since M is compact and II is continuous on M, there exists a

compact set P C S, such that II(u) € P for all p € M.

Second we remark that for any R* and 1 there exists a § > 0 such that A% (p) R’ hE e’ (p)+
61 for all p € P, where 1 is the unit vector in IR'. This follows from the strict convexity
of R', the continuity of the demand functions, the compactness of P, and the fact that
RE" e’ (p) # hE (pl for all p € P. Then, for the Walrasian social choice function to be
strategyproof, it is sufficient to show that A% ¢’ (H(ﬁ))—hﬁi'ei (TI(p)) < 61, for any 7 # R!
and realizations of the economy 7z, 1 in M* which differ only by the change of ¢ from F to
R'.

Since P is compact, RR e s uniformly continuous on P. Likewise, since M is compact,
I is uniformly continous on M. Therefore, there exists some v > 0 such that A% ¢’ (I(gr)) -
R (TI(x)) < 61, whenever d(f, 1) < v. By the definition of d(-,-) it follows that d(jz, ) =
~%- Hence, there is a K large enough so that if £ > K then hE e (TI(R)) — R (TI(p)) <
§1. There exists such a K for each h?'e‘. Since #R* < oo, we can find a K which works

for all h?'ei.
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APPENDIX 4

PROOF OF LEMMA 3.

We prove the lemma by constructing the following mechanism which fully implements
any monotonic social choice correspondence F defined on the exchange economy (N, A, R),

which satisfies a € F(R) = aP*0 for all 1 and R.

M =R x A.

We partition the set M into sets. The function g is defined according to which set an
action belongs. The sets are defined on the left below with the corresponding choice of ¢

given on the right below.

In the following definitions R* and R represent distinct preferences in R*, and a and

b are distinct allocations in A.

D,={m| m'=(R,a)Vi, a€ F(R) } g(m)=a
Di= {m | m’ = (R,a) Vj # i, g(m) = b if aR'b and bPia
m' = (R,b), a € F(R)} g(m) = a otherwise

D= {m | 3 disjoint nonempty ¢, J, K s.t.
iUJUK={1,..., N},
m? = (R,a)Vje J, m*F = (R,b)Vk € K,
and m' = (%)) 9(m) = a(K)

Dy={m|méeD,, m&u,Di, m¢ D3} 9(m) = a(K*)

where a(K) is the allocation which gives 3. ¢! /# K toallk € K and Otoj ¢ K if K # 0 and
a(@) = 0; and where K* is the largest set containing at least 2 agents such that m* = m’ for
all k,7 € K (and ties are broken by choosing the set containing the lowest indexed agent).

Since it is not difficult to verify that this mechanism implements F (in either Nash or

undominated Nash equilibria), we only sketch the proof.
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First, any (R,a) where a € F(R) is undominated. Consider some other action '
which might dominate (R, a). There is a combination of other agents actions so that the
m' places the action in D4 with ¢ getting 0, while (R, a) results in an allocation for ¢ which

is not 0. It is critical to note that since this is an exchange economy #A > 2.

Second, all Nash equilibrium are in D,. In any other set, some agent has a deviation
which results in an allocation which that agent prefers.

Third, there is a Nash equilibrium in which all agents choose (R, a), where R is the
true profile and a is any allocation in F(R). A deviation by some agent can only move the
action to D, and result in a or else some b such that aR*b.

Finally, if (R,a) is a Nash equilibrium at R # R, then a € F(R). Suppose that
a ¢ F(R). By monotonicity there exists an agent 7 and allocation b such that bP a and
aR'b. This agent can then announce (R,b), shifting the action to D, and resulting in

allocation b. This contradicts the fact that (R,a) is a Nash equilibrium.
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APPENDIX 5

EXTENSION OF EXAMPLE 1.

In this appendix we extend the mechanism described in Example 1 to include the
actions of a third agent. The extension fully implements F' in undominated Nash equilibria.
We extend the mechanism in such a way so that we do not need to specify the preferences
of the third agent since all three choices are undominated for that agent and the Nash
equilibria exist independent of the preferences. Likewise, we extend F to be independent of

the preferences of agent 3.

The additional third agent is given the choice of which of the following three tables
should apply.

m> M!
ml omt
. m? b b a a a..: a a a a..
a b a a a b b b b..
b b b a a b b b b..
b b b a b b b b..
M? : :
m? a a b b b b b b b
b a a a a a b b
a a a a a a a b b
a a a a a a a a b

33



—
[

m m
m? b b b b b b b b b
b b a a a a a a a
b b a a a a a a a
b b a a a a a a a
M? :
m? a b a a a a a a a
a b a a a a a a a
a b a a a a a a a
a b a a a a a a a
; .
m° M!?
Al mt
m? a b b b b.. b b b b
a b b b b.. b b b b
a b b b b.. b b b b
a b b b b.. b b b b
M? : :
m? a b b b b.. b b b b
a b b b b.. b b b b
a b b b b.. b b b b
a b b b b.. b b b b

P NP

For agent 3, m®, m> and m® are all undominated, regardless of the preferences.

For agent 1, m*' and m' are undominated actions. For any other action, we can progress

steadily to the right of m! and eventually find an action which dominates it.

34



For agent 2, the only undominated action at R? is m?, and at R is 2.

At R?, the only Nash equilibrium which uses only undominated actions (regardless of
R®)is m!', m? m®. At Ez, the only Nash equilibrium which uses only undominated actions

(regardless of R®) is m!, m? m°.
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