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Abstract
To efficiently realize a specified goal in a distributive fashion, there needs to be an appropriate “division of
labor.” This is true for distributive algorithms that take advantage of the concurrent features of the new
generation of computers. This is true in the design of a complex organization intended to realize a specified
goal. The problem is to determine what is the appropriate division of labor. Here, a geometric
characterization of all possible divisions of labor, or communication networks, is given. It is illustrated how
this characterization can be used to design the communication networks.



Phets are =tpeaEing simiravivies belween the probiem of destonineg
drstributive atzoryinms Lo take advantage of the concurrent and paraiied
features of e hew Yeneral con o computers oped Uhe of dace=1uning an
U tent orenptzation to oAaccomplisn 2 ospectited 2oals For both. the obaective
1o Lo oparced ne sorblomsd amonz Lhe various participating units 1o oan =fiicrent,
cooardtaates Lashiion tor covisider what i1s nvolved 1n creating o
RIS ENE PRI R B crder b him, Fhes mesin task 12 to determine what 1t 1s that e
Drocsssor sheutd compate and what partially computed information shonld be
cnvased to owhich arher processors, There 1s a similar problem ror the desien
of dir ooargararzatl v Hers responsibilityes need to be assigned te the difterent
fepr b ts and iy ts1onsy namefyvy the goal 18 toe establish an ordanizational
Chort Ao ddetermine fhe assisnments 4and 1he reporting strucrture. indesid, the
fosrene notu o of distribntive ajecrithms and ol orgdanizations can be summarized
vl the cotadinating guestions of Cwhe should do whst and  who shouid sar

IR N Proom

Glomany o siiunt ions, there exrst algorithms and or2anizations that

A TE { sodve thirs arvisien of labor protlem. But, 11 general, the  desidn
oo S s LOm rela s 1S an 1Tmpoertant o open gquestion, in atl cases the purpose of
ST R TS TR IO A Y to adhieve a - SO, the major stacle 1s 1o
dicdersbagt Hon o o start cith { e ind then extract from theso
eyl th pprcprsats stractiees - slractuares that can be oupiolted Lo create
Che orzaniZzoaiilon. the princival puarpose of this paper is to attack this prop
[EES Potrinel s wemed pie charactoerization of thrs desien problem.  ine
Zeoame Ly setriacte nbeoducad herve onpoge the structures assoctated ot oo
T PR RN SNES o) ot determinang e ol Inrormpation each witt needs to

TR poabdor Yo aohiies sTatedd ohyective and 11) 0T sstablishing the

1 Plad st e ol wi Pencrtes whint e whioh, Hecanse my enphasis s Lo

poLoUuce some ol the underiiaing bhasio concopte, §otreat here onls oa simplitiod
RIaTs e Dorgpore ihe many onner retated problems. A more complets
feoo 7ot o 5 ontonned for oleowbope,

“tade the peabitem an oo simpie =etting, let the obgective be ogloon o

Pl cmealh funet pon
i. I S R e
whepe g2, 0 = oL g, are positive integers. Think ot each apaoc kB0 as

fenm



poatrons and alecrithns ase J

roeoresenting the doarn oavaiiabro te o the PV omnit yprocessocr. denrtment,
Pty rdtat . avent, etes ), The funcrion borepresents the specitied objectives,
fre s computationa! problom. 0 omay be g muanction tnar is to be evalnated where

oniv the data

Phee retevant dats by divided so that processor 1 can acoco
Feopesented o rn ¥S 0 = L0 0. For a hrpothetloal organizational o esxample.
cotesder o dirm trving to opbtimize protits coming rrom sales ol oa particuiar
prcitinet, bl s vector a1 RYCE ropresent data about potontial markoets, keoso
peopresett daie about costa and avalfabi ity o raw materials needoed for

piestnc baen . aad BRCG O popresent other technical variables.  Let b orepresent
pthee the optime D prosit=, or Lhe outpur of the product that wiil achiove the

mrsoamal aanimad profite wita the carrent environment. The zonl is to cifhiciontiy

frareoer Loooemation {or partial computatiocns, partially constructed products,

The obsective Tanction ¢ ospecaitfies what is to be done - the zoals.,  Once

15 2 ven. the object s to find the wavs - the organizations - so that he
task of reaiising 7 12 divided amonz the several cooperating univs=. To do this,
b upen the rdeas o abelsonr 1), Hurwicz (37 and others to model the Fiow

o tnformarion among the o units.  The basic itdea. which ts a siileht extension of

ibeison s model. s =imple and very natural., In the beginning, each unit has

fnosdeods ondy of the datn sssigned te it the 1th unit can only nuse the data

foop BRO. ihis data mactl b= 11 4 manner that contributes toward
oadlaing bFoo Hepy st thie first step of computation by 2 (x. ) = mb ; 1 =

L 1 ]

Jovoyiy X, & KRR ol € K, Namelv, at the first stage idenoted by the

subarscripts on £ oand mi, the 109 ynit nses the avallable data X, Lo vompute the

vatue mbo, cof oourse, the choice of gty e 1ntended <o that the vatne m“

-

centributes toward determining the valae ot E(xl veea X Voo il general 1vo1s not
orvicus newv o define &‘i: inaecd, finding suideiines Tor an appropriate
selection of tnese functions i1s wagor aspect of the design problem, ) Let mt o=
oot b e Ry densie the vecotor of tne tirst stage computations,

oo 83tage, eqach anlt can use not only 1ts assigned data, buot

al=o the partial computaiilons, or messages ml. transmitted at 1the tirst stage.
This wesnas that the computat ions =t the second stage can be dencled by
F.o The gencral situation at the at™ stage 13 tnat (e 3tk

crortocan o use abboab the partial computaticus, or messages, irom the other units

ne owe b tee arpeinal data L Thereiore the computartion at this stage i¢



Algoriinms Pag:

o

TAT i ons A

(i Sk oLmb oL mt by Tt g
oo thrs compibation ts represented by oa function
o Sl L B R,

shere mb £ RJ v the vector of partial computations at the wtb ctep, b = t,...

Al some Step 1t may be that certain units have nothing to contribute or

e Thvs s tne gituation 1, for instance, a particuiar uanit cannot proceed
writh meanine ol work npt il it recelves ceprtain messages trom speciiled otner
linits,  The above modeding admite such circumstances by detfining the particular
runcilon to o be 360 2 0
1

Stppose 1 takes [oetages 617 partial computations to determine the value
i F. { moder thie by assuming that =il bul one of the unite complete thear
nartast compatatrons at the (3-1)1h step,  The remaining unit uses the messzages
Gt opeartral computaticons and tls data to compute the valne ot Fofo Namaly, 1

qesitme tleero s ospeciiio indey 2 oso fhat

o Shoix o mb, L. amd ) = ome g“i =0 for 1 # s.

[ FiX,veoox, b= mb o= 2l {x ,mto.. @b,
Becanse at certain stages some of the units mav not be transmitting a message,
the offective messages - the images ol the 2 tunctions - form only a linear

orf {31, Let M, the message space, denote this linear subspace.

Sith this model, Lhe onctlons 129 4 speciiv what each unit must do,

commte. apd comminicate at each stage.  Becausge these fanctions determine “whe

suvy wbst o whem, ' T ocall o cholce of smooth functions {z“l} Lhat satisi
thoss colditions o communication network that realizes F.  Furthermore, | ooall
the dssue o characterizing st ooesinle communica! 1on networke that realize b

e contral design problem associated with o

Y. s appecnccly which foliows Abelson, 1s re

asonable for models ot
copptitat e, A slternative model, with a stizhtiv diftferent supporti
patiewat iogd theory, (2 where 2act umnrt rinishes 1ts computations at f
slage, The final deteraination of F 1o pased only on these messages., ihus.,
ihere 1w a4 tunetion hov =--> % -o that himi,...,m@") = FOx,vvooox 0o Here homay
Sorrtesnona to Loe o auct poneer, the- central suthoraity, the team leader, or a
neaitieal o computer. ihis aitoernative approach more closely renresents ceoveral
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onotoe crgapizations

Evosolving or characierizing the

information mav be avallable

This 1ntormation can be used to analy
communication networks, to develop complexity
value of

This

immediate observation, note that the

Tgpecd of communicat ion networl:,

Thus,

the

realized v B ostops. there may be many

et boimply a more valued communication networ

One can concelve ot situations where efficiency,

information needs to

should

h

determined by how mue

Tiiis 15 particolarly so

messages (or partial products, ete.). Wwhen

comcbexii

subpose g commuiicAtion network {22} 1s given and consider the reporting issue
ol determining "who save what to whom?" The function g4, represents what the
1t ynit does at the ath stage, so the dependency of this function on the m

variables determines who has to communicate w

k £ 1,

unit. Namelv, if for anv choice of s<a and

with respect to m®  is not identically zero,

communicate this value to the 1th unit

As a third issue, note that it is of

intormation assoclated with a communication

Lheoretical ]

trne tor

information, 1 mean an equivalence class of

value of ench partial computation. In other

and aigorithms

soluttion

about the

19

b [l
it be expensive,
this

can be developed te reflect this f

before the ath

investigations of a communication network. )}

4

trage

of the central vrobiem, all

communication
ticallyv compare competing

measures, and so fortti.  As an

3 serves as a crude measure of

hecause it indicates that F is

situnations wherebv
K.
18

or mininimal cost

transterred among the units,
or time consuming to transmit
is the measures of

To

case,

act. see how this is done,

hat partial computations to this
the partial derivative of
then the k'h unit needs to
stacge.

value to understand the "kind of
network. (This 1s particulartv
By "kind of
data that gives rise to the same

words, starting with the given

neiwork functions

smaller vaiues

ou

the

i

data, al cach step each unit computes the value of a messade, me . It mav be
hat with a datterent cholce ot data, all of the messages are preciselv the
same. (1P <o, then hoth data points give rise to the same value of F.) So, all
data givang rise to the same messages detine the same kind of informatien. "hus
the: "kind of information” associated with a communication network 1s
characterized by the level sets of g
belinition, Let T o= {q“liu T T UIE T T be a given communication network
that reatizes V. Wwe sav that x, x' € RE{4Ix,  xRE33) are "I equivalent” it the
foltowing holds: gl {x ) = ¢! (x') for ali 1. This requires the messages a1t

1 1 1



On ine design oreanlzat iong and ajgorithms

the first srade to be the same. By 1nduction, for altl a, O“i(x.,n*,...m““l)

T 2 =
2“:(x’].m*.‘.,m““}. An equivaience ciass of data is called a "I Intormation
set .,

4s 1ndicated, many of the basic 1ssues for the design of algorithms or
srganizational structures can be characterized in terms cof the properties of a
communtication network lQ“j}. However, it i1s not at all clear nhow te start with

an cohiective function F and then determine an associated. non-trivial

copmunication network. It would be useful to determine structures that would

azsist i1n this design. This goal, of finding what such a construction depends
upon, 18 the basic theme of this current paper. [ characterize the
comminication networks in terms of certain geometric constructs. As | indicated
carlier, the purpesze of these geometric properties is to expose the hidden,

F that Lhe admissible communication networks

brac

-

implicat govern

o

e

Thise approach invaly solving several eguation equations that necd not be

particalari: easy to solve. On the other hand, these eguations do indicate what
must be done vo achieve such a netwerk.,  Ae such, thev form a most usetul place
Lo =tart,

While my zoal 18 1o characterize all possible communicaticn networks.
would Tike te call attention to Lhe several c¢lever arguments used to iind

1 possible communication networks witheut sciving the central

[]!N

a complexity measure,

propert 1oy o1 s

poos tem.  in particutar, T point to the paver by Abelson where. tor i = 2

untte he introduces the total

-

(e only B are allowed)

intformztion rTran=ster, that is based on counting the number of messades that are

reguired to o be conveved between the processors.  Thus, in terms of the above

discussion, this measure 15 determined by counting the non-zero partial
derivatives ot the commuanication network functions, {guj}, with respect to the

ovariables,  As enchy with the efficiency assumptions introduced 1n the next

coction, o iower bound for this measure is - 11 where the (-1 term

{dim(M)

SISHY that 1s not transferred. > 3, this

mav

coriresponds to mf o - a messade

not. be a shary lower hound because the

several mnits.)  Abeison finds a lower

B in terms of the rank

tnorks strictly

obicctive tunction

. By

cnoceneerpts from deiferentiatl ceometry

u=zing more sophisticated mathematical

{kor 3

same message mav be transtferred to

bound for all possible communication

properties ot the Hesstian of the

approach based

. P, Chen 121 1mproves upon Abelson’s
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[

nen soanpreved iowor nound depends ondv o on the arirerential properticos of Fiohc

e ent s oche omer o i fPienli fesne of roiving the central problom.

2. Single Shot Mechanisms,

R .

I this section. some nsieht 12 obtained abont the Kinds of lonformation

b cspecitied Fooo b oas this by showing that a communication nhelwoerk

i boonn be Clewed as bheing a o speciai case of a ditfferent kKind of network thar
reafl s Fo= the siuele shot mechanizm.  An important advantage of rejating the
too preabiens is that in this way 1 can esploil existing results chavacterizing
i opossable single chel mechanisms.  This characterizatilon can be usedd 1o
fmpeoese o= one Shat ts possibice for the associated communication networis, us
b s e ctevrae e vge the oossible Thinds of intormation’ admitted by the
von=ibibe networis, Theno in Section , oa characterization of rhe central

Sre D s e sy ded,

Phe more deneral svstem 18 where all of the information s commuricated

Aoy the different units in a single step,.  For this o be possible, the values

crom opeed 1o e determined implicitiv,  Thus., rather than commurnicating a vapas

i

Tas b tree for oocommuntoation network:. the 197 unit communicates a ser

fmeow v ooml = 0 The actuat message js the antersection of these seiso 1 o=
Foeeu e 1w message snace My Such svstems eccur gquite naturaliy as part ol e

eoanr b dam anaivais of g dvaamical exchange or information that assumes the

Porw m’ o= ot iy mg. The basic purpese of the dynamic given by tiis

2 bagsed on o y1s

P rerential o cgquatzon 19 to allow each unit Lo undate its mess
fwin Characteri=ties, X ad tne recent messages of the other anits.  fhe
ot iahranm =tate of tne dyvpamic 1s where the G ranetions are all emal to Zero.
voet Yor o hat this modeling 2eneralizes the common price dyvnamic slory from

coohoR s WheTe Drtees cnange gecordine 1o the market pressures ot osupniyoand

omaiid, o mere detaiied disoassion ot thiis and other interpretations, see
Hoovvi-z o,
Siagetc Shot Peobleps For oo 2iven obiective function . rind smooth

Vet ol s 00 oy o misER T =5 MM = ke oo o= l‘..,n|? 1= lo.oy1y and a smooth

Suncbaon foM == K oso Lhat with any vaidne of moimplicitiy defined bs
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2.1 Lo {x. ., m) = 0,
we have that
2.2 nim) = F(xl,..,xi). The triple ({GY 1, M, h) 1s called a cineie-shot

mechanism that reailzes b,

Thus the singie shot mechanism corresponds to factoring a function ¥
through another space, M, in a non-standard implicit form. Of course, the "Kind
of information” associated with a single shot mechanism {G“i} 1s detfined 1n a
similar wav as the T information sets - it is iven by the level sets of the uv.
iunctions. The relationship between the single shot and the central problem 1s

<tated in the “ollowing Fformal statement.

Theorem 1. if a function F admits a communication network, then this network
detines a single shot mechanism, {G“i}, for F. The message space for both
svstems 1s the same. Moreover, an information set associaled with this
communication network is same information set associated with the defined

machanism {G“l}.

Th* proof of this theorem is immediate. Thig 1S becanse the
commun:oation network function, Eag. 1.2, can be expressed in the 1mplicit single
zhet form G“L(xl,m) =0y a=t,..,83; 1 = i,..,3; where m = {(m!, B<,....m¥} € R¥J
= M hy detining U“i(xj.m) = Q“i(xl,ml,....m“'l)—m“i. The assertionse ¢! thne

thecrem now follow immediatelv. Chen’s Theorem is based on a similar

Hhzervation.

Avoadvantage of Thecrem 1 is that there =vists two characterization of
the singic stiol mechantsms {(Hurwicsz, kReiter, and Saari (4], and Saar: {31;. For
the purposes of this paper, | adopt the characterization i1n Saari |5,6] because
1t ts moere Zenscral oand 3t oappears to be computaticonallv casier to use.
veoording to Theorem 1, this characterization can be invoked to l1imit the
pussible chotces of the communication networks., This 1s because the
commtnicat ton petworks are those single shot mechanisms that savisiy an

wlidittonal rank condition.é

T, These rank conditions are the obvious ones reguired to take the cquation tor
the singie shot mechanism and solve them to obtain a communication network.
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In densral there are intinitely many chorces of {at b functions that
give rise to the same 1nformation sets.’ However, a given aet fae b ocan be
pared Lo a basic set by eriminatineg redundancies. this 1s the purpese ol the
toilowing set of =2fficiency assumpticns. in these conditions, treat ih”l} as a
mapping irom KEOloy, (Kev20xM o into an Enclidean space that agrees with the number
ol e functions,

Etficiency Jdssumptions on {G“ii.

4. fhe dimersion ¢f M acdrees with the number of {G“i} tfunctions.

et X = kxl,..,xl) and m represent variables in a zero set of {h“lf.

b, At {(X,m) the Frechet derivative cof {G“i} with respect to m is non-
singular,

c. At {X,m) the Frechet derivative of {Gﬂj} with respect to X has
maximal rank.

{The Frechet derivative can be viewed as being the Jdacobian of fGe

with respect to the indicated variables.

The characterization of the single-shot mechanisms tfor a given F are
enpressed noa differentiatl form. The idea 1s that the zero sets ot the {u“‘b
functions define level seots, or certain coliections of related toliations of the
space RMULYS, U xRKE'I) . Thus, the ieaves from the foliations correspond to the
tinds ot intoermation.  Follations can be totally characterized in terms of their
normat vectors,  These vectors detfine the normal bundie. Wwhen these vectors are
expressed in terms of differential one-forms, the normal bundie becomes an ideai
of differential torms. The necessary integrability conditions on the normai
hundle now are expressed in terms of a condition on the ideal; it must be a
differential ideal., These concepts lead to the tollowing statement. fFor a
proot, o discussion of these ferms, and more detaills, along with a partiai

tistory of this probiem see Saari |H].

. Thiz is whv 1T place more empbasis on the "hinds of information’ than on the
actual singie shot mechanizams or communication networks. In Yact, a asetul
equivalence reiationship can be defined amonz the mechanisms {(the communication
avtworisi n o terms obf these level sets, I this manner, networks that seem (o
bave Tittle to o with cach other can be shown to be eguirvalent,



Theorem 2. Let a smoolh objective function ¥ be given. The foltowing are
necessary and sufticient conditions that a smooth single shot mechanism
fide F,M b)) for I oexists in a ncighborhood of X € Rk x, . xRkC1) that satisties
the etticiency assumptions.

1. For cach i, there is a differential ideai [i =

("‘”‘"Hi [

.+

i’_,;(.”;{d.‘r(_i]i/, s(1)=nj~1, with (ij,ikj_ﬁni iinearly independent.

one—forms. Here, cach Wi 1s a smooth one form and the sct [deIi = {dxk; Xy
1s a coordinale direction for a parameter not. in REG2I},

Z. The scb I =0 I, is a differential ideal with n = X, n, Iinearly
rndependent. one-forms.,

The resulting mechanism to realize F has a message space of dimension n
where there are n, functions relating the parameters of the ith unit with the

messages,

The prool that this 1s a sufticirent condition follows from the Frobenius

T hecrem wee Saart {010, That this 1s a necessary condition comes by re-
capressine the gradients QVh“i} o Lerms of ditferential lYorms {dh“iy. [ hese
one=torms form a basiz for the differentiar ideals, {l.§i»1 g b that nave

the @pecificod propevtires, the reason the one-forms [dx‘)ji are in lj s to

capture tne condition that tne 1'% unit has access onlv to data from kb vi. The

regurrenant on the ideai |o1s 1o ensure that the the conveved messazes are
compatibie with cne snobher tn evaluating .
T tltustyrate how Thesrem 1 can be used, notice that a trivial singie

shos mechanism is o “parameter transter’ where one umit communicates the valne

Pl pavameters to the second vnit.,  ATter these values arce

transicorred, the second nnit compntes tne vaive of Fo Nameiy, i1

Foxy s, iR ==, then b= kel and Gy = v = m», = U where x 1= the s'h

coapenent i ox, s = T, k, white gf = FOimt, ..o mh 00X

i 2 ! 1

zJ—miz = U, tho

runcrion h 15 the projection him} = m‘z. This sinzle shor mechanism has 2

message spacs Mo owitn dimi(M) = k+l.  The communication network assoclated with

the varameter transier s 2> = (), g- m®, where m®, is the s component of

1

Y,. 5 = ook, whiite 28, = F{{m*, ,...,m¥

. 1 box, ) and gt = vl s

1
ommulloation network asscclated with the parameter transter does not retfleoect
Lhe hind oo benetits one oxpoect {from a svstem carablie ot concurrent or

drerritutive action,  After ali, this evetem just transiers all of the work to
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ancother ang b, thas, souch o commanroation network 12 one that 1s not overt:s

eftierent . et suppose the only erngle ¢hot mechanisms aamitraod by b oare

coprivaleont Leoa parameter trans:er. bt tollows from Theorem | otnat ati possibie

sciated with F oaust be related to this unde=ired

cemmunieat ton
Pranstor merhod.,
More generaily, the ciass of all possible single-shot mechanisms thax

o F orestricl the kinds of communloat1on nefworks that are assocyated with

I Thus=, Theoroms i oand 2 form an tmportant first step towara determining what

Limds of networks cre posvibie,  In Saart [5H,6), several examples ot ¢ are
anc vzt Lo characterize the associated single shot mechanisms.  dne oxample 15

repeatoel ners te o pilustrate Tneorem Z.

1

Example 1. Let FiRENKE --» K be defined by Fix,yi = ijxiyi. i snow

that thie funciior admits only 4 parameter transter. To do this, 1 tirst

consrder Lo This set must contain db = Zovody, + Ioxodv, = d Fo+od B0t alse
i 4 N

ontAains dvl and dy as well as all pessible iinear combinations ot these throo

2 +
cne—torms where the coefficients are smooth functions of X ard y.  As the second

o as combinaticens of dv, and dv.,., this part

summat ion 1n df, d_F, can be ecxpress .

oA can be eliminated.  Thus, these forms can be reduced to the set {d F =

Lo s dy;.dy?i. It 1, were te admit any other iinearly independent one-torm,

then a basis for 1) woutd be «dx, ,dx, «dy .dy,2>. The foliration identitied with

this 1desl s 2iven by the intersection of the level sets of S T

Iy ether words, the messages are eguivalent to the first unit transmitiing the

viatne of x to the sccond unit.  This means that the accompanving mechanism s

Coagnisalent te) a parameter transfer,  Hence, assums Lhat I,l = <d b= oZvody o,

A i 1 1

e L o=imilar arsument shows that te avoid a parameter transter of the v
values, 1, = «d o= Soxodv, ,dy,,dy, 2. Consequently, Lo X oxodv,, Lovodx. s,
2 \ i 1 1 1 1

Itoremains to determine whether [, 1 and 1 are difterential i1deals.

x
frivialle, v, and 1, are differential ideals. oOne way to show this is to nots
that r, = K:Lxldxj)ﬂdV}»dYU 15 a three—-torm. A necessary and snuificient

condltion tor L, o be a difrerential i1deal is that dwﬂr] = {0 where w o 1g anv one

crm trom ) But, dw.r is a rfive-~torm in a rfour dimensionai space, SO 1t must

L
be jdenticaily zero,

An alternative arcgument proving that I1 is a difrferential ideal uses the

fact that this 1s so 1Y rthers 18 an associated {oliation identaified with 1.

Vivps toliarion 13 21ven by the tntersectieon of the leve] gsets (10 Kesk<r of k.
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f = v,, and L, = vy A simiitar argument proves that IZ also 1s a ditferential

The final step 1s to show that 1 is neoi a differential ideal. First, r =

A necessarv and suftficilent

|
L
-~
ol
“
>
~
(o9
o
.

(X v.dx. 1. {2 v.dv, ) # 0 and diZ, x. dv.)
1° 1 1 1 1 1 B 1 3

condition tor 1 to be a differential 1deai 1s that d(iixidyj)kr = UJ. However, a
direct computation proves that d(iixidyl)nr # U, Recause | 1s not a

differential 1deal, there does not exist a single shot mechanism with n =n,=1.

T2
This means that anv single shot mechanism assoclated with F must involve adding

another independent one-form either to I, or to I, and, hence, to l. Suppuse

this one form 1s added to :,. As shown above, the addition of this 1ndependent
one-form makes I, = <dxl.dx2,dyl.dy2>. [n turn, this means that the kind of
informaticon assoclilated with the mechanism 1s equivalent to a parameter transtfer
of the x valites to the other unit. Namelv, for this choice of ¢, all singlie
shet mechanisms are equivalent to the parameter transfer mechanism.

[t now follews from Theorem 1 that the communication networks tor this
scialar product are egnivalent to networks of the following form: Let g = x =
me, o, 2%, 20, ¢ = 1,2, ¢, = I m,v., g =0,

| s 2 1 171

3. Characterization of the Communications Networks.

The characterization of communication networks also can pe expressed in
terms of dirferential ideals, except several more ideals are reguired. These
additional ideals account tor the rank conditions needed to ensure that the
2nuations for a single shot mechanism can be solved to determine the associated
communication network., Again, for any F, there are an infinite number of
assocrated communication networks, so the Tirst task is to eliminate certain
redundancices.  As in the previous section, this is done by imposing eftficiency
assupptions, In these conditions, consider only the non-constant functicons in
{;“lg and treat the remaining functions as defining a mapping,

Fifricrency Assumptions on a Communication Nelwork {g“i}.

a. The dimension of M asrees with the number of non-constant fage) !

tunclions.
Let X = (xl,...xi) and m represent variables in a zero set ot {z2¢ |,
b, At (X.mi the Frechet derivative of the non-constant {Q“l} with

respect to m o ls non-singular,
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. At Ih.m) tre Frechet deriuvative of the non-consrant g% b owith

teo X nazs maximal rank.

Theorem 3. lLet a smooth objective function ¥ be given. The foilowing are
necessary and sufficient conditions that a smooth communication network {g“i}
t.hat satisfies the etficiency assumptions exists in a neighborhood of X €
RECT o (xRhva)

I. V¥or each i, there 1s a differential i1deal = (w‘j.;idxjii> where
the one-form w‘i € T*Rk¢1) s 1,0., 1t 1Is a linear combination ot bLhe
diftferentials of the coordinate functions in RE{i?} where the scaiar tunctions
are smooth functions from RRU*) to R.

2. By induclLion, for cach i and each a satisfying l1<a<id, therc is a one
Torm Wt s0 Lhat 13 = (Wt i““'i> 1s a differential ideal. Secondiy, for atil
1 with the exception of an index s, I“i = [“‘*i. In the exceptional casc of 1 =
s, there can be a one-form w“S so that ¥ = <w”s,[“"1g> is a differential
ideal. For all i, di e I“i.

3. F¥or all 1 and all a satisfying 1<a<B and for a = } when + = s, ail
of the jdeals T A (nkfi I“"k) are differential i1deals.

The resulting communication network takes §§ steps and the dimension of

Lhe message space corresponds to the dimension of J¥ .

The preof of this theorem wili appear elsewhere. Some of the
connections belwesn Theorems 2 and 3 are that 1) the ideat ¥ from Theorem 3
{

plave the rove of the ideal T 1n Theorem 2 whiie 11) the ideals I“, Fraom Theorem

4 correspond to the adeais . from Theorem 2. lhe remaining ideais correspond

to the added conditions reguired to ensure that a single shot mechanism can be

ecxpressed in the torm ot a communication network. Sotice that the conditions on

Ui ddeais for the first «rage, [0 amount to choosing a one-rjorm wiooLto be A

fnmctaional mitipie of deb (x . It 1s not obvious how to choose the tunctio

LNx, i Theretfore 1t 1< rinteresting to note, as i1iinstrated in the toeliowing
cruamplos . that this cheice 1« partyally governed by the condations on the J<
itientls 1 weltl as the other conditions from Tihr-orem 3. while the resuniting set

ol caqaatvons may be ditfficalt to solve, this approach does provide additional
=tracinure o anderstand bov to decompose Fointo an organizational format,

Finatley netice that becanse the dimension of J#  agrees with the dimension or
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M, the structure of J”h provides valued information about Abeison’s total
intermat ron transfer.,

he differences between Theorem Z and 3, as well as an 1ndication how to
use these results, 1s 1llustrated with the foilowing evampies. The tirst one,
Example 2, shows that not all single shot mechanisms are rejiated to a
compmunicat ion network.

Example 2. Let F:R¢xR4-->R be defined as F(x,y) = |x1y2+x2|/l1—xlvll.

{ show that ¥ admits a (1,1) single shot mechanism; that is, there 1s a single

zhot mechanism with n1:n2:1. fhis conclusion is by no means obvious. Wwhat is

even less obvious is how to decompose F into the appropriate messages irom the
two units. Therefore, 1t 1s worth noting how the structures of the ideals lead

to the resulting mechanism.

dv., > and 12 =

1t ¥ admits a (1,1) mechanism, then 1, must be <dxF:dy1, v,

<dyP;dx],ux2> where, as in Example 1, dxF and dVF are, respectiveiv, the nart or

dt+ that has only dxj differentials and dyi ditferentials. If w, = Ll—x,vl)éd\F

and w, = ((]—x]y])z/xljdvF. then I, = <w1.dyl.dy2>, Ly, = <wyydxydx, 2, 1=

1

<o J = F ¢ Yadx - X u A & i w = 4 J < ;
W AW W (y2+x2yl,dx] + (1 x]§])dx2. and w, (x1x2+x2)d\1 +

{1 = x,v,)dy,. Bv using ardument similar to those tound in Example 1, 1t
follows that I, and 1, are differential ideals. Thus it suftices to show that |
15 a di{terential 1deal.

The ideal I 1s a differential ideal with dimension two 1ttt v = w, . .w, # 0
and both dw, .1 and dwzmr are identically zero. But, because d(dxb) = -d(d_ k1,

it follows that 1 i1s a differential i1deal if r # 0 and dwl,r

1]
—
<
e

computation shows that r = (y2+x2y1)(x1y2+x2)dxlady] +

iV7+x7y1)(1-xly1)dx1"dy2 + (l—x]y])(x1y2+x2)dx2-dy] + (1—x]y1)‘dx2.dy9 and dw] =
-dx. _d - 2v dx - - . Cdv o dv PR . , |
dAl,Lsz 2y, dx, . dx, X, dx; .dy, + xldxz,dy]. it is ciear that r 2 0. A
direcit computation proves that dwlAr = ., This estabiishes that | 1is a
dificerential ideal, so it also follows (from Theorem 2) that there does exist a
{1,1}) single shot mechanism that realizes ¥,

gy following the scheme described in Saari {3,0], the single shot

mechanism given by the G“l functions can be determined. One choice 1is

3.1 G = xm, +x, ~-m, = O,

(VR Yym, + v, - my = 0.

in other words, for this singie shot mechanism, each unit transmits a tine. in

M = K¢, these two lines intersect in a unique point: this noint ts the
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equilibriom value of m = (m,,m,). ihe tunction h:M = K --> K 1s 2iven by him)

2
= m,.

now consider all or the communication networks associated with ¥,  EKach

choice of a network specifies the particular unit that 1s charged with computing
the value of F at the [h step. Secondlv, to start the computation process, at
least one of the two units must make an initial partial computation:; 1.e., at

Peast one det # DL This requires either T4 or T!, to have a one-tform in

addition 1o the one-iforms corresponding to the other units coordinate functions.
fhis coe-form characterizes the initial computation step. 50, assume that the
second unit ts to determine the valve of F and that 111 has an independent one-
form <iher than dyl and dy, . (All other cases have a similar argument.) The
inteegrability conditions torce this one-form in Ill to be a scalar tunction

multipie of the ditferential of a function Qil{x). it follows immediately trom

the Yorm of d ¥ that there does not exist a function vix,y) so that the

—

coefficrents of ti{x,y)d F are strictlyv functions of x. Consequently, both d ¥

and da’l(xi are in 1“'L1, and they are linearly independent. This forces Ib-t,

= <dxl‘ dAx,; dy

2 dyzk. In turn. this means that the kind ot information

1 ]
asscciated with anv communication netwerk must be eguivalent to a parameter

transfer, o 3 = 3, One such network is Q‘l(x) = X, =mb,, guy) 2 UL o=

1,27 white g%, = Fi((mt me

5 = yt, and g%, = 0. In other words, even though the

E
above single shot mechanism provides a distributive wav to code information
about F that resuits in a saving over the parameter transfer, such economies do
not extend or oxist for anv of the communication networks associated witn F.

The total 1nformation transfer is 2: the {irst unit transters mi1 and
mfi to the sccond unit. That it is impossible to find a communication networi
that improves upon the above constructed one for F follows either from the
above analvisis or irom Chen’s theorem. Chen's result shows that the lower bound

for information transfer for this cholce of F is 2.

Example 3. Abelson ases the following function ¥ to iliustrate
certain f-atures of a communication process., Chen uses the same F to 1llustrate
that his lower bound {(of 30 improves upon Abelson’s. 1 use this ¥ 1o jliustrate

3

how Theorem 3 can be used to determine a communication network.

et BrRIGRT -=0 R obe Fixay) o= Zox (v )F o4 Loy (x,0f. A airect

comptitation shows that di = X (v
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S rmdy, (Zos(y

l)ﬁ“ixr)dy . At the first stage, i, = <dg! (x):dqu..,dwnb andd

1

1= = «det, (y); dx, ,..,dx_ 2. 1lhe choice ot the tunctions g!. 1s not obvicus.
1 » 2 1 n 1

what 18 Interesting is that the choice of the functions 1s determined at the
scecond step by the structure ol the 1deais given in Theorem .
It is olear that there must be at least one more stage. 1t not, then to

gatisly condition 2 oif Theorem 3, either dyP must bhe a scalar (functionj

multiple of dﬁjl(x), or d_F must be a scalar multipie of dg‘zxy). Because ot
the mixed NV iform of the coordinate rfunctions 1n these two daitrerentiais,
neither 1s pessible, 117 only one additional stage i1s reguired betcore the value

¢t ¥ ocan be computed by, sav, unit 2, then I‘l = <dg! dF; dyl,..,uyn) and JZ

1! 1
= dg‘l, dziz, d Fo,

The 1deal I« is a difterential ideal because it describes the foliation

given by the intersection of the level sets of 2’1, Fy, and f_(x,y) = y_, & =

ly,+..vn. ©On the other hand, J‘l ie a differential i1deal 1iY d(d\f}.r = () where v

dgll,dgl,adxF # 0. (lhis is because d(dgii) =0 tor 1 = 1,2.) As u(d\F) =

—(Ls(}lJb'ider«dyl + (js(xl}s‘ldys)ndxl. it 1s easyv to see that a necessary and

suftficient condition tfor J«, to be a difterential ideal 1s that dgllix) and

dq‘zty) are, respectivelyv, scalar function multiples of dxl and dv,. From this,

toliowing the scheme described 1n Saari {3}, a4 communication network can be

constructed.  Namelv, gl (x) = x; = m',, gjz(y) = v, = m g = Loy (ml,)® =

"1 1 2! j TS 2

it

m-, o, 24, O and ¢f, = me, + Loy (mt )° = m, = Fix,y}.

Example 4. A very simple example 1s FiRAxXRE --> K given by Fix,y) =
f{xigly) where ¥ and g are smooth functions. An obvious communication network
1S mil = fixt and Fix,y) = me., = m‘lﬁ(y)- I show how this network arises out of
Thenrem 3. Farst of all note that to minimize the value of 13, the zZoal 1s to

choose communication functions that witl permit dF to be in an i1deal as coon as

cossibie. Therfore, we chect to =see 1f 1t 1s possible tor dF € LV, 0 This s
frue becnuse ¢ F = guyddi(x), s¢ 1t is in the ideal <dl(x} :d_\J e .d)y;>. 1The
fleRer i Het mes csvetem follows immediratelx,

Example 5. As a final ssxample, 1 consider FiRUWxk® --> R that 1s given

by the scalar product s Fix,y) = S x_ 7. According to hoth Abeizon’s and Chen's

Thoorems, the total informaticon transier must be a4t least 11— the same o= for oo

paranetsr transter,  However, a parameter transier reguaires 3= n o+ 1.



Thepr Yoo, iU e woprth gqueslionins whether Foadmits communlcatlon Networks olther
Vhan the parametor transfer that permit § < n + 1. The best one can do 1se it at
cact stags, vach unit transfers a message to the other unit., it this transter
ls done ~rticiently, then the networys would reguire (-1) = n/Z.  {(Recali, there
is o transtfeor of intormation at the 'Y gcep; this is the stade whnere the value
ot [ o computed, ) To find efiicient networks i1s easv.  However, T use this
sample choroe of Foto ihlustrate how the structures ot Theorem 3 help to desian
comptmteation netwerls. (The analisls alse shows what other methods are, or are
neo peasibios) Recause 1 oam using bote illustrate the use of thoe above
thoorems, me deseoripticn 1s phrased in a gencoral fashion so that one can oxtond
e notions 5 other choloeos of &,

,

Uothe [irest stage, 1 b= a(i%l) (X }:ai}l y e ,d}}‘ﬁ and 1+, =

19’,\y):d\1,..,d\“>. As true with the carlier examples 2iven zbhoveo whinle the
choree 5t the tunctions (20 1 18 not obvious, assistance tor the choroce of these
functions ts provided by the structure of J“j tor az2. I will show how this
happens e different wavs, For my first cheice. 1 consider what manner of
ronditions for the 1deale Jead to the following kind of communication nefuork:
At the {irst stage, the first anit communizaves the value of xy while the second
communicates the value of Yo At the second stage, the tirst unic computes atud
transmits the value of ot {based on the message it received) while the second
urtit tranamits the vatue of My The process continues,

To goe how the above kind of network arises, consider what happens
should a one-form wil(x,y) = lHL(x,y)dxi be added to 141 where at least one of
the £ tunctions does depend on the y variable. The first conditicn 1s that 1+«
1z a ditterential ideal. This involves showing that dwzlﬂr = U where v 1& the
{n+2)-torm deil,wil,[dy]‘...ﬁdynl. The dwé, term can be expressed as d\wzl +
4 we  wnere the first terms comes from the partial derivatives ot the x

varyables while the second

comes from the partial derivatives with respect to
the v ovariables.,  The braczheted term in r anninllates the dyw51 contribution. «o

a1 that remains is that d wé  we ,dzll = 0. This 1s guaranteed for we belny
<

thiee w=pavt of the differential ot anyv function Hix,y): 1.e., wey o= dXH(x.y}.

Assume this 1s the case where, of course. the cholce of H 1s to be determinea.
The second part of the a = 2 stage is to show that J¢, =

“i\Héx.y}\inltx), dg'S(y)> ig a difterential i1deat. The oniv thineg that needs

Lo be done here s i snow that d!(L4H>,.Zd‘14,cizl, {x).del {y}] = 0. 4= 1 nave
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aiready shown above that d w'] L we 1- dgl, = (, s¢ 1t remains to show that
A, we Ldgh odgt, o ws s 2y Bul oo el

| is 1n the space gpanned by fa Lav, i

! L
Another basis cat be diven by the wedge product of the {dv ) terms with the

crthogonal basis ldg',(y), 1, (y)t. Theretore d w<, can be expressed as a binear
iwith scalar functions as coefticients) combination of ia‘igiz(y)Aaxi‘ oy
tfd we admits any terms of the form v, {y). dx (but not of the form v tyi d2'

v ‘:H(ikH(x,y)) then the ditterential ideal condition witl neot be satisticd.

This means that the "' part of Hix,y) must depend upon the message ge o= oml,

vne chelee e e = v 0 then Hix,y) = » vo. (There are many other choices,

such as counterproductive choices of X,Vv, . However, such choices are quickly
excluded at the B step when dF must be in all ideals. Indeed, the object in

the design of the g4, functions 1s to inciude dbF in each of the ideals as

as pessible. This rvole of dF i1s illustrated with the
nexst Jdesign of oa network,)
It 1e very easy to determine that the abeve kind of network i1s not very

he Inefticiencies are created by adding one forms to I?’j that

Aficrent., T
derentd »n the other unit’s variakbles., Therefore, it is worth questioning what
harpens 117 “he one-forms added at each stage are designed to avoid the other
unjt’'s variables tfor as long as possible., Namelyv, suppose for cach « < s, W
depends oniy oon oxowhite weo depends only on the y variables.  Because none of
it added one-forms invelve any of the other unit’s variables, 1t 12 only
nocessary Lo show that 1¢ 0 is a different:al ideal: the fact that J*. 15 a
Apfferential tdea) tollows Jmmediately., Morecver, the choice of the one-forms
and Lhe statement that cach ¢ 1s a dirterential ideai guarantees that there
are communication functious g% (x) and g4, {yl. The 1mportant fact is thart these
finctions do not depend upon the communicated megsages: thev depend oniy upon
~he data available to each unit.

sunpose the sth stage is the last step of the exchange of information:
that 1=, 6-1 = s, This requires 151 = <(ixF. dg‘l(x), ...cig‘i‘”](x): d‘f:‘...,{h{k

and 4% = <d F, del tx)y wooder b (x)s dei (y), ooude®- (y)>. Again, 10 is oa

ditterential ideal because 1t corresponds to the foliatien ¢iven by the level

. = v.. The only part to veritv i1s that de

ot of F {ou | I
sets ot Koo fet I o . by ;

i a differential 1deal. This computation just inveives showing that did ki r =
O vhere v o1z Phe vedde produst of the basis one-forme defining ¥ s above,

:lizl\H ha= tvo parts determined by the two sete of hasis fdx, . dx 1}, ., and



SRS tage ¥

cpew i o paan it pons and adl g

. benote them as ) F and d k.

ihe pasic condition now becomes d For + d bor 2 UL ihe rirgt term 1=

N X Y

Vet cosa iy o zoero beoause 15’1 1s a difrerential rdeal. vone could cither use the

pmeved partial derivatives are equal, or the tact that because @ 15 &

j19)

dittoren cal idead, | '.(i‘w[*+~"i(_v[<‘)ﬁd\f'hd'£l D S DU "] (X)1. idj\l. ooy = .
ihe Jast brackered coxpression has tne »frect of annihiiating all torme in the

1 ;

first brackeo that anvolve a (,i.\'J . ihe remalning Lerms hanve no ri\i Formse, <o

Spon b onart el vl o kor

Vhe teo-Torms of this

the space conopratod e

i i
e (ki oana pe . [ | i lihevpse, o Uhe same Lor Lne spaie 2o en b
cAdv b where the daviesion is Pz ogdee (vt oand pEl o= ‘flj L Lhe e terms on
Vire bBraamas Vor b ma e s ozaven byt products o one-torng

From one setowyptn the o

any comnonentis

JE st s term e o ther
s annohudated. The d F terms thar frustrate satisiving the difterentiod
copd it ron avre tooses copressed as o a wedge product ot rorms from beamd v o b

Aol ion Cthal the process nev is compiete and Jd¥ ois oin tne iast oadeail thoe

coannct happen. Therotore, the (29 b functions are to be chosed Yo avord fhe
; - 1

poessabitiee ot t.i\ Fohaving s terms in the product of the =0 spaces,

Morcoover, Phe cheices of the 20w should be made o that all of this 1= tre tor

B opossibile. As d b o= Lody ody,y atoas clear that ald

hodds 1) the choyes o8 the {dg? suctt that 1t 2

iy
"

of the Indtces whide the cnoice of the {dee b oinceluadae o

A commarmieatien network thot o=2atisites the above condations reo oo ix o=

DO N 2 T T P T PRI I P SN L. R O |

piT g b = 0 ob ixoml T (v omt o+ omb-d,
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ON THE DESIGN OF COMPLEX ORGANIZATIONS
AND
DISTRIBUTIVE ALGORITHMS®

by Donald G. Saari
Department of Mathematics

Northwestern University
Evanston, Illinois 60208-2730

Abstract

To efficiently realize a specified goal in a distributive fashion, there needs
to be an appropriate "division of labor." This is true for distributive
algorithms that take advantage of the concurrent features of the new generation
of computers. This is true in the design of a complex organization intended to
realize a specified goal. The problem is to determine what is the appropriate
division of labor. Here, a geometric characterization of all possible divisions
of labor, or communication networks, is given. It is illustrated how this
characterization can be used to design the communication networks.

*This research was supported, in part, by NSF grant # IRI-8803505 and by a
1988-89 Guggenheim Felloswhip.






There are striking similarities between the problem of designing
distributive algorithms to take advantage of the concurrent and parallel
features of the new generation of computers and the problem of designing an
efficient organization to accomplish a specified goal. For both, the objective
is to parcel the workload among the various participating units in an efficient,
coordinated fashion. For instance, consider what is involved in creating a
distributative algorithm. The main task is to determine what it is that each
processor should compute and what partially computed information should be
conveyed to which other processors. There is a similar problem for the design
of an organization. Here responsibilities need to be assigned to the different
departments and divisions; namely, the goal is to establish an organizational
chart to determine the assignments and the reporting structure. Indeed, the
design both of distributive algorithms and of organizations can be summarized
with the coordinating questions of "who should do what?" and "who should say
what to whom?"

For many situations, there exist algorithms and organizations that
efficiently solve this division of labor problem. But, in general, the design
of a system remains as an important open question. In all cases the purpose of
an organization is to achieve a stated objective. So, the major obstacle is to
understand how to start with the stated objectives and then extract from these
goals the appropriate structures - structures that can be exploited to create
the organization. The principal purpose of this paper is to attack this problenm
by developing a geometric characterization of this design problem. The
geometric constructs introduced here expose the structures associated with the
universal issues i) of determining the kind of information each unit needs to
convey in order to achieve a stated objective and ii) of establishing the
reporting structure of who reports what to whom. Because my emphasis is to
introduce some of the underlying basic concepts, I treat here only a simplified
model where I ignore the many other related problems. A more complete
description is planned for elsewhere.

To state the problem in a simple setting, let the objective be given by
the smooth function
1.1 F:RF(1) x .., x Rk(J) ——-> R

where k(i), i = 1,..,j, are positive integers. Think of each space RK(i) as
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representing the data available to the ith unit (processor, department,
individual, agent, etc.). The function F represents the specified objectives.
In a computational problem, F may be a function that is to be evaluated where
the relevant data is divided so that processor i can access only the data
represented in R¥k(i), i = 1,..,j. For a hypothetical organizational example,
consider a firm trying to optimize profits coming from sales of a particular
product. Let a vector in Rk(1l) represent data about potential markets, Rk(2)
represent data about costs and availability of raw materials needed for
production, and Rk(3) represent other technical variables. Let F represent
either the optimal profits, or the output of the product that will achieve the
maximal maximal profits with the current environment. The goal is to efficiently
transfer information (or partial computations, partially constructed products,
etc.,) so that F is realized.

The objective function F specifies what is to be done - the goals. Once
F is given, the object is to find the ways - the organizations - so that the
task of realizing F is divided among the several cooperating units. To do this,
I build upon the ideas of Abelson [1], Hurwicz [3] and others to model the flow
of information among the units. The basic idea, which is a slight extension of
Abelson’s model, is simple and very natural. In the beginning, each unit has
knowledge only of the data assigned to it; the ith unit can only use the data
from RF?{1), This data must be processed in a manner that contributes toward
realizing F. Represent this first step of computation by gli(xi) =ml,; 1=
Loy x; € Rk(1i) m!, € R. Namely, at the first stage (denoted by the
superscripts on g and m), the itP unit uses the available data x; to compute the
value mli. Of course, the choice of g!, is intended so that the value m!,
contributes toward determining the value of F(xl,..,xj). {In general it is not
obvious how to define gli; indeed, finding guidelines for an appropriate
selection of these functions is major aspect of the design problem.) Let m! =
(mll,...,mlj) € RJ denote the vector of the first stage computations.

At the second stage, each unit can use not only its assigned data, but
also the partial computations, or messages m!, transmitted at the first stage.
This means that the computations at the second stage can be denoted by
g2, (x,,m!) = m?, € R. The general situation at the a'h stage is that the ith
unit can use all of the partial computations, or messages, from the other units

as well as the original data x; . Therefore the computation at this stage is
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represented by

1.2 g“i(xi,ll,...,l“'l) = m;
i.e., this computation is represented by a function

1.3 ge,: RK(i) x (Ri)a-1 —--—- > R,

where m%¥ € RJ is the vector of partial computations at the ktPM step, k = 1,..,
a-1.

At some step it may be that certain units have nothing to contribute or
do. This is the situation if, for instance, a particular unit cannot proceed
with meaningful work until it receives certain messages from specified other
units. The above modeling admits such circumstances by defining the particular
function to be g¢, = 0.

Suppose it takes B stages of partial computations to determine the value
of F. I model this by assuming that all but one of the units complete their
partial computations at the (B-1)th step. The remaining unit uses the messages
of partial computations and its data to compute the value of F.! Namely, I

assume there is a specific index s so that

1.4 gl (x,,ml,..,mf"1) = mf_, g”j 20 for j # s,
where
1.5 F(xl,..,xj) = mBS = gﬂs(xs,ll,..,nﬁ’l).

Because at certain stages some of the units may not be transmitting a message,
the effective messages - the images of the g functions - form only a linear
subspace of (R3I)B., Let M, the message space, denote this linear subspace.

With this model, the functions {g®,} specify what each unit must do,

"

compute, and communicate at each stage. Because these functions determine "who

says what to whom,"” I call a choice of smooth functions {g“i} that satisfies
these conditions a communication network that realizes F. Furthermore, I call
the issue of characterizing all possible communication networks that realize F

the central design problem associated with F.

1. This approach, which follows Abelson, is reasonable for models of
computation. An alternative model, with a slightly different supporting
mathematical theory, is where each unit finishes its computations at the fth
stage. The final determination of F is based only on these messages. Thus,
there is a function h:M ---> R so that h(m!,...,mP) = F(xl,...,x,). Here h may
correspond to the "auctioneer,” the central authority, the team ieader, or a
neutral computer. This alternative approach more closely represents several
models from economics.
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By solving or characterizing the solution of the central problem, all
gorts of information may be available about the communication network functions
{g“i}. This information can be used to analytically compare competing
communication networks, to develop complexity measures, and so forth. As an
immediate observation, note that the value of B serves as a crude measure of the
"speed" of the communication network. This is because it indicates that F is
realized in B steps. Thus, there may be many situations whereby smaller values
of B imply a more valued communication network.

One can conceive of situations where efficiency, or mininimal cost is
determined by how much information needs to be transferred among the units.

This is particularly so should it be expensive, or time consuming to transmit
messages (or partial products, etc.). When this is the case, measures of
complexity can be developed to reflect this fact. To see how this is done,
suppose a communication network {g“i} is given and consider the reporting issue
of determining "who says what to whom?" The function g2, represents what the
ith unit does at the ath stage, so the dependency of this function on the m
variables determines who has to communicate what partial computations to this
unit. Namely, if for any choice of s<a and k # i, the partial derivative of g%,

with respect to mS, is not identically zero, then the kth unit needs to

K
communicate this value to the ith unit before the ath stage.

As a third issue, note that it is of value to understand the "kind of
information" associated with a communication network. (This is particularly
true for theoretical investigations of a communication network.) By "kind of
information,”" 1 mean an equivalence class of data that gives rise to the same
value of each partial computation. In other words, starting with the given
data, at each step each unit computes the value of a message, me, . It may be
that with a different choice of data, all of the messages are precisely the
same. (If so, then both data points give rise to the same value of F.) So, all
data giving rise to the same messages define the same kind of information. Thus

the "kind of information" associated with a communication network is

characterized by the level sets of g%, .

Definition., Let T = {g“i}a -1, .. B

i-1 i be a given communication network
= .. =1,..,

that realizes F. We say that x, x’ € Rk(1)x, . xR¥(3) are "I equivalent” if the

following holds: g! (x;) = g, (x’) for all i. This requires the messages at
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the first stage to be the same. By induction, for all a, g“i(xi,ll,..,-“'l) =
g“i(x’i,-l,..,I“‘l). An equivalence class of data is called a "I information
set.”

As indicated, many of the basic issues for the design of algorithms or
organizational structures can be characterized in terms of the properties of a
communication network {g“i}. However, it is not at all clear how to start with
an objective function F and then determine an associated, non-trivial
communication network. It would be useful to determine structures that would
assist in this design. This goal, of finding what such a construction depends
upon, is the basic theme of this current paper. I characterize the
communication networks in terms of certain geometric constructs. As I indicated
earlier, the purpose of these geometric properties is to expose the hidden,
implicit structures of F that govern the admissible communication networks.

This approach involves solving several equations; equations that need not be
particularly easy to solve. On the other hand, these equations do indicate what
must be done to achieve such a network. As such, they form a most useful place
to start.

While my goal is to characterize all possible communication networks, I
would like to call attention to the several clever arguments used to find
properties of all possible communication networks without solving the central
problem. In particular, I point to the paper by Abelson [1], where, for j = 2
(i.e., only two units are allowed) he introduces a complexity measure, the total
information transfer, that is based on counting the number of messages that are
required to be conveyed between the processors. Thus, in terms of the above
discussion, this measure is determined by counting the non-zero partial
derivatives of the communication network functions, {g“i}, with respect to the
m variables. As such, with the efficiency assumptions introduced in the next
section, a lower bound for this measure is [dim(M) - 1] where the (-1) term
corresponds to mﬁ8 - a message that is not transferred. (For j 2 3, this may
not be a sharp lower bound because the same message may be transferred to
several units.) Abelson finds a lower bound for all possible communication
networks strictly in terms of the rank properties of the Hessian of the
objective function F. By using more sophisticated mathematical approach based

on concepts from differential geometry, P. Chen [2] improves upon Abelson’s
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lower bound; Chen’s theorem is based on the rank of a bordered Hessian. Again,
Chen’s improved lower bound depends only on the differential properties of F; he

circumvents the more difficult issue of solving the central problem.

2. Single Shot Mechanisms.

In this section, some insight is obtained about the kinds of information
admitted by a specified F. I do this by showing that a communication network
for F can be viewed as being a special case of a different kind of network that
realizes F - the single shot mechanism. An important advantage of relating the
two problems is that in this way I can exploit existing results characterizing
all possible single shot mechanisms., This characterization can be used to
impose bounds on what is possible for the associated communication networks, as
well as to characterize the possible "kinds of information" admitted by the
possible networks. Then, in Section 3, a characterization of the central
problem is provided.

The more general system is where all of the information is communicated
among the different units in a single step. For this to be possible, the values
of m need to be determined implicitly. Thus, rather than communicating a value
(as 1s true for a communication network), the ith unit communicates a set
(m] G“i(xi,m) = 0}. The actual message is the intersection of these sets, i =
1,..,J, in a message space M. Such systems occur quite naturally as part of the
equilibrium analysis of a dynamical exchange of information that assumes the
form m’i = G“i(xi,l). The basic purpose of the dynamic given by this
differential equation is to allow each unit to update its message based on its
own characteristics, x;, and the recent messages of the other units. The
equilibrium state of the dynamic is where the G functions are all equal to zero.
Notice that this modeling generalizes the common price dynamic story from
economics where prices change according to the market pressures of supply and
demand. For more detailed discussion of this and other interpretations, see
Hurwicz [3].

Single Shot Problem: For a given objective function F, find smooth
functions G“i(xi,l):Rk‘i’xM -->M, M=R", a=1,..,n, i=1,..,3; and a smooth

function h:M --> R so that with any value of m implicitly defined by
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2.1 G“i(xi,l) = 0,
we have that
2.2 h(m) = F(xl,..,xj). The triple ({G“i}, M, h) is called a single-shot

mechanism that realizes F.

Thus the single shot mechanism corresponds to factoring a function F
through another space, M, in a non-standard implicit form. Of course, the "kind
of information" associated with a single shot mechanism {G“i} is defined in a
similar way as the I information sets - it is given by the level sets of the Gy
functions. The relationship between the single shot and the central problem is

stated in the following formal statement.

Theorem 1. If a function F admits a communication network, then this network
defines a single shot mechanism, {G%,}, for F. The message space for both
systems 18 the same. Moreover, an information set associated with this
communication network is same information set associated with the defined

mechanism {G“i}.

The proof of this theorem is immediate. This is because the
communication network function, Eq. 1.2, can be expressed in the implicit single
shot form G“i(xi,l) =0; a=1,..,8; 1=1,..,j; where m = (m!, ®2,...,m8) € RBJ
= M by defining G¢,(x,,m) = g“i(xi,ll,...,l“‘l)—mai. The assertions of the
theorem now follow immediately. Chen’s Theorem is based on a similar

observation.

An advantage of Theorem 1 is that there exists two characterization of
the single shot mechanisms (Hurwicz, Reiter, and Saari [4], and Saari [5]). For
the purposes of this paper, I adopt the characterization in Saari [5,6] because
it is more general and it appears to be computationally easier to use.

According to Theorem 1, this characterization can be invoked to limit the
possible choices of the communication networks. This is because the
communication networks are those single shot mechanisms that satisfy an
additional rank condition.?

2. These rank conditions are the obvious ones required to take the equation for
the single shot mechanism and solve them to obtain a communication network.
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In general there are infinitely many choices of {G“i} functions that
give rise to the same information sets.3 However, a given set {G“i} can be
pared to a basic set by eliminating redundancies. This is the purpose of the
following set of efficiency assumptions. In these conditions, treat {G“i} as a
mapping from RE(1)x, ,Rk(J)xM into an Euclidean space that agrees with the number
of G¢; functions.

Efficiency Assumptions on {G“i}.

a. The dimension of M agrees with the number of {G®,} functions.

Let X = (xl,..,xj) and m represent variables in a zero set of {G%,}.

b. At (X,m) the Frechet derivative of {G“i} with respect to m is non-
singular.

c. At (X,m) the Frechet derivative of {G“i} with respect to X has
maximal rank.

(The Frechet derivative can be viewed as being the Jacobian of {G“i}

with respect to the indicated variables.

The characterization of the single-shot mechanisms for a given F are
expressed in a differential form. The idea is that the zero sets of the {G“i}
functions define level sets, or certain collections of related foliations of the
space RE(1)x, xRKk(J)}, Thus, the leaves from the foliations correspond to the
kinds of information. Foliations can be totally characterized in terms of their
normal vectors. These vectors define the normal bundle. When these vectors are
expressed in terms of differential one-forms, the normal bundle becomes an ideal
of differential forms. The necessary integrability conditions on the normal
bundle now are expressed in terms of a condition on the ideal; it must be a
differential ideal. These concepts lead to the following statement. For a
proof, a discussion of these terms, and more details, along with a partial

history of this problem see Saari [5].

3. This is why I place more emphasis on the "kinds of information" than on the
actual single shot mechanisms or communication networks. In fact, a useful
equivalence relationship can be defined among the mechanisms (the communication
networks) in terms of these level sets. In this manner, networks that seem to
have little to do with each other can be shown to be equivalent.
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Theorem 2. Let a smooth objective function F be given. The following are
necessary and sufficient conditions that a smooth single shot mechanism
((G“i},M,h) for F exists in a neighborhood of X € Rk(1)x, ,xRk(J) that satisfies
the efficiency assumptions.

1. For each i, there is a differential ideal I, =
(dF,wi’l,...,wi's(i);[dxj]1>, s(i)=n;-1, with (Ej“kj)+ni linearly independent
one-forms. Here, each LI is a smooth one form and the set [dxj]i = {dx 1 x,

is a coordinate direction for a parameter not in Rk(i)},

2. The set I = n, I, is a differential ideal with n = I; n linearly

i
independent one-forms.
The resulting mechanism to realize F has a message space of dimension n

where there are n, functions relating the parameters of the ith unit with the

i
messages.

The proof that this is a sufficient condition follows from the Frobenius
Theorem (see Saari [5]). That this is a necessary condition comes by re-
expressing the gradients {VG“i} in terms of differential forms {dG“i}. These

one-forms form a basis for the differential ideals, {Ii}i:1 N I, that have

v
the specified properties. The reason the one-forms [dxj]i are in L, is to
capture the condition that the ith unit has access only to data from Rk(i), The
requirement on the ideal I is to ensure that the the conveyed messages are
compatible with one another in evaluating F.

To 1llustrate how Theorem 1 can be used, notice that a trivial single
shot mechanism is a "parameter transfer" where one unit communicates the value

of all of its parameters to the second unit. After these values are

transferred, the second unit computes the value of F. Namely, if

F(xl,xz):kaRk --> R, then B = k+1, and G®; = x_, - m%, = 0 where x_ is the sth
component of x,, s = 1,..,k, while G!, = F((mll,...,mkl),xz)—ml2 = 0. the
function h is the projection h(m) = mlz. This single shot mechanism has a

message space M with dim(M) = k+1. The communication network associated with

the parameter transfer is g8, = 0, g5, = m®, where mS, is the sth component of
2 1

1 1

X;» s = 1,..,k, while g®, = F((m! .,mkl).xz) and gk*! = 0. This

1,00
communication network associated with the parameter transfer does not reflect
the kind of benefits one expect from a system capable of concurrent or

distributive action. After all, this system just transfers all of the work to
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another unit. Thus, such a communication network is one that is not overly
efficient. Yet, suppose the only single shot mechanisms admitted by F are
equivalent to a parameter transfer. It follows from Theorem 1 that all possible
communication networks associated with F must be related to this undesired
transfer method.

More generally, the class of all possible single-shot mechanisms that
realize F restrict the kinds of communication networks that are associated with
F. Thus, Theorems 1 and 2 form an important first step toward determining what
kinds of networks are possible., In Saari [5,6], several examples of F are
analyzed to characterize the associated single shot mechanisms. One example is
repeated here to illustrate Theorem 2.

Example 1. Let F:R?2xR?2 --> R be defined by F(x,y) = L%y, 1 show
that this function admits only a parameter transfer. To do this, I first
consider I,. This set must contain dF = Ziyidxi + Z;x,dy; = dF + dyF. It also
contains dy1 and dy,, as well as all possible linear combinations of these three
one-forms where the coefficients are smooth functions of x and y. As the second
summation in dF, dyF, can be expressed as combinations of dyl and dyz, this part
of dF can be eliminated. Thus, these forms can be reduced to the set {dxF =
Ziyidxi, dyl,dyz}. If I, were to admit any other linearly independent one-form,
then a basis for I, would be <dx,,dx,,dy,,dy,>. The foliation identified with
this ideal is given by the intersection of the level sets of Xiy Y30 1 = 1,2.

In other words, the messages are equivalent to the first unit transmitting the
value of x to the second unit. This means that the accompanying mechanism is
(equivalent to) a parameter transfer. Hence, assume that I, = «d,F = Ziyidxi,
dyl,dyz>. A similar argument shows that to avoid a parameter transfer of the y
values, I, = <dy = Zixidyi,dxl,dx2>. Consequently, I = <Z;x,dy,, Z,y,dx;>.

It remains to determine whether I, I, and I are differential ideals.
Trivially, I, and I, are differential ideals. One way to show this is to note
that r, = (Eiyidxi).dyl.dy2 is a three-form. A necessary and sufficient
condition for I, to be a differential ideal is that dw.r, = 0 where w is any one
form from I,. But, dw.r is a five-form in a four dimensional space, so it must
be identically zero.

An alternative argument proving that I, is a differential ideal uses the
fact that this is so iff there is an associated foliation identified with I,.

This foliation is given by the intersection of the level sets (in RZxR?) of F,
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f, =y,, and f, = y,. A similar argument proves that I, also is a differential
ideal.

The final step is to show that I is not a differential ideal. First, r =
(Ziyidxi)-(zixidyi) # 0 and d(Zixidyi) = Z,dx;.dy;. A necessary and sufficient
condition for I to be a differential ideal is that d(Z;x,dy,).r = 0. However, a
direct computation proves that d(Z;x;dy,).r # 0. Because I is not a
differential ideal, there does not exist a single shot mechanism with n,=n,=1.
This means that any single shot mechanism associated with F must involve adding
another independent one-form either to I, or to I,, and, hence, to I. Suppose
this one form is added to I,. As shown above, the addition of this independent
one-form makes I1 = <dx1,dx2,dyl,dy2). In turn, this means that the kind of
information associated with the mechanism is equivalent to a parameter transfer
of the x values to the other unit. Namely, for this choice of F, all single
shot mechanisms are equivalent to the parameter transfer mechanism.

It now follows from Theorem 1 that the communication networks for this
scalar product are equivalent to networks of the following form: Let g5, T Xg =

8

ms,, g%, =0, s = 1,2, g3, = L, mi y,, g3, =0.

1? i

3. Characterization of the Communications Networks.

The characterization of communication networks also can be expressed in
terms of differential ideals, except several more ideals are required. These
additional ideals account for the rank conditions needed to ensure that the
equations for a single shot mechanism can be solved to determine the associated
communication network. Again, for any F, there are an infinite number of
associated communication networks, so the first task is to eliminate certain
redundancies. As in the previous section, this is done by imposing efficiency
assumptions. In these conditions, consider only the non-constant functions in
{g“i} and treat the remaining functions as defining a mapping.

Efficiency Assumptions on a Communication Network {g“i}.

a. The dimension of M agrees with the number of non-constant {g“i}
functions.

Let X = (xl,..,xj) and m represent variables in a zero set of {g“i}.

b. At (X,m) the Frechet derivative of the non-constant {g“i} with

respect to m is non-singular.
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c. At (X,m) the Frechet derivative of the non-constant {g¢,} with

respect to X has maximal rank.

Theorem 3. Let a smooth objective function F be given. The following are
necessary and sufficient conditions that a smooth communication network {g“i}
that satisfies the efficiency assumptions exists in a neighborhood of X €
RE(1)x, xREk(J),

1. For each i, there is a differential ideal Ili = <wii,;[dxj]i> where
the one-form w!, € T*Rk(1); j.e., it is a linear combination of the
differentials of the coordinate functions in RE(i) where the scalar functions
are smooth functions from Rk(i) to R.

2. By induction, for each 1 and each a satisfying 1<a<f8, there is a one
form we, so that I¢, = <we,, I“'11> is a differential ideal. Secondly, for all
i with the exception of an index s, I®, = 19—11. In the exceptional case of 1 =
s, there can be a one-form w8_ so that IB_ = <wB_,I8-1 > is a differential
ideal. For all i, dF € IB8,.

3. For all i and all a satisfying 1<a<B and for a = 8 when i = s, all
of the ideals J*, = 12 . n (nk,i Ie-1.) are differential ideals.

The resulting communication network takes B steps and the dimension of

the message space corresponds to the dimension of Je_.

The proof of this theorem will appear elsewhere. Some of the
connections between Theorems 2 and 3 are that i) the ideal J8_ from Theorem 3
plays the role of the ideal I in Theorem 2 while ii) the ideals I“i from Theorem
3 correspond to the ideals [, from Theorem 2. The remaining ideals correspond
to the added conditions required to ensure that a single shot mechanism can be
expressed in the form of a communication network. Notice that the conditions on

the ideals for the first stage, Ili, amount to choosing a one-form w!, to be a

i
functional multiple of dgli(xi). It is not obvious how to choose the functions
gli(xi). Therefore it is iinteresting to note, as illustrated in the following
examples, that this choice is partially governed by the conditions on the JZi
ideals as well as the other conditions from Theorem 3. While the resulting set
of equations may be difficult to solve, this approach does provide additional
structure to understand how to decompose F into an organizational format.

Finally, notice that because the dimension of J“s agrees with the dimension of
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M, the structure of J#_ provides valued information about Abelson’s total
information transfer.

The differences between Theorem 2 and 3, as well as an indication how to
use these results, is illustrated with the following examples. The first one,
Example 2, shows that not all single shot mechanisms are related to a
communication network.

Example 2. Let F:R2xR2-->R be defined as F(x,y) = [x1y2+x2]/[1—x1y1].

I show that F admits a (1,1) single shot mechanism; that is, there is a single
shot mechanism with n, =n,=1, This conclusion is by no means obvious. What is
even less obvious is how to decompose F into the appropriate messages from the
two units. Therefore, it is worth noting how the structures of the ideals lead
to the resulting mechanism.

If F admits a (1,1) mechanism, then I, must be <d F;dy,,dy,> and I, =
<dyF;dxl,dxz> where, as in Example 1, dxF and dyF are, respectively, the part of
dF that has only dxj differentials and dyj differentials. 1If W, = (l—xlyl)zdxF

and w, = [(1-x1y1)2/x1]dyF, then I, = <w ,dy,,dy,>, I, = <w,,dx;,dx,>, I =

2
Wi yW, >y Wy = (y2+x2yl)dx1 + (1 - xlyl)dxz, and w, = (x1y2+x2)dy1 +
(1 - xlyl)dyz. By using argument similar to those found in Example 1, it
follows that I, and I, are differential ideals. Thus it suffices to show that I
is a differential ideal.

The ideal 1 is a differential ideal with dimension two iff r = w,.w, # 0
and both dw .r and dw,.r are identically zero. But, because d(d F) = -d(dyF),
it follows that I is a differential ideal if r # 0 and dw,.r = 0. A

computation shows that r = (y,+x,y,)(x,y,+x,)dx,.dy, +

(y2+x2y1)(1—x1y1)dxl.dy2 + (1-x1y1)(x1y2+x2)dx2.dy1 + (l—xlyl)zdxz.dyz and dw,
—dxlﬂdy2 - 2y1dx1.dx2 - x,dx;.dy, + x,dx,.dy,. It is clear that r # 0. A
direct computation proves that dwlhr = 0. This establishes that I is a
differential ideal, so it also follows (from Theorem 2) that there does exist a
(1,1) single shot mechanism that realizes F.
By following the scheme described in Saari [5,6], the single shot

mechanism given by the G, functions can be determined. One choice is
3.1 Gl, = x

Gl2 =y,m, +y, -m =0.

m, + x, - m, =0,

171 2 2

In other words, for this single shot mechanism, each unit transmits a line. In

M = RZ, these two lines intersect in a unique point; this point is the
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equilibrium value of m = (ml,mz). The function h:M = R?2 --> R is given by h(m)
2

Now consider all of the communication networks associated with F. Each
choice of a network specifies the particular unit that is charged with computing
the value of F at the Bth step. Secondly, to start the computation process, at
least one of the two units must make an initial partial computation; i.e., at
least one dg1i # 0. This requires either Il1 or I, to have a one-form in
addition to the one-forms corresponding to the other units coordinate functions.
This one-form characterizes the initial computation step. So, assume that the
second unit is to determine the value of F and that Il1 has an independent one-
form other than dy, and dy,. {All other cases have a similar argument.)} The
integrability conditions force this one-form in 11l to be a scalar function
multiple of the differential of a function gl (x). It follows immediately from
the form of dxF that there does not exist a function t(x,y) so that the
coefficients of t(x,y)dxF are strictly functions of x. Consequently, both dxF
and dg! (x) are in I8-1., and they are linearly independent. This forces IR-1,
= <dx1, dxz; dyl, dy2>. In turn, this means that the kind of information
associated with any communication network must be equivalent to a parameter
transfer, so B = 3. One such network is gil(x) = x; = mil, giz(y) =0; 1=

1,2; while g32 = F((m! m?,), y), and g3, = 0. In other words, even though the

l b
above single shot mechanism provides a distributive way to code information
about F that results in a saving over the parameter transfer, such economies do
not extend or exist for any of the communication networks associated with F.

The total information transfer is 2; the first unit transfers m!, and

1
m2i to the second unit. That it is impossible to find a communication network
that improves upon the above constructed one for F follows either from the

above analysis or from Chen’s theorem. Chen’s result shows that the lower bound

for information transfer for this choice of F is 2.

Example 3. Abelson uses the following function F to illustrate
certain features of a communication process. Chen uses the same F to illustrate
that his lower bound (of 3) improves upon Abelson’s. 1 use this F to illustrate
how Theorem 3 can be used to determine a communication network.

Let F:RPxR™ --> R be F(x,y) = sts(yl)s + Zsys(xl)s. A direct

computation shows that dF = Zs(yl)sdxS + (Essys(xl)s"l)dxl +
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z, (x,)sdy, (Zss(yl)s'lxs)dyl. At the first stage, I! = <dg1l(x);dy1,..,dyn> and
12, = <dg!,(y); dx;,..,dx,>. The choice of the functions g!, is not obvious.
What is interesting is that the choice of the functions is determined at the
second step by the structure of the ideals given in Theorem 3.

It is clear that there must be at least one more stage. If not, then to
satisfy condition 2 of Theorem 3, either dxF must be a scalar (function)
multiple of dgll(x), or dyF must be a scalar multiple of dglz(y). Because of
the mixed Xis Y5 form of the coordinate functions in these two differentials,
neither is possible. If only one additional stage is required before the value
of F can be computed by, say, unit 2, then IZ1 = <dg11, dF; dy,,..,dy,> and le
= <«dg!,, dg!,, d,F>.

The ideal Iz1 is a differential ideal because it describes the foliation
given by the intersection of the level sets of g!,, F, and fs(x,y) = ygy 8=
1,..,n. On the other hand, le is a differential ideal iff d(dxF)-r = 0 where r
= dgll-dglz-dxF # 0. (This is because d(dgli) 20 for i =1,2.) As d(dxF) =
-(Zs(yl)s'ldxs).dy1 + (Zs(xl)s'ldys)-dxl, it is easy to see that a necessary and
sufficient condition for le to be a differential ideal is that dg!, (x) and
dglz(y) are, respectively, scalar function multiples of dx1 and dyl. From this,
following the scheme described in Saari [5], a communication network can be
constructed. Namely, g! (x) = x, = m! , gl (y) =y, = mt,, g2, = Z.x_(ml,)s =
m? gz2 = 0, and g32 = m21 + Zsys(mll)S = m?, = F(x,y).

Example 4. A very simple example is F:RExRk --> R given by F(x,y) =
f(x)g(y) where f and g are smooth functions. An obvious communication network
is m11 = f(x) and F{x,y) = m22 = mllg(y). I show how this network arises out of
Theorem 3. First of all note that to minimize the value of 8, the goal is to
choose communication functions that will permit dF to be in an ideal as soon as
possible. Therfore, we check to see if it is possible for dF € Ill. This is

true because d_F = g(y)df(x), so it is in the ideal <«df(x);dy,,..,dy,>. The

K
described message system follows immediately.

Example 5. As a final example, I consider F:R"xR™ --> R that is given
by the scalar product; F(x,y) = L ,x,¥,. According to both Abelson’s and Chen’s

Theorems, the total information transfer must be at least n - the same as for a

parameter transfer. However, a parameter transfer requires 3 = n + 1.
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Therefore, it is worth questioning whether F admits communication networks other
than the parameter transfer that permit B < n + 1. The best one can do is if at
each stage, each unit transfers a message to the other unit. If this transfer
is done efficiently, then the network would require (f-1) = n/2. (Recall, there
is no transfer of information at the Bth step; this is the stage where the value
of F is computed.) To find efficient networks is easy. However, I use this
simple choice of F to illustrate how the structures of Theorem 3 help to design
communication networks. (The analysis also shows what other methods are, or are
not possible.) Because I am using F to illustrate the use of the above
theorems, my description is phrased in a general fashion so that one can extend
the notions to other choices of F.

At the first stage, I!, = <dg!,(x);dy,,..,dy > and I}, =
<dg12(y);dxl,..,dxn>. As true with the earlier examples given above, while the
choice of the functions {glk} is not obvious, assistance for the choice of these
functions is provided by the structure of Je, for a22, I will show how this
happens in different ways. For my first choice, I consider what manner of
conditions for the ideals lead to the following kind of communication network:

At the first stage, the first unit communicates the value of x, while the second

1
communicates the value of ¥y, At the second stage, the first unit computes and
transmits the value of X ¥, (based on the message it received) while the second
unit transmits the value of X,¥,. The process continues.

To see how the above kind of network arises, consider what happens
should a one-form wzl(x,y) = I8, (x,y)dx; be added to 121 where at least one of
the Bi functions does depend on the y variable. The first condition is that IZ1
is a differential ideal. This involves showing that dwzl-r = 0 where r is the
(n+2)-form dg! .w?, .[dy,.....dy_ 1. The dw?, term can be expressed as d w? +
dywz1 where the first terms comes from the partial derivatives of the x
variables while the second comes from the partial derivatives with respect to

the y variables. The bracketed term in r annihilates the dyw2 contribution, so

1
0. This is guaranteed for w?

all that remains is that dxwzlﬁwzl.dgl1 , being
the x-part of the differential of any function H(x,y); i.e., wz1 = dxH(x,y).
Assume this is the case where, of course, the choice of H is to be determined.
The second part of the a = 2 stage is to show that le =
<dxH(x,y),dg11(x), dglz(y)> is a differential ideal. The only thing that needs

to be done here is to show that d(dxH)n[dxH-dgll(x).dglz(y)] =z 0. As I have
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already shown above that d _w?,.w? 6 .dg!;, = 0, so it remains to show that

1-
dywzl.dgll.dglz.wz1 = 0. But dywzl is in the space spanned by {dxi-dyj}.
Another basis can be given by the wedge product of the {dxi) terms with the

orthogonal basis {dglz(y), t,(y)}. Therefore dyw2 can be expressed as a linear

1
(with scalar functions as coefficients) combination of {dglz(y).dxi, ti(y)-dxj}.
If dyw2 admits any terms of the form ti(y)-dxj (but not of the form ti(y).dgl1
or t,(y).d H(x,y)) then the differential ideal condition will not be satisfied.
This means that the "y" part of H(x,y) must depend upon the message g2, = m!,.
One choice is if gzl = y,» then H{x,y) = X ¥ (There are many other choices,
such as counterproductive choices of X ¥, However, such choices are quickly
excluded at the Bth step when dF must be in all ideals. Indeed, the object in
the design of the g%, functions is to include dF in each of the ideals as
quickly, or as efficiently as possible. This role of dF is illustrated with the
next design of a network.)

It is very easy to determine that the above kind of network is not very
efficient. The inefficiencies are created by adding one forms to 12i that
depend on the other unit’s variables. Therefore, it is worth questioning what
happens if the one-forms added at each stage are designed to avoid the other
unit’s variables for as long as possible. Namely, suppose for each a < s, w®

1
depends only on x while w@

, depends only on the y variables. Because none of
the added one-forms involve any of the other unit’s variables, it is only
necessary to show that Ie, is a differential ideal; the fact that J¢, is a
differential ideal follows immediately. Moreover, the choice of the one-forms
and the statement that each [2, is a differential ideal guarantees that there
are communication functions g¢ (x) and g°,(y). The important fact is that these
functions do not depend upon the communicated messages; they depend only upon
the data available to each unit.

Suppose the sth gtage is the last step of the exchange of information;
that is, B-1 = s. This requires Is, = <d,F, dgll(x), ..,dgs'll(x); dy,»..,dy,>
and Je, = «d,F, dgll(x), ..,dgs‘ll(x); dglz(y), ..,dgs'lz(y)>. Again, IS, is a
differential ideal because it corresponds to the foliation given by the level
sets of F, {g%, (x)}, . 1. e-10 f, = v;. The only part to verify is that Js,
is a differential ideal. This computation just involves showing that d(dxF)Ar =
0 where r is the wedge product of the basis one-forms defining Jsl. As above,

d(dxF) has two parts determined by the two sets of basis {dxi-dxj} and

i¢j
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{dxindyj}. Denote them as d_ F and dxyF.

The basic condition now becomes d  F.r + dxyFAr = 0, The first term is
identically zero because Is, is a differential ideal. (One could either use the
fact that mixed partial derivatives are equal, or the fact that because IS1 is a
differential ideal, [(dxxF+dxyF)-dxF-dg11(x)-..- dgs‘ll(x)]-[dyl-..-dyn] = 0.
The last bracketed expression has the effect of annihilating all terms in the
first bracket that involve a dy,. The remaining terms have no dy, forms, so
[dxxFAdxFadgll(x)...-dgs‘ll(x)] = 0. But, this expression is part of the d  F.r
computation.} Thus, it remains to show that dxthr = 0,

To show when dxyF-r = 0, note that the basis for the two-forms of this
mixed type can be divided into four parts. First, take the space generated by
the {dxi} and find another basis specified in two orthogonal parts - P11 =
{dg“l(x)} and le = {ti’l}. Likewise, do the same for the space generated by
{dy,} where the division is P!, = {dg°,(y)} and P2, = {ti,z]. The n? terms in
the basis for the mixed two-forms is given by the wedge products of one-forms
from one set with the other. Thus, any components of dxyF with a term in either
PlJ is annihilated. The dxyF terms that frustrate satisfying the differential
condition are those expressed as a wedge product of forms from le and PZZ. By
assumption (that the process now is complete and dF is in the last ideal) this
cannot happen. Therefore, the {g“i} functions are to be chosed to avoid the
possibility of dxyF having any terms in the product of the P2i spaces.

Moreover, the choice of the g“i’s should be made so that all of this is true for
as small of a value of B as possible, As dxyF = Eidxi.dyi, it is clear that all
of this holds if the choice of the {dg“l] is such that it includes dx; for half

of the indices while the choice of the {dg“z} includes dyj for the other half of
the indices.

A communication network that satisfies the above conditions is gsl(x) =
X, = mS,, g5,(y) = vy,,,.5 =m,, s =1,..,n/2 =8 -2, g“'ll(x,n) = I x ms, =

s s“n+l-sg

mé-1,, g8-1, =0, g%, (x,m) = (Zy_ms,) + mP-1,,
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