DISCUSSION PAPER NO. 83

HYPERSPACES OF TOPOLOGICAL VECTOR SPACES:
THEIR EMBEDDING IN TOPOLOGICAL VECTOR SPACES

by

Prem Prakash and Murat E. Sertel

April 20, 1974

Also issued as No. I/74-17 in the Preprint Series of the International Institute of Management, D-1000 Berlin 33, Griegstrasse 5.
HYPERSPACES OF TOPOLOGICAL VECTOR SPACES: THEIR EMBEDDING IN TOPOLOGICAL VECTOR SPACES

by

Prem Prakash and Murat R. Fortel

We prove the following

G. HAUPTSATZ: Let \(L \) be a real (Hausdorff) topological vector space. The space \(K[L] \) of nonempty compact subsets of \(L \) forms a (Hausdorff) topological semivector space with singleton origin when \(K[L] \) is given the uniform (equivalently, the finite) hyperspace topology determined by \(L \). Then \(K[L] \) is locally compact iff \(L \) is so. Furthermore, \(KQ[L] \), the set of nonempty compact convex subsets of \(L \), is the largest pointwise convex subset of \(K[L] \) and is a cancellative topological semivector space. For any nonempty compact and convex set \(\mathbf{X} \subseteq L \), the collection \(KQ[\mathbf{X}] \subseteq KQ[L] \) is nonempty compact and convex. \(L \) is isomorphically embeddable in \(KQ[L] \) and, in turn, there is a smallest vector space \(\mathbf{L} \) in which \(KQ[L] \) is algebraically embeddable (as a cone). Furthermore, \(L \) can be given a vector topology \(\mathbf{T} \) such that the algebraic embedding of \(KQ[L] \) in \(L \) is an isomorphism, while \(L \) is, respectively, locally convex/
normable accordingly as \(\mathcal{L} \) is so; indeed, \(T \) can be so chosen that, when \(\mathcal{L} \) is normed, the embedding of \(\mathcal{L} \) in \(\mathcal{K}\mathcal{O}[\mathcal{L}] \) and that of \(\mathcal{K}\mathcal{O}[\mathcal{L}] \) in \(\mathcal{L} \) are both isometries.
REFERENCES

1. PRELIMINARIES

\mathbb{R} denotes the set of real numbers with the usual topology, and $\mathbb{R}_+ = \{ \lambda \in \mathbb{R} \mid \lambda \geq 0 \}$. For any set X, $[X]$ denotes the set of nonempty subsets of X. When X is a topological space, $K[X]$ denotes the set of compact nonempty subsets of X. When X lies in a real vector space, $Q[X]$ denotes the set of convex nonempty subsets of X. Finally, when X lies in a real topological vector space, $KQ[X] = K[X] \cap Q[X]$.

In topologizing hyperspaces (i.e., spaces of subsets), we will use the uniform topology, regarding which we adopt Michael [1] as standard reference. Let X be a uniform space, and let $\{ E_{\alpha} \subseteq X \times X \mid \alpha \in A \}$ be a fundamental system of symmetric entourages of X. The uniform topology for $[X]$ is the topology generated by declaring $E_{\alpha}[A]$ is a nbhd of A ($A \subseteq [X]$). By the uniform topology on a hyperspace $H[X] \subseteq [X]$ is meant the relative topology of $H[X]$ when $[X]$ carries the uniform topology.

1.0 DEFINITION [2]: Let (S, \oplus) be a commutative semi-group and $\Upsilon: \mathbb{R}_+ \times S \to S$ a map such that, denoting $\Upsilon(\lambda, s) = \lambda s$,

\[\lambda(\mu s) = (\lambda \cdot \mu) s \]
\[ls = s \]
\[\lambda(s \otimes t) = \lambda s \otimes \lambda t \]

(Left action)
(Unitariness)
(Homomorphism)

for all \(\lambda, \mu \in \mathbb{R} \) and \(s, t \in S \). We call \(S \) a semivector space. When \(S \) is a Hausdorff space and the operations \(\cdot \) and \(\otimes \) are both continuous, we call \(S \) a topological semivector space.

Thus, real vector spaces are all semivector spaces, so that the topological vector spaces we speak of are those with Hausdorff topology.
2. **SEMICOMPACT SPACES OF TOPOLOGICAL VECTOR SPACES**

Let \(L \) be a real vector space, and \(e \) its identity element. Now \([L]\) is a semivector space with identity \((e) \) when \(A \odot B = \{a + b \mid a \in A, b \in B\} \) and \(\lambda A = \{\lambda a \mid a \in A\}, \lambda \in \mathbb{R} \). Furthermore, \(\mathbb{Q}[L] \subseteq [L] \) is also a semivector space and is pointwise convex, i.e., \(\{A\} \) is convex for each \(A \in \mathbb{Q}[L] \). In fact \(\mathbb{Q}[L] \) is the largest pointwise convex subset of \([L] \). If \(A \in [L] \) and \(\lambda A \odot \lambda' A \subseteq A \) for each \(\lambda = (1-\lambda') \in [0, 1] \), then \(A \subseteq L \) must be convex.

From here on, \(L \) will always be a topological vector space.

Now \(K[L] \subseteq [L] \) is a semivector subspace and \(K\mathbb{Q}[L] \) is the largest pointwise convex semivector subspace of \(K[L] \). Also, the origin \(0[L] = 0K[L] = 0\mathbb{Q}[L] = 0K\mathbb{Q}[L] = \{\{e\}\} \) is singleton. N.B.: The uniform topology on \(K[L] \) coincides with the finite topology (1.1, pp. 153, and 3.3 pp. 160, of [1]).

2.1 **PROPOSITION:** (1) \(K[L] \) is a topological semivector space, locally compact iff \(L \) is. (2) The map \(\hat{\delta} : x \mapsto \{x\} \) \((x \in L) \) isomorphically embeds \(L \) into the topological semivector subspace \(K\mathbb{Q}[L] \subseteq K[L] \).
Proof: (ad (1)): \(K[L] \) is Hausdorff as \(L \) is (see 4.9.8, pp. 164 of [1]), and will be locally compact iff \(L \) is locally compact (see 4.9.12, pp. 14 of [1]). This leaves only the continuity of the operations \(\oplus \) and \(\otimes \) of \(K[L] \) to show. The continuity of vector addition \(\oplus: L \times L \to L \) implies the continuity of the map \(\hat{\oplus}: \{L \times L\} \to \{L\} \) defined by \(\hat{\oplus}(P) = (a \oplus b | a, b \in P) \) (see 5.9.1, pp. 169 of [1]). Thus, the restriction of \(\hat{\oplus} \) to the space \(B = \{C \times D | C, D \in K[L]\} \subseteq K[L \times L] \) of compact boxes is also continuous. Furthermore, the Cartesian product \(\pi(C, D) = C \times D \) is continuous on \(K[L] \times K[L] \to B \) (see Theorem 3 of [3]). Now \(\oplus \) is simply the composition \(\oplus = \hat{\oplus} \circ \lambda(L) \times K[L] \to K[L] \), and so is continuous. Similarly, the continuity of scalar multiplication \(R_+ \times L \to L \) implies that of scalar multiplication \(\otimes: R_+ \times K[L] \to K[L] \).

(ad (2)): From (1) it follows that the space \(KQ[L] \subseteq K[L] \) is a topological semivector space. Now the map \(\lambda \) is a homeomorphism (2, pp. 155 of [1]) and is easily checked to be a homomorphism. \(\Diamond \)

2.3 Proposition: \(KQ[L] \) is cancellative (i.e., \(A \oplus B = A \oplus C \implies B = C \)) and \(A \otimes B \subseteq A \otimes C \implies B \subseteq C \)

\((A, B, C \in KQ[L])\).
Proof: From 2.1(2) and above, $KQ[L]$ is a pointwise convex (Hausdorff) topological semivector space with singleton origin, hence, by Theorem 2.11 of [2], cancellative. Let A, B, $C \in KQ[L]$ and $A \otimes B \otimes C$. Supposing $b \in B \setminus C$, we have $A \otimes ((b) \cup C) = A \otimes C$ and cancelling A gives $(b) \cup C = C$, a contradiction. Hence, $B \setminus C = \emptyset$, implying $B \subseteq C$.

2.3 THEOREM: If $X \subseteq L$ is nonempty compact and convex, then $KQ[X] \subseteq KQ[L]$ is (nonempty) compact and convex, or

$$x \in KQ[L] \Rightarrow KQ[x] \in KQ[KQ[L]].$$

Proof: Let $X \subseteq L$ be nonempty compact and convex. The uniform topology which the (uniform space) X determines for $K[X]$ yields $K[X]$ compact Hausdorff, since X is compact Hausdorff (see 3.3, pp. 160, and 4.9.12, pp. 164, of [1]). Furthermore, $K[X]$ inherits the same topology as a subspace of $K[L]$ as it receives "from X (see 5.2.3 and 5.2.3', p. 167 of [1]), so that $K[X] \subseteq K[L]$ is compact Hausdorff.

Now $KQ[X] \subseteq K[X]$ is clearly nonempty and convex, since X is so. This leaves only to show that $KQ[X] \subseteq K[X]$ is closed. To that end, let F be a converging filterbase in $KQ[X]$. Since $K[X]$ is compact Hausdorff, the limit point,
say \(Q \) is unique and \(Q \in K[x] \). We show that \(Q \) is also convex.

For each \(\lambda \in [0, 1] \), denote \(\lambda' = (1-\lambda) \) and define the map \(\Omega_\lambda \) on \(K[x] \) through \(\Omega_\lambda(p) = \lambda p + \lambda' p \) (\(p \in K[x] \)).

By 2.1, \(\Omega_\lambda \) for each \(\lambda \in [0, 1] \) is continuous, so that \(\Omega_\lambda(K[x]) \subset K[x] \); as \(X \) is convex, we actually have \(\Omega_\lambda(K[x]) \subset K[x] \). Furthermore, for each \(\lambda \in [0, 1] \), the restriction of \(\Omega_\lambda \) to \(K\mathbb{C}[x] \) is nothing but the identity map of \(K\mathbb{C}_0[x] \). Also, given a \(p \in K[x] \), if \(\Omega_\lambda(p) \subset p \)
for each \(\lambda \in [0, 1] \), then \(p \in K\mathbb{C}[x] \). Take any \(\lambda \in [0, 1] \).

We show that \(\Omega_\lambda(Q) = Q \). Let \(V \subset K[x] \) be any nbd of \(\Omega_\lambda(Q) \in K[x] \). As \(\Omega_\lambda \) is continuous, there is a nbd \(U \subset K[x] \) of \(Q \in K[x] \) such that \(\Omega_\lambda(U) \subset V \). As \(F \) converges to \(Q \), there is some \(\mathcal{W} \subset F \) with \(W \subset U \). But \(W \subset K\mathbb{C}[x] \), so that \(\mathcal{W} = \Omega_\lambda(W) \subset \Omega_\lambda(U) \subset V \). This shows that \(F \) converges to \(\Omega_\lambda(Q) \); and, the limit point being unique, \(\Omega_\lambda(Q) = Q \). Then, \(Q \in K\mathbb{C}[x] \), showing that \(K\mathbb{C}[x] \) is closed and completing the proof. \(\diamond \)
3. EMBEDDING $K\mathbb{Q}[L]$ IN A TOPOLOGICAL VECTOR SPACE

A subset of the semivector space $[L]$, to be embeddable in a vector space, must clearly be pointwise convex and cancellative. Now the largest pointwise convex set in $[L]$ is $\mathbb{Q}[L]$, but clearly $\mathbb{Q}[L]$ fails to be cancellative and is, therefore, not embeddable in a vector space. On the other hand, we have just extended the operations of L to $K\mathbb{Q}[L]$ (see 2.1), and this is a topological semivector space which is both pointwise convex and cancellative (2.2). In standard fashion (see also 2.9 of [2]) we embed it in

The Real Vector Space L: Denoting $S = K\mathbb{Q}[L] \times K\mathbb{Q}[L]$, equip S with coordinatewise addition $(A, B) \oplus (C, D)$ and define the equivalence relation $G \subseteq S$ through $(A, B) G (C, D) \iff A \oplus D = B \oplus C$, so that G is a semigroup congruence and the quotient $L = S/G$ is a group. Denote the equivalence class of (A, B) by $[A, B]$, and define scalar multiplication $\psi : \mathbb{R} \times L \to L$ by setting $\psi(\lambda, [A, B]) = [\lambda A, \lambda B]$ if $\lambda \geq 0$ and $\psi(\lambda, [A, B]) = [\lambda A, \lambda B]$ if $\lambda \leq 0$. Now L is a real vector space and the map ψ which sends each $A \in K\mathbb{Q}[L]$ to the equivalence class $[2A, A] \in L$ is an algebraic isomorphism embedding $K\mathbb{Q}[L]$ into L. Evidently, L is, up to an isomorphism, the
smallest vector space in which $KQ[L]$ may be algebraically embedded. \textit{N.B.} Clearly, $[A, A] = [B, B]$ for all $A, B \in KQ[L]$, and this equivalence class is the identity element of L.

We now take a fundamental system $U = \{ U_a | a \in A \}$ of symmetric open nbds of the identity e in L, and for L we define

The Topology \mathcal{T}: For each $a \in A$, declare $U_a = \{ [A, B] \in L \mid B \leq A \leq U_a, A \leq B \leq U_a \}$ to be an open nbhd of the identity element $[A, A]$ of L; and, for each $[P, Q] \in L$, declare $[P, Q] \in U_a$ to be an open nbhd of $[P, Q]$. (We check that, if $[A, B] \in U_a$ and $(C, D) \in [A, B]$, then $D \leq C \leq U_a$ and $C \leq D \leq U_a$. As $(C, D) \in [A, B]$, we have $A \leq D = B \leq C$, while $A \leq C \leq D \leq U_a$, so that $B \leq C \leq B \leq D \leq U_a$, from which 2.2 implies $C \leq D \leq U_a$, similarly, $D \leq C \leq U_a$.)

3.1 THEOREM: (1) L equipped with the topology \mathcal{T} is a topological vector space, and (2) g embeds $KQ[L]$ isomorphically in L.

Proof: (ad (1)): To see that the family $W = \{ U_a | a \in A \}$ is a local base for a Hausdorff vector topology on L, we note
that each W_i is symmetric, and check that:

(i) For each pair $a, b \in A$, there is a $r \in A$ such that $W_r \subset W_a \cap W_b$; Choose $r \in A$ such that $U_r \subset U_a \cap U_b$.

(ii) For each $a \in A$, there is a $b \in A$ such that $W_b \subset W_a$; Choose $b \in A$ such that $U_b \subset U_a$.

(iii) For each $a \in A$, there is a $b \in A$ such that $\lambda W_b \subset W_a$ for each scalar $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$; Choose $b \in A$ such that $\lambda U_b \subset U_a$ for each $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$.

(iv) Given any $[A, B] \in L$ and $a \in A$, there is $\lambda \in \mathbb{R}$ such that $[A, B] \subset \lambda W_a$. Taking any $b \in B$, for each $a \in A$ find $\lambda_a \in \mathbb{R}$ such that $a \in \lambda_a U_a \cap \{b\}$. Then, for each $a \in A$, $\lambda_a \in \mathbb{R}$ and, so $\lambda A \subset U_a \cap \{b\}$ is an open cover of A and, since $A \subset L$ is compact, there is a finite subcover $\{\lambda_{a(i)} U_a \cap \{b\} \mid i = 1, \ldots, m\}$. Defining $\lambda_A = \max \{\lambda_{a(i)} \mid i = 1, \ldots, m\}$, now $A \subset \lambda A \subset U_a \cap \{b\}$. Finding λ_A in similar fashion and setting $\lambda = \max \{\lambda_A, \lambda_B\}$ we see that $[A, B] \subset \lambda W_a$.

(v) $\mathbb{W}_A = \{[A, A]\}$ (where $[A, A]$ is the identity element of L); $[A, A] \subset \mathbb{W}_A$, since $[A, A] \subset U_a$ for each $a \in A$.

On the other hand, if $B, C \in \mathbb{W}_L$ are distinct, then there is an $b \in A$ such that $B \neq b \cdot U_B$ or $C \neq b \cdot U_B$, so that $[B, C] \notin \mathbb{W}_B$ and $[B, C] \notin \mathbb{W}_A$.

(ad (2)): Having already seen that g is an algebraic isomorphism, all we need to check here is that g is continuous and open. A basic open nbhd of an element $p \in K_0[L]$ is
of the form \(U_a(P) = \{ Q \in KQ[L] \mid P \subset Q \subset U_a, Q \subset P \subset U_a \} \)
\((a \in A)\). A basic open nbd of \(g(P) = \{2P, P\} \in L \) according to the subspace topology of \(g(KQ[L]) \) determined by \(T \) is of the form \(U'_a(P) = \{2P, P\} \times U_a \cap g(KQ[L]) \) \((a \in A)\).

What we actually show now is the formula \(g(U_a(P)) = U'_a(P) \).

Let \([2Q, Q] \in g(U_a(P))\), so that \(P \subset Q \subset U_a\) and \(Q \subset P \subset U_a\). Let \([A, B] = [2Q, Q] \circ [P, 2P] = [2Q \circ P, Q \circ 2P]\), so that \(A \circ Q \circ 2P = B \circ 2Q \circ P, \text{i.e., } A \circ P = B \circ Q\). As \(A \circ P \subset A \circ Q \circ U_a\), we have \(B \circ Q \subset A \circ Q \circ U_a\), and 2.2 then yields \(B \subset A \circ U_a\). Similarly, \(A \subset B \circ U_a\), so that \([A, B] \in U_a\) and \([2Q, Q] = [2P, P] \circ [A, B] \in U'_a(P), \text{i.e., } g(U_a(P)) \subset U'_a(P)\).

Now let \([2P, P] \circ [2A, A] = [2(P \circ A), P \circ A] \in U'_a(P)\), so that \(2A \subset A \circ U_a\) and \(A \subset 2A \circ U_a\). Then \(P \circ 2A \subset P \circ A \circ U_a\) and \(P \circ A \subset P \circ 2A \circ U_a\), so that 2.2 gives \(P \circ A \subset P \circ U_a\) and \(P \circ A \subset P \circ U_a, \text{i.e., } P \circ A \subset U_a(P)\) and \([2(P \circ A), P \circ A] \in g(U_a(P))\). Thus, \(g(U_a(P)) \subset U'_a(P)\), and we conclude that \(g(U_a(P)) = U'_a(P)\), completing the proof.

3.2 THEOREM: \(L\) with the topology \(T\) is locally convex iff
\(L\) is locally convex.

Proof: "Only if" follows from the conjunction of 2.1(2) and 3.1(2). To see "if," assume \(L\) to be locally convex. W.l.o.g., we may assume that, for each \(a \in A, U_a\) is convex, circled, and radial at \(e\) and that, for each nonzero \(\lambda \in \mathbb{R}, \lambda U_a \subset U\).
Let \(a \in A \). It is straightforward to check that (i) \(\mathcal{U}_a \) is circled and (ii) for each nonzero \(\lambda \in \mathbb{R} \), \(\lambda \mathcal{U}_a \subseteq \mathcal{U}_a \). To check that (iii) \(\mathcal{U}_a \) is convex, let \([A, B], [C, D] \in \mathcal{U}_a\) and \(\lambda = (1-\lambda') \in [0, 1] \). Now \(\lambda [A, B] \oplus \lambda' [C, D] = [\lambda A \oplus \lambda' C, \lambda B \oplus \lambda' D] \); and, since \(\mathcal{U}_a \) is convex, we have \(\lambda U_a \oplus \lambda' U_a = U_a \).

Now \([A, B], [C, D] \in \mathcal{U}_a\) says \(A \subseteq B \oplus U_a \) and \(C \subseteq D \oplus U_a \), so that \(\lambda A \oplus \lambda' C \subseteq \lambda B \oplus \lambda' D \oplus \lambda U_a \oplus \lambda' U_a \). Similarly, \(\lambda B \oplus \lambda' D \subseteq \lambda A \oplus \lambda' C \oplus \lambda U_a \oplus \lambda' U_a \). Thus, \(\lambda A \oplus \lambda' C, \lambda B \oplus \lambda' D \in \mathcal{U}_a \), showing that \(\mathcal{U}_a \) is convex. This in conjunction with (iv) in the proof of 3.1 (1) implies that (iv) \(\mathcal{U}_a \) is radial at the identity element \([A, A] \) of \(L \). Thus, \(\mathcal{U} \) is a local base for a (unique) locally convex topology in \(L \).

3.3 THEOREM

(Rådström [4]): (1) \(L \) with the topology \(T \) is normable iff \(L \) is normable, and (2) if \(L \) is normed, \(L \) admits a norm for which \(\phi \) and \(\varphi \) are isometries.

Proof: (ad (1)): "Only if" is obvious from the conjunction of 3.1(2) and 3.1(2). To see "if," assume that \(L \) is normed by a norm \(\phi \), so that \(V = \{x \in L | \phi(x) < 1\} = U_a \) for some \(a \in A \). Thus, \(\mathcal{U}_0 = \{(A, B) \in L | A \subseteq B \oplus V, B \subseteq A \oplus V\} \in \mathcal{U} \).

Since \(V \) is radial at the origin, circled, convex and bounded, one easily checks (see also the proof of 3.1(1)) that \(\mathcal{U}_a \) has these properties too, so that (the Hausdorff space) \(L \) is normable, proving (1).
(ad (2)): In fact, the Minkowski functional p^* of W is a norm for L and, computing that $p^*[2p, p]$ $= \sup_p p(p)$ for each $p \in K(L)$, one easily sees g and g to be isometries. ∅
REFERENCES

Acknowledgement: the authors thank the International Institute of Management for inviting P.P. to West Berlin, which made it possible for them to reconvene and write this paper.