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ABSTRACT

We envisage a continuum of spatially interdependent agents, evenly distributed
over a linear, homogeneous space. We let the density of agents gradually increase at a
slightly uneven rate, slow enough to permit the restoration of a locally stable, perfectly
dispersed equilibrium. At the same time, we also let the degree of spatial inter-
dependence increase. Increasing spatial interdependence, in the context of our analysis,
could imply an increased frequency of trips over a longer range. Then the dispersed
equilibrium may eventually exhibit local instability. If there is a single type of agent,
the spatial characteristics of the emerging agglomerated state cannot be predicted
within our framework. If though there are two types of agent, the departure from the
dispersed equilibrium may take the form of initial growth on a regularly spaced pattern
of locations: specialisation here appears to be necessary for the emergence of a regular
settlement pattern. The timing of emergence depends both on the preferences and on
the characteristics of spatial interaction among agents. The spacing of settlements, on
the other hand, depends on the characteristics of spatial interaction alone.

Journal of Economic Literature classification numbers: 020 930 940



1. INTRODUCTION

In this paper we study the emergence of central places over a linear, unbounded
landscape occupied by a continuum of agents. Typically, a central place is understood
as the focus of trade and service activity. Here it becomes a line segment where the
density of agents is relatively high. Thus a system of central places resembles a
multimodal density function over the real line. Our objective is to characterise the
"succession of form", as Thom (1972) has named it, from a spatially uniform to a
multimodal distribution of agents — especially how the timing of the succession and
the emerging spatial pattern of central places are affected by the behavioural character-
istics of agents. In essence, we seek to understand how cities are born. This has never
been at issue in the classic tradition of central place theory as it evolved after Christal-
ler (1933) and Losch (1944).l There, central places simply exist, and the problem is to
account for their perfectly even arrangement on a Euclidean plane, over which the
exogenous spatial distribution of demand is itself perfectly even. In the case of a single
good, where a firm and a central place can be synonymous, traditional wisdom dictates
that free entry would absorb all profit and lead to the densest possible packing of
central places at equilibrium. This, in turn, implies that central places will be located
on a triangular lattice, giving rise to hexagonal market areas (Bollobds and Stern
(1972)). In the case of many goods, on the same lattice, a hierarchy of central places
arises with higher—order central places providing a larger variety of goods; and the
size distribution of central places at equilibrium can be obtained using a system of
multipliers, which relate the demand at different levels of the hierarchy (Beckmann
(1958)). The richness and the complexity of a hierarchical system thus derived hinges,
as we have already claimed, on the very existence of central places — those substantial
entities somehow ready to be used by the theorist. In this respect, classical central
place theory is exogenous. We, on the other hand, strive for an endogenous central
place theory, one in which central places will appear as the spatial economy gradually
evolves. Our aim imposes severe constraints on the scope of the central place system
we can handle. Not only is our space linear, but the hierarchy of central places is
reduced to a single level, and we can trace the emergence of central places inasmuch as
we can point out to the reader a regular pattern of candidate locations on which Thom's
"succession of form" can only happen. Nevertheless, we believe that our simple model
still provides considerable intuition about the processes underlying the birth of cities.
Starrett (1978) has proven that, in a closed economy without relocation cost,
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markets exist for all goods at all locations, there is no competitive equilibrium with a
positive aggregate transportation cost. In such an economy, identical agents would be
arranged evenly over the land at equilibrium: Starrett's result specifies sufficient
conditions under which an endogenous central place theory is impossible. Thus, for a
closed economy without relocation cost, an endogenous central place theory would
necessitate either utilities and/or technologies dependent on location, or incomplete
markets, or both. Under complete markets, the dependence of utilities and/or techno-
logies on location happens either because there are exogenous locational advantages
(such as an unequal distribution of natural resources), or because there are population
effects (such as congestion) which are determined by the spatial distribution of agents
relative to the location considered, or both. Under incomplete markets, on the other
hand, agents must be sensitive to the presence of others because of their need to
interact. Therefore, in a closed economy with neither relocation cost nor exogenous
locational advantages, spatial interdependence among agents is necessary for the
existence of agglomerations in equilibrium.

Spatial interdependence gives rise to the concept of locational centrality. To
fix ideas, consider an example drawn from Papageorgiou and Thisse (1985). There is a
continuous distribution of identical agents over a line segment. Since spatial inter-
action in this economy is a good, central locations have a comparative advantage
because they offer a higher potential to interact for a given level of transportation
expenditure. Competition for land over the line segment would eliminate this ad-
vantage through central agglomeration, which ascertains that locations in equilibrium
are characterised by a tradeoff between abundance of land and accessibility. This
centripetal tendency would vanish in the absence of spatial interdependence. Now
bend the line segment into a circle. Since boundaries disappear, the space loses its
differentiated structure and locations become indistiguishable to each other in terms of
their potential to interact. Competition for land would now disperse agents evenly over
the line segment. We conclude that spatial interdependence, in this example, appears
to produce agglomeration only when the space is bounded — hence inhomogeneous.
An homogeneous space would seem to produce dispersion even under spatial inter-
dependence. Conversely, spatial autarchy would produce dispersion even when our
space is inhomogeneous.

Locational centrality and spatial interdependence dominate the modern
treatments of agglomeration dealing with a continuum of agents (see, for example,
Solow and Vickrey (1971), Amson (1972, 1973), Yellin (1974), Beckmann (1976),
Odland (1976), Smith (1976), Boruchov and Hochman (1977), Fujita and Ogawa



(1982), Imai (1982), ten Raa (1984), Papageorgiou and Thisse (1985), and Tabushi
(1986)). Similarly to the example of the previous paragraph, centrality in all those
works arises from the bounded nature of space itself, so that spatial interdependence
and a bounded space become sufficient for agglomeration. This contrasts with central
place theory, where centrality arises in conjunction with a settlement pattern over the
boundless, perfectly homogeneous landscape: whereas centrality determines agglome-
ration in the former case, agglomeration defines centrality in the latter. Hence central
place theory requires that spatial boundaries are not necessary for agglomeration. In
the context of the example, spatial interdependence alone (of agents distributed over an
unbounded space) should be both necessary (Starrett (1978)) and sufficient for an
agglomerated equilibrium. Since our arguments for a dispersed equilibrium over an
homogeneous space still hold, central place theory requires the existence of agglome-
rated equilibria further to the dispersed equilibrium obtained in the example of the
previous paragraph.

Of particular interest to us is the transition from the dispersed to an agglomera-
ted equilibrium, as it signals the emergence of a settlement pattern. A natural way of
thinking about this transition is through when and how does a stable, dispersed equi-
librium become locally unstable. Whenever this occurs, perturbations around the
dispersed equilibrium must lead to spatial differentiation. This approach has been
adopted by Papageorgiou and Smith (1983) [PS]. Spatial interdependence in PS was
represented as an externality which entered the utility function of agents and was
determined over entire spatial population distributions. The externality was designed to
cover a wide range of agglomerative and deglomerative factors. Local congestion, on
the other hand, provided a tendency of agents to disperse. It was established that the
critical moment of instability occurs when the marginal effect of increased local
congestion on the utility of agents, which has been caused by an increased population
density of the dispersed equilibrium, is exactly balanced by the corresponding positive
externality effect. Thus the moment of critical instability was associated with a simple,
intuitively satisfying notion of balance between agglomerative and deglomerative
factors: as long as the latter dominate, the dispersed equilibrium must persist. Agglo-
merations will begin only when the positive externality effect becomes strong enough,
i.e. only when the marginal utility of closedness (presumably generated by agent
specialisation) overcomes the marginal disutility of local congestion.

In the light of our previous discussion, PS appears to provide a minimalist
approach toward an endogenous central place theory. Namely, spatial interdependence

alone among identical agents over a perfectly homogeneous landscape produces a local



instability of the dispersed equilibrium. However, once the dispersed equilibrium has
become locally unstable, what are the characteristics of the emerging settlement
pattern? The method used in PS did not allow for an answer to this fundamental
question. Here we propose a different method designed to resolve it. Unlike PS, who
used a discrete physical space, we require a spatial continuum in order to determine the
equilibrium distance between settlements. More precisely, beyond the conditions for
the critical instability of the dispersed equilibrium, we are able to characterise a regular
spacing of points which, at the critical instability, become the only candidates for
agglomeration. Section two reexamines PS in the context of our method. We obtain
the same necessary and sufficient condition for local instability. However, at the
critical instability, the spacing of points on which the uniform population distribution
first becomes unstable is degenerate. This seems to persist over reasonable specifica-
tions of spatial interdependence, and it points out that capturing agent specialisation in
terms of spatial interdependence alone may not be sufficient to characterise a regular
settlement pattern. Consequently, in section three, we introduce a second type of agent.
We are now able to obtain the regular spacing of first instabilities sought, and to
establish the determinants of that spacing. Section four places our results, and associa-

ted limitations, into perspective.

2. ONE TYPE OF AGENT

2.1 THE MODEL

We restate PS in continuous terms. Our landscape is the real line % =]—, oo[.2 A
continuum of agents is distributed over that space. These, for example, could represent
individuals who interact with others in order to trade. For x and x’ € %, any agent at x
receives an externality from those at x” equal to g [x, x']n [x’, ], where g [x ,x’] is a
distance-response function which subsumes the spatial diffusion process of the external-
ity (hence the particulars of spatial interdependence), and » [x’, 7] is the density of
agents in location x’ at time ¢. The distance—response function is assumed to depend

only on the distance between x and x’, and to be spatially invariant, i.e.

(D glx,x]=¢g[x',x] and J' glx,x]Jdx’ =G forxand X’ € %.
Z

(For further details see PS.) Agents at x are sensitive to current local densities in the



sense that, ceteris paribus, they prefer more land, and to the spatial externality E [x , t],
which is defined as

@  Elx,i= Jﬁg [, x']n [x', dx,

a composite of externalities, and which is a manifestation of global interdependence
among agents. Hence the utility of someone located on x at time ¢ is given by
v[nlx,f),E [x, f]] with dv/on < O.3

Agents adjust toward highest perceived utility. Since information is imperfect,
actual and perceived distributions of utility may differ. Thus, from the viewpoint of an
observer, location decisions can be determined only up to a probability distribution
with density

n[x , lvinlx ,f] ,E[x ,f]]

(3) plx,t= )
] g nlx", dvinlx’, 1], E[x", f]]dx”

That is, the chance of finding someone at a particular location will, ceteris paribus,
increase as the population density and/or the utility at this location increases. Since
utilities depend on the spatial distribution of agents only, so do migration decisions. In
consequence, the evolution of this system at any moment depends exclusively on its
current state {n [x, ¢]|x € Z}: the Markov assumption holds. Moreover, the total size
of the population remains fixed, that is

fu%,n[x,t]dx
@) 2 =0 withO<n<w.
ng

Under these circumstances, we may represent the evolution of this system by

0
(5 nix,t = px,tln [x', f]ldx’ — plx,tn[x,fldX =
Jt J&? Ju%’

vin[x,t] ,E[x, t]]
J n[x’, tjdx’
Z f

e,
n[x",t]v[nlx",¢] , E[x", t]]dx"”

Z



2.2 STABILITY ANALYSIS

The dispersed population distribution n [x , £f] = n® for x € % is an equilibrium solution
of (5). At equilibrium, everyone enjoys the same utility level v0 = v [n9, E0] > 0 with
E% = n% G. We now perturb the dispersed equilibrium over space, holding total popula-
tion constant, and perform a linear stability analysis. The corresponding solutions of
(5) in the neighbourhood of the equilibrium are given by

Min 2,

(6) nix,f1=n+e¢e
where A is a parameter which determines the local stability of the equilibrium: if A <
0, the equilibrium is asymptotically stable; and if A > 0, it is unstable.

From now on, for simplicity, we shall avoid the time—notation. Replace (6) in
(5) to obtain

(7) AeMdn [x] =

p[nO+eMdn [x],EO+dE[x]]
_1]-

[ o
% Iy (O dnlx 1) vind+eMdnx "], EO+dEOx ) dx”
(0 + XeMdn [x),

where

®  dEO[x] = J A ©1eMdn [¥1dx’ .

Expand v [-] about (n% E? ) and retain only linear terms:

At

dn [x] , EO + dEO [x]] = v0 + 9

9) vn+e 30

Mdn [ + %) dEO [x].

. . 6
Using (9), the denominator on the RHS of (7) equals n%? | %dx. Upon replacement

of this in (7), and using (9) once again, we arrive at the linearised equation

10)  AeMdn [x] = {1 + 1 [g%o eMan [x] + 9, dE0 [x]] _ 1} (0 + AeMdn [x]) =

0
o [g%o Mdn [x] + S%o dE® [x]]



By the definition (8) of dE? [x], (10) can be written as

0 0
(11) {x — 20 g%o} dn [x] = 3o g%o L%g [x , x']dn [x'1dx’,

which, upon taking Fourier transforms and using the convolution property of it,
simplifies into the dispersion equation

0
(12) =20 [+ Jpo Bele e x1),

where § [g [x , x"]] denotes the Fourier transform of g [x, x'].
A standard form of distance—response in the literature of spatial interaction is
given by

(13)  glx,x']=exp(—a|x—x']) forxandx' €%

(see Smith (1978) for a justification). How fast interaction declines with distance is
determined by the spatial impedance parameter a > (0. Its inverse represents the
average distance at which spatial interaction occurs: larger values of a imply that
distance is a stronger impediment to interaction. Under (13), §,[g [-]] = 2a/(a? + s?),
where s is the variable of the Fourier transform. This variable is important for our
purposes because it determines the spacing of points d* in & at which the dispersed
equilibrium will first become locally unstable exactly when A changes from a negative
to a positive value:

(14)  d =2ws|,_o=2m/s .

Such points are the only candidates for initial agglomeration. Replacing §s[g [-]] in
(12), and taking into account that E9 = 21n%a, we obtain

0 2

The dispersed equilibrium is locally stable iff A < O for s > 0. Therefore,



(16) %;m+g%og%<o

is both necessary and sufficient for the local stability of the dispersed equilibrium. This
is precisely the condition derived in PS. The first term in (16) denotes the marginal
cost of increased congestion on the utility of agents caused by an increased, uniform
level of population density; and the second term denotes the corresponding marginal
effect of the spatial externality. The latter may be either a cost or a benefit, depending
upon whether the spatial externality is negative or positive. In the former case, the
dispersed equilibrium is locally stable. The presumption is that interaction in primitive
societies is valued less. As technology evolves, the advantages of interaction become
gradually stronger through an increased specialisation of economic activity, at least
during the period over which the formation of the first settlement patterns has occured.
Therefore, holding the marginal cost of increased congestion fixed, one would expect
that the LHS of (16) gradually increases to reach zero. Precisely then, the first instabi-
lities occur following a regular pattern determined by s* such that the RHS of (15)
equals zero. This happens at s =0 with dv/0E® > 0. However, since the spacing of
first instabilities is given by (14), we conclude that the adjustment process (5) cannot
give rise to a nontrivial spatial structure emerging in the vicinity of the dispersed
equilibrium. We have found that similar types of degeneracy apply for other specifi-
cations of distance—response. We conclude that spatial interdependence alone, which
echoes specialisation of economic activity and which was the key to the minimalist
approach of PS, is not enough to produce a nondegenerate endogenous central place
theory. We are thus led to abandon a single type of agent, and to theorise that intro-
ducing specialisation of agents explicitly in our model may be necessary for the

emergence of settlement patterns over an homogeneous landscape.

3. TWO TYPES OF AGENT

3.1 THE MODEL

There are two types of agent continuously distributed over % with densities n;[x, f],
i=1,2. These, for example, could represent firms and households respectively, as in
Papageorgiou and Thisse (1985) or Fujita (1988). Spatial interaction within and
between the two groups gives rise to the distance—response functions g;; [x , x'], which

determine how does the impact of j-agents at x’ on i-agents at x vary with distance



between x and x’. As before, we assume that the distance—response functions depend
only on the distance between x and x’, and that they are spatially invariant, that is,

(17) gijlx,x'] =g ¥, x] and J gijlx, x']dx" = Gy fori andj=1,2.
Z

The corresponding spatial externalities (see (2)) are now given by

(18)  Ejlx,1] =J gii X, x'In; [, dx’ for iandj=1,2.
F

For analytical simplicity, we assume that agents are sensitive only to spatial externality
effects. Hence utilities are written vi[E[x, ], Ejj[x,#]] for i and j=1, 2, and
— . . . .

i #j. As before, the total size of each population remains fixed, that is

'[.,%' n [x,tfldx

(19) —n) fori=1,2,

[ gax

and the evolution of the system is determined (similarly to (5)) by the system of
equations

Q0)  Gnibx, 1=
[ vilEsi [x 1] , By [x,]]
| mite, e ~1|n; x4
% | g mi alvy (Eglxa] L Eqjle’, 1dy

foriandj=1,2,andi#].

3.2 STABILITY ANALYSIS

3.2.1  GENERAL FORMULATION

The dispersed population distributions n;[x , t] = nOi fori=1,2 and x € % represent
an equilibrium solution of the system (20) associated with utility levels vOi, i=1,2.
As in the case of a single type, we perform a linearised stability analysis. The solutions
of (20) in the neighbourhood of the equilibrium are

A

0
Q1) nix,fd=n; +eMdn; Xl fori=1,2.



If we follow the procedure of section 2.2, we arrive at the system

22) (A —Qu) Fsldm [X']] = 1z §s [dnz [X]]

23) (A= Q2) S5 [dny [X'D) = Q1 Fs [dny [x']D)

where

QJ

v,
foriandj=1,2.

E

0
ni
24)  Qy=CySslgijlx, X NI with Cij=—
v OE

Multiplying (22) by (23) gives the dispersion equation

(25) A —=0n)A—02)=010n

which has roots denoted by ki[s] A time—independent spatial structure, characterised
by a regular spacing between agglomeratlons d = 27t/s’k will emerge iff these roots are
always real and negative except at s ,0< s*< «, where either At [s ]=0 and l_[s*] <
0 or K+[s*] = l_[s*] = O.8 These requirements are equivalent to (a) AteaT<o0 for all
52 0; (b) AN =0ars = s*; and (c) ATAT>0ars# s*.9 Given (25), these conditions
imply the following

PrOPOSITION: A time-independent spatial structure, characterised by a regular
k *
spacing between agglomerations d =2n/s , will emerge iff there exists a
k *
unique s ,0<s <, such that

P(1): Q11 +02»<0 foralls>0
P(2): Q012 00 =0y On fors=s
P@3): Q012021<0Q11 0y fors=20ands # s*.

322 NEGATIVE EXPONENTIAL DISTANCE—RESPONSE

Our subsequent analysis will be based on the standard specification

10



(26)  gijlx,x']=exp(—ajj [x—x'|) foriandj=1,2

where, as in section 1.2, a;;>0 represent impedance parameters. Under (26),
2 0
Sslgij[-11 =2ai/(aij+s )foriandj=1,2;and Ey; =2n;/a;;. In consequence,
2
a ij
@7) Qy =Cij—7—=2-

aj +s

When a;; = ay» and app = ay, it can be shown that A = 0 is a solution of the dispersion
equation (25) for all s € [0, «[. Therefore, when the two types of agent have the
same interaction behaviour, no spatial structure can emerge. From now on, we shall
assume that ay; # ayp and ap # ap; -

We begin the study of conditions P(1) —P(3). Substituting (27) into P(1)
yields

2 2 2 2 2
(28) (@nChntapCypl)+apan (Cy+Cy)<0 foralls=0.

2 2
In (28), s = 0 implies Cy1 + Cy £0; and s - « implies a3 Cq; + @z C22 < 0. It can be
shown easily that those facts imply, in turn,

COROLLARY 1: Under the specification (26), P(1) is satisfied iff
C1(1): Cnn+Cxn<0
2 2
C1(2): aj; Cy +ap Cp<0.
Substituting now (27) into P(2) and P(3) yields

2 2 2 2 2 2 2
29)  ACWH+5 Yam+5 )<(@a+s Nay+s ) foralls>0

with
2 2
Q12471 C12Cx
(30) A= 7 and C= ,
anan C11Cqxp

where Cy;, i and j=1, 2, are defined by (24). Equality in (29) occurs iff 5= s*.

11



Upon rearrangement, this equation becomes

2 4 2 2 2 2 2
Bl fls1=MD—-Ds +DOP—o)s +Dayy ayp —ap an<0

with

2 2 2 2
(32) D=AC,a=app+ay andB=ay; +axy.

* 2
A unique solution to f[-] =0 (corresponding to s =5 ) implies (Df —a) —

2 *
4(D — 1)(Dayy ay, — ayp az ) = 0. Moreover, in (31), s 2 0and 0 <s < imply D < 4;
and s - « implies D — 1 < 0. Finally, when (31) admits a unique solution, it is given by

33) 5 = [;§1§§@;.

%
Using D —1 <0, the condition 0 <s <« requires DB —a >0 and, therefore, 0 <
o/p < 1. In summary,

COROLLARY 2: Under the specification (26), P(2) and P(3) are satisfied iff

2 2 2 2 2
C2(1): h[D1=DB—-0) —4(D — 1)Dayyaxn —apaz) =0

has a real solution D>l< such that
C202): O<o/p<D <1

% £ *
When AC=D e ]a/B,1[,f[s2]<Ofors#s and f[s?] =0 for s =5 ; and

£
when AC <D , f[s2] <O for all s >0. Therefore, using C as a bifurcation parameter,
we can claim

COROLLARY 3: If the conditions of corollary 1 and 2 are satisfied, the dis-
persed equilibrium will be locally stable iff C<D*/A EC*; and a time-
indepndent spatial structure, characterised by a regular spacing between
agglomerations d*= 27t/s*, will emerge at

C3: C=C.

12



323  AGGLOMERATED SPATIAL STRUCTURE
The conditions under which C2(2) is satisfied are summarised by the following two

lemmata:
. . + . * .
LEMMA 1: A[D] = 0 admits two real solutions D~ with 0 < D™ < 1 iff
L1: min{ay; , ay } <min{ay , ay } <max{ay, dy )} <max{a, ax }.

LEMMA 2: If L1 is satisfied then (a) D < o/B; and (b) Dt > o/B iff

2 2 2 2
ay2taz ) a12az1

L2: -7 < min {1 y T [ -
ay1tas; aan

Thus L1 and L2 are necessary for the emergence of an agglomerated, time—
independent spatial structure. The corresponding characteristics of this structure can be

determined through

LEMMA 3: If A[D] = O admits a real solution D" ¢ Jo/B , 1,

2 2. 2 2
* 2 (@12—-ax)(a1—a)
L3: s = 6~a22+l 0(a)1—axn+0) with 0= ———

vy
an+axn~apntasy)

.. .12 .
The proof of all three lemmata is in the appendix.  Using these, we can now state our

results in final form. Let dj; = 1/ajj, i and j = 1, 2, representing the average distance

j >
over which the corresponding spatial interaction occurs. This notation will allow us to
express our conditions in a more intuitive way.

THEOREM: Let gij[x , x'] = exp(—ajj |[x —x'|) foriandj=1,2,and x ,x' 2 0.

(a) A time-independent spatial structure will emerge iff the average distances

of spatial interaction satisfy
T(1):  min{dy;, dp } <min{dyp, dy; } <max{dy, dy; } <max{dy, da }

2 2 2 2 2 2 2 2
T(2): if dij dyp < dyp dyy then dyy + dyy < dyy + dyy must hold

13



2 2 2 2 r - 1 1
T(3): if di1 dyp > dyp dyy then — t+ < —+ —— must hold
dip dy1 din dao

and the marginal utilities satisfy

0 0
niodvy hnpdvy

T@4): —5—g+-5—g <0
Vi aEu V28E22

0 0
1 ny 8v1 1 nyp aV2

TG — v+t v <0
di11v190Ey dyy vy 0Ey

(b) The spatial structure will emerge at

2 2
dvy dvy dvy dvy dpdy s«
0E1p 0Ey; 0E11 0Ey | diidy
where D is the larger solution to
1 1 1 1 2 D 1
Dyt | =7t || 4D 7| =0
diy dxn dia dy dndy  didy

(c) The distance between potential agglomerations will be given by

1 11
T(7): d =2+ e—T+Je{T——2—+9} with
da dinn dxn

[ 1 1 }{ 1 1 1 1 1 1
O ||| 7= |*|| =zt |- |+t ||
diy dyy | ldar dy diy dpy dip dy

The deductive structure which led to the statement of the theorem appears in figure

one, where double arrows denote equivalence and single arrows denote sufficiency.

3.24  INTERPRETATION
As we have argued in section 3.2.2, when the two types of agent are characterised by

14



FIGURE 1: Logical structure of the argument.
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the same average distance of interaction (dy; = dypp and dy; = dy; ), no spatial structure
can emerge. Let d; > dy; . Condition T(1) implies that, for agents of type one, the
average distance of interaction with agents of the same type is longer than that cor-
responding to agents of the other type. The converse holds for agents of type two.
Such an asymmetry makes both types of agent less sensitive to the proximity of type
one than type two. It also ensures a relatively strong spatial interdependence between
the two types through the implication that both average distances for cross—type
interaction must be longer than one of the two average distances for own—type inter-
action. Finally, condition T(1) is compatible with either one of the alternative con-
ditions T(2) and T(3) for a wide variety of situations which can be interpreted in a
straightforward manner.13

If every agent experiences a positive externality effect from agents of the same
type, the system is unstable. If, on the other hand, every agent dislikes the presence of
his own kind, conditions T(4) and T(5) of the theorem are satisfied with strict inequal-
ity. However, it is not necessary that both types be subject to negative own—type
externality effects if a spatial structure is to emerge. Conditions T(4) and T(5) can still
be satisfied when the positive own—type externality effect of one type is balanced by a
negative own—type externality effect of the other type which is strong enough. The
positivity requirement in T(6) imposes further constraints upon the various patterns of
spatial interdependence which are consistent with the transition from a dispersed to an
agglomerated equilibrium. Namely, that if the own—type externality effects have the
same sign, so must the cross—type externality effects; and if the own—type externality
effects have opposing signs, so must the cross—type externality effects.

As long as C < C*, the dispersed equilibrium is locally stable. We may now
imagine that the cross—type externality effects become gradually stronger relative to the
own-—type externality effects. This, for example, could be accounted for through an
increasing degree of specialisation with development, which would imply an increasing
frequency of trips toward agents of the other type and which would affect the cor-
responding marginal utilities. Under these circumstances, C will gradually increase.
At the same time, the average distances of interaction must also increase because
development facilitates spatial interaction. In consequence, C>k could be affected either
way. If however the average distances for own—type interaction increase enough
relative to the corresponding distances for cross—type interaction, C may approach C*;
and the moment the two become equal, a regular pattern of locations on which first
instabilities occur is created. In our context, this marks the potential emergence of a

settlement pattern, and it is characterised by a delicate balance between agglomerative
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and deglomerative factors. Emergence itself occurs only when the former just become
more important than the latter. For example, consider the case in which all agents are
subject to negative own—type and positive cross—type externality effects. In this case,
where conditions T(4) — T(6) are satisfied, the two types of agent may represent
households (type one) and firms (type two). "Households are attracted to places where
the density of firms is high because opportunities there are more numerous; and they
are repulsed by places where the density of households is high because they dislike
congestion. Firms are attracted to places where the density of consumers is high
because there the expected volume of business is large; and they are repulsed by
places where the density of sellers is high because of the stronger competition prevail-
ing there." " For C = C*, congestion effects within each type just balance the need to
interact with the other type. If dy; >dyp > dy; > dyy, a regular pattern of central
places is possible, where household agglomerations coincide with smaller firm agglo-
merations — smaller because firms in this example are more sensitive than households
to negative own—type externality effects.

Condition T(7) of the theorem implies that the spacing of settlements depends
only upon the average distances of interaction. Neither the population densities and the
utility levels of the dispersed equilibrium, nor the preferences of agents for interaction,
appear to affect spacing. The way average distances affect spacing is determined
directly through condition T(7) as

% ok
od od . . -
34 0 0 dj=1,2, .
(34) aaij> and 3311< foriand j andi #j

Consider once more the case in which all agents are subject to negative own—type and
positive cross—type externality effects. As dj; increases with development, the need to
interact with agents of the other type is satisfied with larger, more widely spaced
agglomerations at equilibrium. This conforms with our intuition about the rdle of
better transportation networks on the evolution of a settlement pattern. As dj
increases, on the other hand, the contrary should happen: smaller, less widely spaced
agglomerations would arise in response to the aversion toward agents of the same type.
More generally, T(7) suggests that the connection between technological development
and spatial structure is quite complex, and this might be a reason why related theoretic-
al issues (such as the impact of telecommunications on the equilibrium settlement

pattern) have become so controversial.
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4. CONCLUDING REMARKS

Until recently, say around 3,500 BC, human populations were evenly dispersed over
homogeneous land. Shortly before that time, societal evolution was well under way,
gradually fostering more specialisation of economic agents (Parsons (1977)). Special-
isation, in turn, implied a fundamental need to interact — hence spatial inter-
dependence among agents. It seems that around 3,500 BC spatial interdependence
reached a critical level and the first cities were born: the spatially uniform population
pattern was replaced by a spatially differentiated one. Over the next two millenia
settlement patterns became established. Any one of these reflected well local geo-
graphy: dense in the fertile crescents, sparse over rugged terrain, attracted by great
waterways and other advantageous features of the landscape, settlements appeared
almost randomly distributed. If however any such systematic distortions were removed,
a regular pattern of central places would have emerged over the boundless plain. This
ideal regular pattern is the object of our concern.

Our arguments support the emergence of a regular settlement pattern only in
the neighbourhood of the dispersed equilibrium. Beyond, we need to employ an
assumption that ascertains continuing accumulation on the regular grid of initial
growth. This is a direct consequence of retaining only linear terms in the Taylor
expansions of our model. Although second—order terms could provide us with further
information about the character of settlement growth, technical difficulties involved
discouraged their retention.

We have provided the rudiments of a naive, but trully endogenous central
place theory. Nevertheless, the crucial step of translating all this onto the homo-
geneous plain, thus testing the fundamental conjecture of Christaller (1933), Losch
(1944) and other classical location theorists about hexagonal market areas, is yet to be
taken. There are some indications that this conjecture may be sound: hexagons arise
as an equilibrium solution of an adjustment process in various instances. For example,
the Fokker—Planck equation can generate this type of spatial structure (Haken (1978,
chapter 8)). However, spatial interdependence in the Fokker—Planck equation is
limited to purely local interactions; and it seems difficult to extend these results into
the kind of spatial interdependence encountered over a system of human settlements.

For a class of models which contains our own, ten Raa (1984) has demonstra-
ted that an equilibrium over a compact region exhibits lower density further away from
the centre, thus forming a single agglomeration. As the region becomes larger, the

equilibrium distribution becomes flatter until at the limit, an instance of which is
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represented by our model, the dispersed equilibrium obtains. We are therefore led to
believe that our local instability conditions could be extended to this more general
framework of compact regions. There, we expect that the settlement pattern will be
more closely packed over more densely populated, central regions. In consequence, the
spatial structure of a settlement pattern over a compact region would emerge as the
superposition of two agglomerative trends, one reflecting the regional centrality of
locations, and another reflecting the spatial behaviour of agents. It may also well be
that nonlinear terms in the Taylor series expansion would reveal differential growth
favouring centrally located settlements. All this bears remarkable similarity to Isard's
(1956, p. 272) classic diagram, about a central place system warped by agglomeration.
Clearly though, between here and there, there is much to do indeed.

FOOTNOTES

For a review of central place theory, see Mulligan (1984).

2 Geographical homogeneity in PS was achieved by placing the economy on a
circle, thereby eliminating the impact of boundaries. We, on the other hand,
eliminate boundaries by placing the economy on a line of infinite length.
Equivalently, we could have employed a finite system with periodic bound-
aries.

3

Utility here should be understood to represent the reduced form of some
constrained optimisation problem. For example, it could be the indirect utility
function of an individual. In the context of urban economics, let the indirect
utility of an individual in location x at time ¢ be given by

VIR[x,1],Y—C [x,!]] =max {U[z,q]
Z,q

z+R[x,t]q=Y—C[x,t]},

where U is the direct utility, z is the amount of a numéraire good consumed, g
is the amount of land consumed (the inverse of population density), R is the
rent on land, C is the cost of transportation and Y is income. Let C [x, 1] =
¢ [E [x, r]], i.e. transportation costs for someone in location x at time ¢ depend
upon how the population is currently distributed relative to that location (see
Papageorgiou and Thisse (1985), and Fugita (1988) for related justifications).
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If the rent is determined by local demand only, R[x,t]=r[n[x,?]] =
|
rlg [x,t]], then

V[R [x,[],Y—C[x,t]]=V[n [xal] ’E[xat]]’
which is the formulation in PS.

The adjustment process for the deterministic counterpart of a continuous—time
and space Markovian model is given by

Gbei=| anBnle i - [ gl lx, ddr,
53 53

where gy, '[t] is the migration rate from x’ to x at time ¢. (For a derivation in
the case of a continuous—time Markovian process see de Palma and Lefevre
(1983).) Migration rates, in turn, are defined as g, [£]=0px [t , At]/0AL| At=0
where py,'[t, At] is the probability density that an agent at x” will migrate to x
during the time—interval [z, + Af[. Let the decision to migrate be a two—
stage process, namely, py,'[t, At] = py i< [Flpy” [t , Ar], where p,” .[t, Af] is
the probability density that someone in x” will reassess the advantages of his
location during [z, ¢ + At[, and py|,'[#] is the conditional probability density
that he will then migrate to x. In consequence, qy,'[f] =px|x []"
-op,” -[t, At]/oAr|Ar=0; and if the rate at which locations are reassessed is a
constant then gy, '[7] = px|x [t] — provided the unit of time has been chosen
in an appropriate manner. Finally, if migrations are costless, we can write
Dx|x [f] =p [x, t] and (5) follows.

Let O<vpm<vinlx,t], E[xt] £vgax <, where vy, and v,,, are con-
stants. Then

/ n[x’, t]ldx’
1. Z < 1

Ymax [ onlx, vinlx, 1,Elx, e Vo

which implies that (5) is well-behaved.

Disregarding second—order terms, we have
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J (n® + eMan D0 + Iy eMdn 7] + Jrg dE [x'Ddx” =
%

dv At v
nOVOJ dx"+n0 5 e J dn [x"1dx” + nO OJ dEO [x"]dx” +
% In’ Z oE" ]

v()e}\.t J dn [.x”]dx” =
? d A

nOVO 4{ dxn + nO v J' J' g [xn, x;]e tdn [x;]dx;dxn —
F FE ) 5 5

v

n%0 J dx” + n0 SEO Geh J dn [x’]dx’ = n%0 J dx”,
Z

51 51

since | s dn [x]dx = O because of fixed total population size.

This is a more general formulation than the one proposed in footnote three.
There, the rent was determined by local demand only which, here, could be
expressed as R;[x,t] =r;[n;[x, 1], njlx, ] for i and j=1,2, and i #}.
Under this assumption, v;[-] would depend on both local populations and
spatial externalities. If, however, the rent is determined by global demand,
Rilx,f = ri[Ejlx, 1], Ej[x ¢]], utility can be written as a function of
spatial externalities only.

We exclude the case of complex roots because the corresponding solution (21)
would exhibit oscillations in time — a possibility which is meaningless in the
context of our study.

At s*, using condition (b), the constant term of the dispersion equation is zero
because one of the roots is zero. Therefore condition (b) also implies that the
roots must be real at s = s*.

The dispersion equation (25) becomes

a b c
A—a—g|A 72| =722
ats agts (012+S )

with a , b, ¢ constants. Taking into account that, at s , A =0 and 0A/ds =0

for the implicit function A[s] defined by the dispersion equation, we can write
this equation as
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14

5 (a+b)h
A ——a—7 =0
ap1+s

which establishes our claim.
* *
SinceA>0,D>0andA>D ,wehave 0 <C <1.

A more direct proof of lemma three is the following. Since f[s%] is a maxi-
* . . * . . .
mum at § = 5 , taking into account (29), we conclude that s satisfies the cubic

equation

ds

b

2 22 2
d {012+S (121+S}

ap+s ar+s

which has L3 as a solution. We have been unable to solve this equation
directly.

For example, let dyy=c1+¢€y, dp=c1—€11, dp=cyt€p, and dy =
¢y ¥ €12 . Then, condition T(2) implies 0 < €15 < €;; which is compatible with
T(1). Condition T(3) arises under similar constraints, applied to the impe-
dance parameters rather than to the average distances: let 1/dy;= ¢;— €11,
1/dy=c1+ €y, Udpp=cy 5 €1, and 1/dy; = ¢ + €15 which, as before, is
compatible with T(1).

Papageorgiou and Thisse (1985, p. 20).
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APPENDIX

This appendix contains proofs for the three lemmata. We first define the

) . N ) 2 2
following reduced variables (8 # O since 01 # 0 ):

2 2

2 2 2

apn =ap —ay ap =apnlay =1
2 2 5 22

ap =ap —ay ayy =ayp/lan

2 2 3 20 27 2

ay =ay —ap a1 =ay lan

3 5 5 32

ay =ay —apy =0 ay =axplan =0

We also define

2 2 2 2
A =ap + a4y (SCC (32)) aA=ap;p +ay

2 3
B=ay +apy (see (32)

2 S e T 2 2
Y=011—0122=a%1~—a%2=Y Y=Y/a%1=1—a%2
d=ay —ay =ay —ay =9 d=0d/ay =1-—ay

2 2 2 2 ;5,2 3
C=ayp —ay =ayp —ax =C C=0ay =1—ay

3 A R C T2 2
M=axy —ap =dy —ap = n=f/ay =1-a.

PrOOF OF LEMMA 1:  After a long but straightforward calculation, the solutions to
h[D] = 0 are given by

(A1) DT = (—y{ —on £ [FPCH) + M — >

Note that 1 # v since 047 # 0y . Thus A[D] = 0 admits two real solutions iff yd{n > 0.
Moreover, these solutions are strictly positive iff £ {4y3{n > yC + dn. Now y{ + dn <
0 is sufficient for D* > 0: if yC + dn 2 0, raising {4y0Cn > YL + dn to its square, we
obtain (Y{ —8n)%2 <0 if y{ # 6N — an impossibility. Likewise, y{ + dn <0 and
v{ # dn imply that D~ > 0. Since a7 # 0y and 0y # tpy, YC # 0N holds. In con-

sequence

(A2) Di>0 iff voln >0,v{+0n <0 and y{ = n.
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Using (A1), it can be shown that DT <1 iff + {Zy00H <vd + (1. Now
vd + {n > 0 is necessary for pt<i: raising {4y0n < ¥d + {n to its square, we obtain
(v6 — ()22 0. Also, ¥d + {n 2 0 is sufficient for D < 1. Therefore

(A3) DE<1 iff YN >0 and Y5 +tn > 0.

7 0. ¢
TABLE 1: Alternative sign patterns.

(a) + 4+ + +
(b) + 4+ - -
(c) -+ + -
(d) - -+ +
(e) + - -+
(f) + o=+ -
(2) - -4
M) | ----

Consider (A2) and (A3). The inequality yd{n > 0 holds iff one of (a) — (h) in table one
holds. Of these, (c), (e), (f) and (g) violate ¥ + {n > 0, while (a) and (h) violate
v¥C + dn < 0. Thus only (b) and (d) are consistent with (A2) and (A3). It can be shown
that these imply L1. QED

ProOF OF LEMMA 2: Using our definitions, we have

2

o Ga+2B an»
(A4 —= with B=— >0,
B 1+2B &11

2 2 2
where @;; # 0 because 047 # 0ty . In consequence,

+ a D¢
(AS) D™ >— iff 2B < T
B 1-D—

Observe that L1 and D™ > o/ imply o/ < 1. Based on L1, we conclude that pr>

. + . . N L2 0.2 Al - - .
o/B only if D~ — & > 0; and since Di — O = 2(—daypay; £ {YOLH ), we have D — Q& <
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0, which implies part (a) of the lemma.
We now turn to part (b). Using (AS5)

2[-at,a3,+13880 |
1-a+2 {&%2&% 787 }

(A6) D+>% iff 2B <

Simplification and rearrangement yields

L2 .2
+ o ai2az1
(A7) D >B iff B—Q < |QO+Q) with Q=
1-&

There are two cases. Firstly note that B—Q>(<) 0 iff A<(>) 1. If B—Q >0, (A7)

implies
(A8) (B-Q)?<Q1+Q)

which, in turn, implies o/ <A. Therefore, in this case, D> o/f iff a/fp <A<l
Secondly, if B — Q <0, Dt > o/B (see (A7)) and o/f <A < 1. We conclude that Dt >
o/ iff o/f < min{1, A}. QED

PrROOF OF LEMMA 3: We first note that
o 2
(A9) — = Q2+ ay + 2B and — =2B + 1.

an an

Using these in conjunction with (33), we arrive at

%2 +

s D' — &
(Al0) —y=—B+——=— B+ [O(I+0) + Q.
i 2(1 — D)

*2 2 2
Therefore s = —ay + a;; ((QI+Q) + Q), and L3 follows by taking into account that
2
ap; € =0. QeD
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