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1. Introduction

Sunspot equilibria as an explanation of economic fluctuations have
attracted much attention in recent years: see Shell (1987) and Woodford
(1987). "Sunspots" represent purely extrinsic uncertainty. The randomness
unrelated to the economic fundamentals can cause fluctuations simply because
expectations are self-fulfilling. It has been suggested that the theory of
sunspots may be a useful alternative to the real business cycle theory, in
which fluctuations are driven by exogenous shocks to fundamentals. However,
most sunspot equilibria existing in the literature, such as Azariadis (1981)
and Azariadis and Guesnerie (1986), have negative serial correlations.! This
is somewhat unsatisfactory since most economic time series of interest are
strongly positively serially correlated.?

This paper first shows that the monotone (oscillatory) convergence to a
steady state is sufficient for the existence of stationary sunspot equilibria
with positive (negative) serial correlation. This is done in section 2
within a framework of dynamics essentially devoid of economic structure.
Then, section 3 applies this result in order to demonstrate the existence of
positively serially correlated sunspot equilibria in two models of monetary
economies. The first is an overlapping generations economy with the
government financing a fixed expenditure by printing fiat money. This economy
possesses two monetary steady states, one of which has positively serially
correlated sunspot equilibria in its vicinity. The second is a model of
money-in-the-utility-function with the infinitely lived representative agent.

It provides an example in which the unique monetary steady state has

IThe notable exception is Woodford’s (1986) example in his model with
capital accumulation.

2See, for example, the tables in Nelson and Plosser (1982).
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positively serially correlated sunspot equilibria in its vicinity. In this
model, an increase in the rate of monetary growth reduces the one period
lagged autocorrelation of real balances and the nominal interest rate, and as
it continues to increase, local sunspot equilibria eventually disappear. It
is also shown that sunspot equilibria are more likely to exist, when the
agent’s discount rate is small. Section 4 considers the existence of global
sunspot equilibria in the money-in-the-utility-function model. It
demonstrates that the determinacy of the steady state does not rule out
stationary sunspot equilibria and that the oscillatory (monotone) convergence
does not rule out positive (negative) serial correlation. These exercises
illustrate some crucial differences between the two popular models of money.
The main result is summarized in section 5.

The possible effects of purely extrinsic uncertainty have been studied in
the money-in-the-utility-function approach by Obstfeld and Rogoff (1986) and

Diba and Grossman (1988) under the name of "rational bubbles" .3

They are
concerned with divergent bubbles (i.e., nonstationary sunspot equilibria).

The present analysis suggests that their "simplifying" assumption rules out
stationary sunspot equilibria. The possibility of sunspots cannot be ignored.
Hopefully, this example would convince the critic of sunspot equilibria that
they are not "flukes" obtained only in an overlapping generations model or

its reinterpretation as a finance constrained economy.a

3Some writers use the word "bubbles" in a different sense. 1In Tirole
(1985) and Weil (1987), it means the difference between the price of an asset
and the (expected) present discounted value of its dividends.

“The money-in-the-utility-function model presented below can also produce
deterministic cycles and chaos: see Matsuyama (1988, 1989).



2. Serial Correlation of Sunspot Equilibria

Consider the dynamics given by the following first-order stochastic

difference equation:

(1) EAGx ) = B(x) ,

t+1

where Et is the expectations operator, A and B are smooth functions on an
interval F, the feasibility set. Time extends from zero to infinity. The

X.,...} is an

variable X, is a jump variable, thus a sequence of {XO, 1

"equilibrium" if it satisfies (1) and stay in F for all t. Assume that there
exists x* in the interior of F that solves A(x*) = B(x*). Clearly, {(x*,x¥*,
x%,...) solves (1), providing a steady state equilibrium.

To consider the dynamics in the vicinity of x*, assume that A'(x*) = 0.

The Implicit Function Theorem implies that there exists an open interval U

containing x* in which the following dynamics can be defined:

(2) %, = C(x) = AT (B(x))

Any solution of (2) that stays in U for all t provides a local nonstochastic
equilibrium path of (1).5 From the well-known theorems there exists a
continuum of nonstochastic equilibrium paths of (1) converging to the steady

state (i.e., the steady state x* is indeterminate) if |p| < 1, where,
p = C'(x%) = B (x¥)/A (x%)

and they converge monotonically to x* if 0 < p < 1. On the other hand, they

SPaths that leave U after finite periods may violate the feasibility
condition or the transversality condition, thus unqualified for equilibria.
Or, they may be legitimate equilibria, as the examples in Matsuyama (1988,
1989) and Woodford (1984, Example 6) show.



converge oscillatorily if -1 < p < O.
There may also exist stochastic solutions of (1). Let Il be a two state

Markov transition matrix:

- 1a 1—qa
Lay, g
A two state stationary sunspot equilibrium is a quadruple (qa, Ay X s xb)

such that qa and qb lie in the open interval (0,1); Xa = x. ; and,

b:

[

(3) qQAGx) + (1-q)A(x) = B(x)

(%) (1-q)AGx,) + qAl) = B(x)

Equations (3) and (4) jointly state that the Markov process with state space
(Xa, xb) and transition matrix II is a solution of (1). Woodford (1984) shows
that there exist two state stationary sunspot equilibria satisfying X < x* <
Xy in every neighborhood of x* if |p' <1l ; i.e., if the steady state is
indeterminate.

Appendix A shows that the k-period lagged autocorrelation of any time
series generated by a two state Markov process with the transition matrix II is
equal to (qa+qb—1)k. Thus, the serial correlation depends on the sign of

qa+qb—1. Choose Xa and X, such that A(xa) = A(x Then, from (3) and (4),

b b)'

B(x_ ) - A(x) A(x_) - B(x,)

(5) q +q -1=-—2 B, LM |
A(Xa) - A(xb) A(Xa) - A(Xb)
B(Xa) - B(xb)
A(Xa) - A(xb)

The assumption A’ (x*) = 0 guarantees A(xa) > A(xb) if Xa’ Xb € (X*=§, xX*+§)
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for a small § > 0. As § approaches zero,
— - ! * ' *x) =
(6) a, +ay -~ 1 > B(xR)/A(x%) =

from the Mean Value Theorem. Thus, the one period lagged autocorrelation of
local sunspot equilibria is equal to p. In particular, monotone (oscillatory)
convergence to the steady state implies the existence of sunspot equilibria
with positive (negative) serial correlations.

Before proceeding it is worth pointing out that the above result on the
local sunspot equilibria can be easily extended to more general Markov
processes. Appendix B shows the case of finite state erdogic Markov
processes. It may also be shown that, under mild conditions, any local
stationary solution of (1) can be approximated by a AR(l) process: x =

t+1

(l-p)x* + 25 + & whenever |p| < 1. Two state Markov processes, however,

t+1’
are useful partly because they are simpler and partly because equation (5) is

applicable for the global analysis.

3. Two Models of Monev: Local Dynamics

The sunspot equilibria constructed by Azariadis (1981) and Azariadis and
Guesnerie (1986) require q, * 9 < 1, so that they are negatively serially
correlated. This section discusses two models of economies with a steady
state equilibrium with monotone convergence, and therefore, positively
serially correlated sunspot equilibria.

Model 1. This model is due to Grandmont (1986, pp.70-71); see also Woodford
(1984, Example 5) and Sargent (1987, Ch. 7). Consider an overlapping
generations economy with one perishable good and no population growth. All
agents live for two periods and have identical preferences u(cy) + v(cO) and

identical endowments, e and e,, where ¢ and e (c, and e,) are their
y 0 y y 0 0



consumption and endowment when young (old) and u and v are both increasing,
concave and satisfy the Inada conditions. Intergenerational exchange of the
consumption good is possible through fiat money. In each period, the
government finances its constant expenditure g by printing new money. Then,

it can be shown that the equilibrium path of real balances m, follows,

(7) Et [(mt+1—g)v’(eo+mt+1—g)] = mtu’(ey—mt) ,

with m_ e [O,ey). Assume that u’(ey) < v'(eo), the "Samuelson case". Then,
(7) has two steady states, m* and m** (0 < m* < m¥*), if g > 0 is sufficiently
small. See Figure 1. There are two different inflationary tax rates
consistent with the predetermined level of expenditure; the Laffer curve
effect. There exist nonstochastic monotone converging paths to m* (the
hyperinflationrary one), and therefore, positively serially correlated
stationary sunspot equilibria in its vicinity. The other steady state m** may
be indeterminate, but nonstochastic equilibrium paths converging to it cannot
be monotone. This is because the nonstochastic version of (7),
(mt+1—g)v’(eo+mt+1—g) = mtu'(ey-mt), defines the unique backward dynamics mt =
f(mt+1)'6

As in Azariadis [1981]), this model can be considered as a model of
production instead of pure exchange. 1In this interpretation, ey is endowment
of leisure when young and each member of the young generation consumes c
units of his own leisure and use a constant-returns-to-scale technology to
transform ey - Cy units into the consumption good in order to purchase the

fiat money and finance in old age consumption in excess of e Then, both

0

6The normality of old consumption, not the separability, is crucial for
this result.






equilibrium employment and output are equal to m_, so that there are positive
serial correlations in output and employment in sunspot equilibria in the
vicinity of m¥*, the "slippery side of the Laffer curve", while they are
negatively serially correlated in sunspot equilibria in the vicinity of m¥*¥*,

if they exist.

Remark 1. In this class of overlapping generations models, the one examined by
Azariadis and Guesnerie (1986) in detail, local sunspot equilibria with
positive serial correlations cannot exist under the "laissez-faire" (g = 0).
This is because, g = 0 implies m* = 0. Although this nonmonetary steady state
is still indeterminate, all converging paths must approach it from above.
Feasibility requires m > 0. The existence of stationary sunspot equilibria
requires the steady state is in the interior of the feasibility set.’
Furthermore, once the gross substitutability of consumption when young and old

is assumed, the monetary steady state is determinate and no sunspot equilibria

can exist.8

The next model provides an example in which the local dynamics around the
unique monetary steady state can be monotone convergent. It also demonstrates

that sunspots can occur in a model of infinitely lived agents.

Model 2. Consider the Brock (1975) model of money-in-the-utility-function.
The representative agent maximizes EO z:=0 ﬂt U(Ct’mt)’ (0 < B8 < 1), subject

to the flow budget constraint, M_ = Pt(y-ct) + Ht + Mt

‘ with M—l given,

BE

7However, the existence of nonstationary sunspot equilibria does not, as
demonstrated in Peck (1988).

8This has been proved in more general models; see Kehoe, Levine, Mas-
Colell and Woodford (1988).
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where f is the discount factor, y is his constant endowment of the perishable

consumption good, c¢_ denotes his consumption, and m_ is real balances

t
demanded, defined by the ratio of Mt’ nominal money holdings, and Pt > 0, the
price level. At the beginning of period t, the agent receives Ht units of
paper money from the government through a "helicopter drop", thus considered
to be independent of his money holdings. There is no government consumption
and the money supply grows at the rate p > 8, which implies Ht = (p—l)Mt_l.
The markets clear when Mt = ptMO and S for all t. Then, one can show

that the equilibrium dynamics follows,9

t+1 t

The steady state is given by [(p-B)U.(y,m*) — pUp(y,m*)]m* = 0. The monetary
steady state m* # 0 satisfies (u—B)U (y,m*) = pUyp(y,m*) and is unique if real
balances are normal. Standard assumptions of preferences do not place any

stronger restriction. For example, let the one period utility function be

aml—a 1—y

U(e,m) = (c Y Y/(1—y) with v = 1, v > 0 and 0 < & < 1.10 Then, real

balances are normal and one can show, after some algebra,

B(v=1)(1=a) - p

(9) p =
B(v-1)(1-a) - B

Therefore, if B(y-1)(l-a) > p, there are monotone convergent paths to the

unique steady state and positively serially correlated stationary sunspot

9Along any convergent path and stationary sunspot equilibrium, the
transversality condition for the agent’'s maximization problem is satisfied
automatically.

100ne can easily show that this functional form satisfies all standard
properties of utility functions, as well as the normality and Inada
conditions. It has been used in Fischer (1979) and Obstfeld (1985).
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equilibria. This requires (y-1)(l-a) > 1. 1In this case, the serial
correlation of local sunspot equilibria is decreasing in the growth rate of
money supply. As one increases p from B to infinity, it changes from one to
zero [ B < p < B(y-1)(1l-a) ] and from zero to minus one [ B(y-1)(l-a) < p <
2(y-1)(1-a)-B ] and finally, local sunspot equilibria disappear [ p >
28(y-1)(1-a)-5 ].11 It is also worth pointing out that, when (y-1)(l-a) > 1,
sunspots equilibria are more likely to exist when B is larger. The
persistence of endogenous fluctuations cannot be attributed to the short-
sightedness of the agent.

In the money-in-the-utility-function model, the nominal interest rate r
= Um(y,mt)/UC(y,mt) also fluctuates with real balances. 1If U(c,m) =

a l-a
m

(c )1_7/(1—7), r = (l—a)y/(amt). Thus, in local two state sunspot
equilibria, the one period lagged autocorrelation of the nominal interest rate
is also given by (9). This cannot occur in Model 1 or any overlapping

generations model of money since the nominal interest rate in these models are

always equal to zero.

Remark 2. It should be noted that, since we are concerned with bounded
stationary equilibria, our example only requires that the utility function has
the form specified above only in an interval containing the steady state.
Therefore, many conditions introduced in order to eliminate divergent rational
bubbles, such as in Obstfeld and Rogoff (1986), including the boundedness of
utility functions, cannot rule out sunspot equilibria shown above.

The reason why the (local) indeterminacy arises despite it is an

11an increase in money supply growth through lump sum transfer eliminates
the sunspot equilibria in overlapping generations models, too (See Grandmont
[1986]). But, it cannot change the sign of serial correlation.
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infinitely lived representative agent model is that the agent’s utility
depends positively on real balances, which are not a scarce resource. For any
given sequence of money supply, one can always improve welfare by assigning
prices lower than equilibrium prices. Thus, the market outcome is not
optimal, making the standard proof of local determinacy untenable.

The above condition (y-1)(l-a) > 1 implies UCm < 0, which seems
necessary to have sunspot equilibria in a model of money-in-the-utility-
function. Obstfeld and Rogoff (1986) and Diba and Grossman (1988) also
consider the possibility of sunspot equilibria in the Brock model. They
assume the additive separability U(c,m) = U(c) + V(m).12 This assumption is
crucial for their nonexistence results. As observed by Feenstra (1986), we
have little to say about the cross derivative of a utility function.l3 Thus,

their results should be taken with some caution.

4, Global Analysis

In the previous sections we are only concerned with local dynamics. The
global analysis of overlapping generations have been done thoroughly by
Azariadis and Guesnerie (1986). 1In this section, we discuss the existence of

global sunspot equilibria in Model 2.

Let U(c,m) (caml_a)l_7

/(l=y) if ¥y # 1, v > 0 and U(c,m) = alog c +

Il

(l-a)log m if v 1l for 0 < @ < 1. Then, by defining n = (y-1)(l-a) - 1,

equation (8) can be rewritten as,

12Impose the additive separability in equation (8) above and let o = 1,
then we obtain equation (5) of Obstfeld and Rogoff (1986) and equation (20) of
Diba and Grossman (1988).

1314 fact, Feenstra’'s analysis is still limited in that he assumes the
homogeneous consumption good. If the resources saved by holding real balances
are imperfect substitutes of the "consumption good", then one can impose less
restrictions on the cross derivative of the induced utility function.
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(10) B A(r_,)- B(r) ,

t+1

where A(r) = r" and B(r) = (p/B8)(r)"(1-r) and r_ = (l-a)y/(em) is the nominal
interest rate. Equation (10) has the unique steady state r* = 1-(8/u) > 0.l4
If n» = 0, (10) simply becomes ro= r*: the steady state is the only

equilibrium. If n = O, A is invertible and the nonstochastic dynamics can be

expressed as,

(1) r = C(r) = AT

where C(r) = (p/ﬁ)l/nr(l—r)l/n. It is straightforward to show,

(12a) If n <0, C(r) as r

VIA
y-‘
VIA
=

(12b) If n >0, r

VIA
VIIA
=

C(r) as r *, C(0) = C(l) = 0. C is uni-modal;
that is, C is strictly increasing on [0, n/(l+n)) and strictly

decreasing on (n/(l+4n), 1]. (See Figure 2).

A two state sunspot equilibria of (10) is given by 0 < . 9 < 1; ra >

rb, and,
(13) qA(r ) + (1-q )A(r) = B(r) ,
(14) (1-q,)A(r) + qA(r) = B(r,)

Let r <r without loss of generality. 1If n < 0, A is a decreasing function

b
so that A(ra) > A(rb). Thus, there exists 0 < dq, < 1 for which (13) holds,

if and only if A(ra) > B(ra), or equivalently r < C(ra), which implies r, >

lAAlthough r, = 0 also solves (10), zero is not in the feasibility set.
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r* from (12a). Similarly, the existence of 0 < 4 < 1 that solves (14)

requires r, < r¥*, thus r > & > I which contradicts r < r, . Therefore,

b b

there exist no two state sunspot equilibrium if n < O.
If n > 0, A is an increasing function so that A(ra) < A(rb). Thus,

there exist 0 < q,; < 1 for which (13) and (14) hold, if and only if A(ra)

U
< B(ra), B(rb) < A(rb). Recall also that equation (5) is applicable whenever
A(ra) > A(rb). Thus, it is positively serially correlated if and only if
A(ra) < B(ra) < B(rb) < A(rb), and it is negatively serially correlated if and

only if A(ra) < B(rb) < B(ra) < A(r These conditions can be further

b)'

rewritten to,

(15a) r, < C(ra) < C(rb) < T
and
(15b) ra < C(rb) < C(ra) < rb

One can always find ra and r, that satisfies (15a) and (15b). Figure 2 shows

b
how this can be done. Note that (12b) implies that, for any z such that 0 < z

< r*, there are two solutions of z = C(r), r'and r", and they satisfy r' <

n/(l+n) < r", and,

r' < C(r') =z =0C(r") <r"

Since C is strictly increasing at r = r’, (15a) is satisfied by letting r =
r' — ¢ and r, = r" for a sufficiently small ¢ > 0. Similarly, (15b) is
satisfied by letting r = r' + € and r, = r" for a sufficiently small ¢ > 0.

Thus, both positively and negatively serially correlated sunspot equilibria

exist whenever n > 0, or (y-1)(l-a) > 1. Note that we did not impose any
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restriction on p = [B(y-1)(l-a)-u]/[B(y-1)(l-a)-B]. Therefore, the local
determinacy of the unique steady state does not rule out the existence of
sunspot equilibria in the large. Also, the monotone (oscillatory)
convergence to the unique steady state does not rule out negative (positive)

serial correlation.

Remark 3. Matsuyama (1988, Proposition 1) shows that in this model there
exists no deterministic cycle of period two if B8 < u < 28(y-1)(l-a)-3.
Nevertheless, sunspot equilibria exist. This suggests that the main result of
Azariadis and Guesnerie (1986), that is, sunspots exist if and only if period-
two cycles exist, does not carry over outside of the class of models they
examined. This is due to the fact that the backward dynamics is globally well
defined in their models, while it is the forward dynamics that is globally
well defined in our model. 1In our notations, a function B is strictly
monotone in their models, while a function A is strictly monotone in our

model.15 For the existence of perfect foresight cycles and chaos, it does

not matter whether the dynamics is backward or forward. However, for the

analysis of rational expectations paths, this distinction becomes crucial

since uncertainty resolves only when time moves forward.

5. Concluding Remarks

This paper has considered two popular models of money: an overlapping

generations economy and a money-in-the-utility-function. However, it is not

15This is not to say that overlapping generations models cannot generate
well defined forward dynamics. If each member of the young generation is
allowed to borrow from the government in the "classical case" and the
government maintains a zero budget deficit, then the forward dynamics of the
government's net worth is globally well defined. See Benhabib and Day (1982)
and Boldrin and Woodford (1988).
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an attempt to make a judgment of which is better than the other. Obviously,
each approach has its own pluses and minuses. Although many alternatives have
been proposed to overcome their deficiencies, it seems likely that the two
approaches will continue to be used for the foreseeable future because of
their tractability. Therefore, it seems highly useful to understand the
differences between the predictions that the two approaches make. Among our
major findings are;
i) In order for an overlapping generations model of money to produce
positively serially correlated sunspot equilibria, it needs to have two
monetary steady states. Then, they can be found in the vicinity of the
hyperinflationary steady state.
ii) A money-in-the-utility-function model can produce sunspot equilibria with
either positive or negative serial correlation in real balances and the
nominal interest rate even when the monetary steady state is unique, if the
separability assumption is dropped. Moreover, a high discounting is not
necessary. Sunspots may have effects in an economy with an infinitely lived

patient representative agent.
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Appendix A: Two State Markov Processes

Let X, be a Markov process with state space (Xa’ xb) with transition

matrix II given in the text. Then, some algebra yields,

. [ e+ (=g (1=q) (125 }
o =

q*(l—Ak) (1—q*)+q*)\k

where q*% = (l—qb)/(2—qa—qb) and A = qa+qb—l. Since 0 < 9, 4 < 1 implies ]A|

b
< 1,

k-0

Therefore, this Markov process is ergodic and 0 < q* < 1 is the steady state

probability of X, = X . Hence, for k = 0, E(tht+k)= E(XtE(Xt+k|Xt)) =

[ ar+ (=g X x4+ (1-g%) (1209 x g T+ (1=g0) [a* (1= x_x +( (1=q) +qsa )l ],

= g% —q*
and E(Xt) q Xa+(l q )xb, so that,

Cov(x ) = E(xtx ) — E(Xt)E(x )

t+k’xt t+k t+k

I

q*{q*+(1_q*)xk)x§ + 2q*(1-q*)(1—kk)XaXb

+ (1m0 (g4 9] ] = [+ (1=q9)x, )

k . 5 2k B
A q (1—ql~)[xa X = A Cov(xt,xt) = AkVar(Xt)

b)
Since X * Ry implies Var(xt) # 0, the k-period lagged autocorrelation of x

t

is given by,

Cov(x x, ) /[Var(x

t+k’ "t )'Var(xt)]l/z

t+k

k k
Xt)/Var(xt) = X = (qa+qb—l) .
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Appendix B: Finite State Local Sunspot Equilibria

Assume |p| < 1 and consider a Markov process with state space XT = (x_,
xb,...,xn) with a transition matrix II that solves (1), where II is a n by n
nonnegative matrix and Wij denotes the probability that the state is x. in the
next period given that the current state is X, - It satisfies IIJ = J, where J
is the column vector of 1's. By linearizing (1) around the steady state,
which is set to zero without loss of generality, TIX = pX and thus HkX = ka
for all k = 0.16 Suppose that II is irreducible and aperiodic (it suffices

to assume Wij > 0 for all i and j). Then, there exists a unique stable limit
distribution g% = (qg,qg,...,qg), where qi the steady state probability of X,
= X, Each element of q* is positive and it satisfies q*II = g* and gq*J = 1.
Then E(Xt) = q*X = q*lIX = pg*X = pE(xt), or, E(Xt) = 0. Hence, by denoting Q

= Diag(qg¥),

Covix o ¥e) = Elxpx 0 = E[XtE(Xt+k|Xt)]

[
e
o]
=
5

I

©
>
>

I

k
p Cov(xt,xt) = kaar(xt)

Note that @ is positive definite so that Var(xt) = XTQX = 0 whenever X = 0.
Therefore, the k-period lagged autocorrelation of the local sunspot equilibria

is equal to p

léNote that the existence of sunspots X »# 0 implies that p is an
eigenvalue of II. Since the modules of the eigenvalues of the transition
matrix are no greater than one [see, for example, Gantmacher (1964, Ch.13,
sec.6)], one can conclude that the determinacy of the steady state implies the
nonexistence of local sunspots. Laitner (1989) proves this result more
generally, using a different technique.
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