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Abstract

The set of price levels consistent with perfect foresight
equilibrium conditions in Brock's (1974, 1975) "Simple Perfect
Foresight Monetary Model" may have a very complicated topological
structure. This paper shows, for certain parameter values, that the
set of equilibrium prices is uncountable, that it contains no
nontrivial interval, or no isolated point, that its Lebesgue measure
is zero and that it is a fractal (i.e., it is self-similar under
magnification). It also characterizes the dynamic behavior of the
price level using symbolic dynamics.
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1. Introduction

The possibility of multiple equilibria due to self-fulfilling
expectations has been recently demonstrated in a variety of dynamic models.
See Kehoe and Levine (1985), Woodford (1984) for overlapping generations
models, and Gray (1984) and Obstfeld (1984) for Brock’s (1974, 1975) monetary
model. These studies show that the steady state may fail to have the knife-
edge stability and that there exist multiple equilibria converging to the
steady state. In other words, there may exist an open interval around the
steady state such that any price in this interval is consistent with perfect
foresight conditions. Recently, Peck (1987) provides examples of overlapping
generations economies, in which the set of equilibrium prices is a union of
disjoint intervals.

This paper shows that the set of equilibrium prices in the Brock model
may have a complicated topological structure. For certain parameter values,
the set of equilibrium prices is uncountable, it contains no nontrivial
interval, or no isolated point, its Lebesgue measure is zero and it is a
fractal (i.e., it is self-similar under magnification).

The paper also describes the dynamic behavior of the price level jumping
around in this set, using symbolic dynamics. The price movement is chaotic in
that i) there are periodic equilibria of every integer period, ii) there are
uncountably many aperioidic equilibria and iii) there are equilibria which
wind densely about the set of equilibrium prices.

There already exist numerous applications of the chaotic dynamics to
economics: see, for example, Grandmont (1985) and the special issue (October

1986) of the Journal of Economic Theory. The models discussed in this

literature are capable of generating complicated movements of endogenous

variables, but the spaces on which these variables can move have simple
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topological structures (i.e. they are connected.) In a companion paper
(Matsuyama ([1988]) I discussed the model presented below, but the emphasis was
made on the possibility of endogenous price fluctuations and the bifurcation
as the parameters, such as the rate of money supply growth, change. (In
notations introduced below, Matsuyama (1988) mainly discussed the case of 279 <
5§ < A(n), while the case of § > A(n) is the central concern here.)

The rest of paper is in three parts. Section 2 expounds a parameterized
version of the Brock model. Section 3 characterizes the topological structure
of the set of equilibrium prices. Section 4 describes the dynamic behavior of

the price level.

2. The Brock Model

The economy is inhabited by a fixed large number of identical infinitely
lived, utility maximizing agents with perfect foresight. Each agent maximizes

the present discounted value of his utility stream,
oo t d
W= Zt=0 8 U(Ct’mt)’ 0<pg<1,
subject to the flow budget constraint,

with ME =M | given,

d d
M = Pt(y-ct) + Mt- 1 -1

t 1’
where ( is the discount factor, y is his constant endowment of the perishable
. . . d .
consumption good, e denotes his consumption, and m_ is real balances
. . d . -
demanded, defined by the ratio of Mt’ nominal money holdings, and Pt > 0, the
price level. The markets are competitive and each agent considers {Pt} to be

independent of his own money holdings. The first order condition for the

agent’'s problem, or the arbitrage condition, is given by,
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d

d d
UC(Ct’mt) = Um(ct,mt) + ﬁUC(Ct+l’mt+l)Pt/Pt+l'

The total supply of the good in the economy is fixed and given by y. There is
no government consumption and the money supply M is constant.l The markets
clear when Mg = M and ct = y for all t. This means that, along an

equilibrium path, we have,

(1) BUC(Y,M/P,1)/P 1 = Ue(y.M/B) - Un(y,M/P))/B,

Brock (1974, 1975) provide the thorough analysis of the case of a

separable utility function, U(c,m) = u(c) + v(m). With reasonable assumptions

on u and v, the first order difference equation, (1), possesses the unique2

steady state equilibrium, Pt = P , where P is given by (1-g)u’(y) = v’(M/?),
and it can be shown to be unstable. Any sequence satisfying (1), if it starts

with P, > P, is explosive (hyperinflation) and, if P, < P, is implosive

0 0

(hyperdeflation). Brock examined the conditions on u and v under which these
divergent paths can be ruled out as an equilibrium.
This paper drops the separability assumption and instead considers the

following specification of the utility function,

@l HY Yy ify=1, v>0,
(2) U(c,m) =

alog ¢ + (l-a)log m , if v=1,

for 0 < a < 1. This functional form satisfies all the standard properties of

neoclassical utility functions. Namely, U., Up, UccUnm - UemUme > 05 Uce, Umm

1Matsuyama (1988) considers a money supply increase.

2Strictly speaking, Py = » is another candidate of the steady state
equilibrium. This is the situation where paper money has no value. One can
show that, for the class of utility functions assumed below, Pt = = can be
ruled out as an equilibrium.
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< 0, as well as the normality conditions and the Inada conditions. It has
been frequently used in the literature; see, for example, Fischer (1979) and
Obstfeld (1985). By using (2) and normalizing the price level as P =

{(l—a)y/aM)Pt, equation (1) can be written as,
n _ n,q.

(3) (pt+l> = (1+5)(Pt) (1 Pt) )

where

-(l-a)(1-7)-1 = (l-a)y+ (a-2) > a-2 ,

3
[

[SY)
[]

1/8 - 1>0

There exists the unique steady state equilibrium of (3), E (1-8) =
§/(1+6). If n =0, (3) simply becomes P, = p for all t. Thus, the steady
state 1is the unique equilibrium path. If a-2 < n < 0, the qualitative
properties of price dynamics (3) is similar to the case of a separable utility

function; see Matsuyama (1988, section 2). 1In what follows, it is assumed

that n > 0. Then, the price dynamics can be rewritten to,

() Py = Fop = () Tp 1p )17,

t+1

where F is defined on I = [0,1]. Note that, if P, > 1, (3) cannot hold with
any P, > 0, violating the feasibility condition. (The price level must be
positive, or real balances cannot be defined.) Therefore, an initial price
level consistent with the perfect foresight condition, Py must belong to a

set II defined by,
T=(p; F(p) eU for all t = 0 },

where U = (0,1) and FC is given inductively by Fo(p) =p, Fl(p) = F(Flﬂl(p))
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for i=1,2,3,,,. By construction, E e F(II) € I € U, where ¢ denotes nonstrict
inclusion (C denotes strict inclusion). Thus, the price dynamics are
confined to a nonempty set II. On the other hand, it is easy to check that, if
Py ¢ II, the transversality condition for the agent’s maximization problem is
satisfied along the sequence {Ft(po)). Thus, II is the set of equilibrium

prices at period zero. Note that II is not closed in general. Its closure m*

is given by,

T = (p: F(p) ¢ T for all £t >0 }.

Again, by construction, p € F(IT™) ¢ ¥ ¢ I. The rest of the paper examines
the topological properties of II (section 3) and the dynamics given by F: II - II

(section 4).

3. Topological Structure of II

It is straightforward to verify that, with n > 0, F has the following

properties.
(P.1) F(0) = F(1) = 0 , F'(0) = (1+6)/" > 1
(P.2) F has a unique, nondegenerate critical point, p* = n/(1+n); F'(p*) =

0, F"(p*) < 0. F is strictly increasing on [O,p*), strictly
decreasing on (p*,l].

(P.3) F is C3. If 0O < n <1, its Schwartzian derivative, SF = F"'/F' -
2
]

(3/2)[F"/F']", is negative on I\{p*).
(P.4) F'(p) =1 - §/n

(P.5) Let a(n) = n "(L4m) ™ — 1. 1f 6 < a(n), F(p*) < 1 and thus F(U) c
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U and F(I) ¢ I. If § > A(n), F(p*) > 1, U c F(U) and I ¢ F(I).>

From (P.5), if 6 < A(n), F(U) c U so that FO(U) c U for all t > O.
Hence, II = U. The set of equilibrium prices is an open interval containing
the steady state price.a The situation is more complicated if § > A(n). See

Figure. Note that there exists a closed interval of initial prices, that

IO’

leave U after one period. There are two open intervals of initial prices, U

0
and Ul’ that remain in U after one period. Note that F maps both UO and Ul
monotonically onto U. This implies that there are two disjoint closed
intervals of prices that leave U after two periods. The remaining four open

intervals are mapped monotonically onto U by F2. Continuing in this manner
one can construct II by successively removing closed intervals from the
"middles" of a set of open intervals.

To determine the topological structure of II when § > A(n), some

definitions need to be introduced.

Definition 1. Let f be a function on I. A nonempty subset X C I is called a

f-invariant set if f(X) = X.

Definition 2. Let X € I be a f-invariant set. A map f is expanding on X if

there exists a constant C > 0 and a constant K > 1 such that l(ft)’(p)‘ > C-Kt

for every positive integer t and every point p e X.

Definition 3. Two maps f: X + X, g: Y » Y are topologically conjugate if

there is a homeomorphism h:X - Y such that h(f(x)) = g(h(x)) for every x e X.

3Matsuyama (1988, Lemma) shows that A(n) = n_n(l+n)l+n — 1, defined on
(0,o), is strictly increasing, lim . A(n) = 0 and A(n) > 2n for all n > 0.
The nongeneric case § = A(n) will fot be discussed below; see Matsuyama (1988,
Corollary) for this case.

“This is not to say that the price dynamics is simple in this case; see
Matsuyama (1988).
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The homeomorphism h is called a topological conjugacy.

If f and g are topologically conjugate via h, then the qualitative properties
of f-dynamics can be examined by looking at g-dynamics and vice versa.
Moreover, if h is differentiable, f is expanding on X if and only if g is

expanding on h(X).

Lemma 1. Assume that § > A(n). Then,

(1.1) I* is F-invariant.
(1.2) If 0<n <1, Fis expanding on II*.
(1.3) If n > 1 and (2+8)7(1+6-n) > (1+§)7[1+A(n)], F is expanding on II*

Proof. (1.1) Since n* is nonempty and F(H*) - H*, it suffices to show I C
F(H*). If 6 > A(n), " c1c F(I), so that, for any p ¢ H*, there exists a p’
e I with p = F(p'). If p' ¢ H*, then there exists a integer t = 1 such that
FE(p’) = Ft'l(p) ¢ I, which contradicts with p ¢ I*. Thus, p = F(p') e F(I).
(1.2) From (P.3), SF < 0 on I\{p*}. Therefore, one can construct a function
f such that i) f maps an interval I’ = [a,b], with a < 0 and b > F(p*), into
itself, ii) £ = F on I, 1iii) f has a unique stable fixed point in [a,0) and
every p € I'\I converges to it, and iv) Sf < 0 on I'\{p*}. Then f satisfies
the assumption of Theorem 2 in Nusse (1987) and I* is the set of points that
do not converge to the stable fixed point in [a,0). Therefore, the result
follows immediately from Lemma 4.14 and Corollary 6.8 in Nusse (1987).

(1.3) Let G(q) = (l+5)q(l—q1/n). Then F and G are topologically conjugate
via H: I - I, where q = H(p) = pn. Thus, it suffices to show G is expanding
on H(H*) c I. 1If there exists a K > 1 such that |G'(q)| > K for all q such

that G(q) ¢ I, then the chain rule implies that IGt’(q)| > Kt for all t and

all q ¢ H(H*) and we are done. Since G is concave, this condition is
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equivalent to that if |G’(q)] = 1 implies G(q) > 1, which is in turn

equivalent to (2+6)7(1+6-n) > (1+6)"[1+A(n)] when n = 1. q.e.d.

Remark 1. The result of Lemma 1 also holds when I is replaced by II. In
(1.2), negative Schwartzian derivative plays a crucial role. The role of Sf <
0 in iterations of maps on an interval is discovered by Singer (1978). He
showed, among others, i) if Sf is negative, Sft is negative for all t, ii) an
increasing map with negative Sf cannot have a stable fixed point between two
unstable fixed points. From i) and ii), each stable cycles attracts a
critical point of f. When § > A(7n), p* escapes from I and thus there exists
no stable cycle in I, from which the result would follow (cf. Collet and
Eckmann [1980, Part II.5] and Misiurewicz [1981]). The condition of (1.3) is
not vacuous since it is satisfied whenever § is sufficiently large (§ > 1 + /5
= 3.23606... when n = 1; 6§ > 6.20491... when n = 2. It is approximately § >
(1.079)Aa(n).) It does not require n < 1, and thus provides a sufficient

condition when negative Schwartzian derivative does not hold.

The next step is to construct sets homeomorphic to II and I”. First, let

Z; denote the set of infinite sequences of 0’'s and 1’s and 22 denote the set

of sequences of (possibly finitely many) 0's and infinitely many 1’'s. That

is,

™
[

a = (aoalaz...) ; at =0or 1} ,

™
1]

a ¢ E; ; for any T, there exists t = T such that a, = 1),

Clearly, Z, C 5%, Note also that we can regard a point in Z

5 5 as the binary

2

expansion of a real number in (0,1]. Endow Z; (and 22) with the metric, d:

s xe® R+, defined by d(a,a’) = Z

,1a—t .
2%, -at|2 . It is easy to show that,

|a

{eo)
t=0 t



* is the closure of Z..

with the metric d, 22 2

Lemma 2. If either § > A(n) and 0 < n < 1, or (2+6)n(l+6—n) > (l+6)n[l+A(n)]

and n = 1, then I* and =¥ are homeomorphic and so are II and Z

2 2°

Proof. For every p ¢ M*, define its address in period t At(p) by At(p) =0 if
Ft(p) belongs to the closure of UO and At(p) =1 1if Ft(p) belongs to the

closure of Ul' The itinerary of p, A(p), is the sequence of {At(p)} of its

*

successive addresses. Then, A is a map from II" to x

9
*
2

Devaney (1987, Theorem

7.2) shows that A is a homeomorphism between T* and 3 for the case of n =1

and § > 1 + /5. His proof rests on the fact that F is expanding on .

Therefore, from Lemma 1, one can show that ™ and Z; are homeomorphic under

the assumption in a manner similar to his. To prove II and 22 are

homeomorphic, note that H*\H = {p eI ; for sufficiently large t, Ft(p) =0 )
as F(0) = F(1) = 1. Since A(0) = (000...), W*\I and 23\22 (the set of

sequences with finitely many 1’'s) are homeomorphic via A. Therefore, II and 22

are homeomorphic via A. q.e.d.
The next theorem puts forward our main result.

Theorem 1. If either § > A(n) and 0 < n < 1, or (2+48)7(1l+6-n) >
(l+6)n[l+A(n)} and n > 1, then M is uncountable, it contains no nontrivial

interval, or no isolated points, its Lebesgue measure is zero.

. .. . - +
Proof. Suppose that II contains a nontrivial interval so that there are p , p

e T such that p = p+ and [p-,p+] ¢ II. Then, all points in the interval

between Ft(p-) and Ft(p+) lie either in U, or U, for all t. In other words,

0 1

the points in this interval have the same itinerary, which contradicts the

fact that A is a one-to-one between II and 22. Thus II contains no nontrivial

interval. Next, fix any point a ¢ ¥, and any ¢ > 0. Choose a positive

2
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integer s > —loge/log2 and define a’' ¢ Z, by aé = a, if t % s and aé *a_,

2

—-S

then d(a,a’) = 2 < ¢, which proves that = and therefore II, contain no

20
isolated point. That Lebesgue measure of II is zero is shown by constructing
an extension of F as done in the proof of (1.2) of Lemma 1 and then by
applying Theorem B in Nusse (1987). q.e.d.

Remark 2. When n = 1, (4) becomes the so-called logistic map: Py =
(1+6)pt(l—pt). In this case, the first condition becomes 1+§ > 4. Henry
(1973) proved that " has Lebesgue measure zero under this condition. With p
= 1, the second condition becomes 1+§ > 2 + /5. Devaney (1987) provides the
proof that ¥ has the properties given in Theorem 1 under this condition; see
also Guckenheimer and Holmes (1986, pp.228-230). Besides, I did not find any
studies that explicitly discuss iterations of a map f satisfying I < £(I).

The reason for this paucity of relevant studies may be that iteration of such
a map is not interesting in physical, biological systems, where initial
conditions are given by history. For example, if the population dynamics of a
certain species of insects were given by such a map, this species would have
been extinct with probability one, thus unobserved. In an economic system
such as ours, the only constraint on the initial price level is that
expectations must be self-fulfilling, thus there is no reason to ignore a map
with T < £(I).

Remark 3. The set of equilibrium prices in our model is an example of a
fractal. A set X ¢ R" is a fractal if its Hausdorff dimension is not an
integer. Intuitively, a fractal is a set which is self-similar under
magnification. For example, if we magnify subsets of I, nuu and HUUl, with a
"microscope" F, then they look exactly like the original set: F(HUUO) =

F(HUUl) = II. Likewise, the restriction of II by a component (i.e., a maximal
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connected subset) of F_t(U) ={peU; Ft(p) € U ) looks exactly like II under

a magnification F* for all t.

4, Symbolic Dynamics

This section describes the dynamic behavior of the price level given by
F: I » II under the assumptions of Theorem 1. Again, the topological

equivalence between II and X, turns out to be very useful.

2

Let us define a map of Z, onto itself o, called the shift map, by

2

a(aoalaz...) = (alaZaB...). Then, by construction, o(A(p)) = A(F(p)). Also

it is easy to verify that ¢ is onto and continuous (cf. Devaney [1987,

Proposition 6.5 and Theorem 7.3]). 1In other words, F and o are topologically
conjugate via the homeomorphism A. Therefore, the quantitative properties of
F-dynamics a1 completely understood by analyzing o-dynamics. This technique

is called symbolic dynamics.

First, note that a point p € II is periodic with period k if Fk(p) = p but
Fl(p) # p for i < k. It is clear that p is a periodic point of period k under

F: I - 1II if and only if A(p) is a periodic point of period k under o: 22 - 22.

It is easy to see that there are 2k — 1 solutions of ak(a) = a in 22. (That

is, there are 2k — 1 sequences satisfying a Tk for all t. Note that it

t at
is not 2k, since (000...) does not belong to 22.) Therefore, the number of
initial prices that lead to cycles of period k or a divisor of k is 2k - 1.
From this, one can easily calculate the number of periodic prices and periodic
equilibria. See Table. In particular, if k is a prime number, there are 2k -
2 (2k — 1 minus 1, because one of them 5 or A(E) = (111...) is the steady
state) prices lie in a period-k cycle and there are (2k—2)/k different period-

k cycles.

Note that the above argument implies that periodic equilibria are



k (period length)

10

11

12

13

14

15

16

17

18

19

20

2k—l

15

31

63

127
255
511
1023
2047
4095
8191
16383
32767
65535
131071
262143
524287

1048575

Table

#(periodic points)

12

30

54

126

240

504

990

2046

4020

8190

16254

32730

65280

131070

261576

524286

1047540

#(cycles)

18

30

56

99
186
335
630
1161
2182
4080
7710
14532
27594

52377
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countable. It is equally easy to show that eventually periodic equilibria are
countable. Since M is uncountable, there are uncountably many aperiodic
equilibria. It is also easy to show that there are equilibrium paths that
wind densely about II. To demonstrate it, it is sufficient to find a point in
22 that comes arbitrarily close to every point in 22 under iteration of o.
Such a point must contain all finite strings of O’s and 1’'s. It can be
constructed by successively listing strings of length 1, then length 2, and so
on, as a¥ = (0,1)(00,01,10,11) (000,001,010,.... Then, for every a ¢ 22 and

. t, %
every positive integer n, there exists a t such that ¢ (a”) and a have the

K t —j
same addresses until period n so that d(at(ak),a) = Z:=n+1 Iai(a*)—ai|2 . <

@ -i -n . . .
Y. 2 = 2 , which can be made arbitrarily small.
i=n+1

Theorem 2 summarizes the results obtained above.

Theorem 2. Suppose either § > A(n) and 0 < n < 1, or (2+5)n(1+6—q) >
(1+6)"[1+A(n)] and n = 1. Then,

(2.1) There is a countable set of initial prices that lead to cycles. The
number of initial prices lead to cycles of period k or a divisor of k is Zk—l.
In particular, there are cycles of every integer period.

(2.2) There is an uncountable set of initial prices that lead to aperiodic
equilibria.

(2.3) There is an initial price that leads to an equilibrium path that winds

densely about the set of equilibrium prices.
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