DISCUSSION PAPER NO. 82

ON THE CONTINUITY OF

CARTESIAN PRODUCT AND FACTORISATION

bу

Prem Prakash and Murat R. Sertel

April 10, 1974

Also issued as No. I/74-16 in the Preprint Series of the International Institute of Management, D-1000 Berlin 33, Griegstraße 5.

ON THE CONTINUITY OF

CARTESIAN PRODUCT AND FACTORISATION

by

Prem Prakash and Murat R. Sertel

Given a topological space X, we denote the set of non-empty subsets of X by [X], the set of open nonempty subsets of X by O[X], and the set of compact nonempty subsets of X by K[X]. Given a family $\{X_{\alpha} \mid \alpha \in A\} = \{X_{\alpha}\}_A$ of topological spaces, we sometimes abbreviate $X_{\alpha} \mid A$ to $X_{\alpha} \mid A$ we denote

$$\begin{split} \mathcal{B} \left[\left\{ \mathbf{X}_{\alpha} \right\}_{\mathbf{A}} \right] &= \left\{ \prod_{\mathbf{A}} \mathbf{P}_{\alpha} \mid \mathbf{P}_{\alpha} \varepsilon \left[\mathbf{X}_{\alpha} \right] \quad \text{for each} \quad \alpha \varepsilon \mathbf{A} \right\}, \\ \mathcal{B} \mathcal{O} \left[\left\{ \mathbf{X}_{\alpha} \right\}_{\mathbf{A}} \right] &= \left\{ \prod_{\mathbf{A}} \mathbf{P}_{\alpha} \mid \mathbf{P}_{\alpha} \varepsilon \mathcal{O} \left[\mathbf{X}_{\alpha} \right] \quad \text{for each} \quad \alpha \varepsilon \mathbf{A} \right\}, \\ \mathcal{B} \mathcal{K} \left[\left\{ \mathbf{X}_{\alpha} \right\}_{\mathbf{A}} \right] &= \left\{ \prod_{\mathbf{A}} \mathbf{P}_{\alpha} \mid \mathbf{P}_{\alpha} \varepsilon \mathcal{K} \left[\mathbf{X}_{\alpha} \right] \quad \text{for each} \quad \alpha \varepsilon \mathbf{A} \right\}. \end{split}$$

The maps whose continuity we study are the Cartesian product map

$$\pi : \ \mbox{\mathbb{I}} \left[\mbox{X}_{\alpha} \right] \ + \ \mbox{\mathbb{B}} \left[\left\{ \mbox{X}_{\alpha} \right\}_{\mbox{A}} \right] \ \subset \ \left[\mbox{X}_{\mbox{A}} \right]$$

defined by $\pi(\{P_{\alpha}\}_{A}) = \prod P_{\alpha} = P_{A} \quad (\{P_{\alpha}\}_{A} \in \prod [X_{\alpha}])$ and factorisation, i.e., π^{-1} . (Clearly, π and π^{-1} are bijections.) In doing this, we always equip hyperspaces

(i.e., spaces of subsets) with the <u>finite topology</u> [1]. Given a topological space Y, by the finite topology on [Y] is meant the topology generated by taking as a basis for open collections in [Y] all collections of the form $\langle U^i | i \epsilon M \rangle = \{ P \epsilon [Y] | P \subset M^U^i \text{ and, for each } i \epsilon M, P \cap U^i \neq \emptyset \}$ with M a finite set and $U^i \subset Y$ open for each $i \epsilon M$. Given any hyperspace $H[Y] \subset [Y]$, the finite topology on H[Y] is then the subspace topology on H[Y] determined by the finite topology on [Y].

Let $\{X_{\alpha}\}_{A}$ be a family of topological spaces.

1. <u>PROPOSITION</u>: <u>Factorisation</u> π^{-1} : $\mathcal{B}[\{X_{\alpha}\}_{A}]$ $\to \mathbb{I}[X_{\alpha}] \quad \underline{\text{is continuous (i.e.}} \quad \pi \quad \underline{\text{is an open map)}}.$

Proof: Let $W \subset A[X_{\alpha}]$ be a sub-basic open set, i.e., a set of the form $W = W_{\beta} \times_A I_{\{\beta\}}[X_{\alpha}]$ with $\beta \in A$ and $W_{\beta} \subset [X_{\beta}]$ open, and assume furthermore that W_{β} is basic, i.e., of the form $W_{\beta} = \langle W^i | i \in M \rangle$ with M finite and $W^i \subset X_{\beta}$ open for each $i \in M$. It suffices to show that $(\pi^{-1})^{-1}(W)$ $= \pi(W) \subset B[\{X_{\alpha}\}_A] \subset [X_A] \text{ is open. Defining}$ $V^i = W^i \times_A I_{\{\beta\}}[X_{\alpha} \subset X_A] \text{ for each } i \in M, \text{ we see that the collection } V = \langle V^i | i \in M \rangle \subset [X_A] \text{ is open and that}$ $V \cap B[\{X_{\alpha}\}_A] = \pi(W). \quad \Diamond$

2. <u>LEMMA</u>: Let $P_A \in BK[\{X_\alpha\}_A]$ and let $W \subset X_A$ be any open set with $P_A \subset W$. Then there is an open "tube" $T_A = IIT_\alpha \subset W$ (with $T_\alpha = X_\alpha$ for all but a finite set $N \subset A$ of indices) such that $P_A \subset T_A$.

Proof: For each $x \in P_A$ find an open tube nbd T(x) of x with $T(x) \subset W$, so that, for each $x \in P_A$, $T_\alpha(x) = X_\alpha$ for all but a finite set $N(x) \subset A$ of indices. $\{T(x) \mid x \in P_A\}$, being an open cover of the compact P_A , admits a finite subcover $\{T(x_i) \mid i \in M\}$ of P_A . Define $N = \bigcup_M N(x_i)$ and $V = \bigcup_M T_N(x_i)$. Now $V \subset X_N$ is open with $P_N \subset V$ and, since P_N is compact and N finite, there is an open box $T_N \subset X_N$ with $P_N \subset T_N \subset V$. Writing $T_A = T_N \times X_{A \setminus N}$, T_A is thus an open tube of the desired sort. \Diamond

3. THEOREM: Cartesian product π is continuous on $\mathbb{E}_{A} K[X_{\alpha}]$ and so this space is homeomorphic to $\mathbb{E}_{A} K[\{X_{\alpha}\}_{A}]$.

<u>Proof</u>: π being a bijection, and noting that $\pi\left(\prod\limits_{A}K\left[X_{\alpha}\right]\right) = \mathcal{B}K\left[\left\{X_{\alpha}\right\}_{A}\right], \text{ the above proposition leaves only the continuity of }\pi$ on $\prod\limits_{A}K\left[X_{\alpha}\right]$ to show. Take any $\left\{P_{\alpha}\right\}_{A} \in \prod\limits_{A}K\left[X_{\alpha}\right] \text{ and let } \mathcal{W} = \langle \mathbf{W}^{\mathbf{i}} \mid i_{\mathcal{E}} \mathbf{M} \rangle \cap \mathcal{B}K\left[\left\{X_{\alpha}\right\}_{A}\right] \text{ be a basic open nbd of } P_{\mathbf{A}} = \pi\left(\left\{P_{\alpha}\right\}_{A}\right) \text{ with } \mathbf{M} = \left\{1, \ldots, m\right\}.$

By the lemma above, there is an open tube $T_A = T_N \times X_{A \setminus N}$ such that $P_A \subset T_A \subset W = \coprod_M W^i$, where $N \subset A$ is finite and $T_N = \coprod_N T_\alpha \subset X_N$ is an open box. For each isM, let $p^i \in W^i \cap P_A$, and find an open tube nbd T_A^i of p^i contained in $W^i \cap T_A$. Now defining $U_\alpha = \langle T_\alpha, T_\alpha^1, \ldots, T_\alpha^m \rangle \cap K[X_\alpha]$ for each $\alpha \in N$, and writing $U = (\coprod_N U_\alpha) \times_{A \setminus N} K[X_\alpha]$, $U \subset \coprod_A K[X_\alpha]$, is an open nbd of $\{P_\alpha\}_A$ and $\pi(U) \subset W$, so we conclude that π is continuous. \Diamond

4. PROPOSITION: If A is a finite set, then Cartesian product π is continuous on $\mathbb{R} \circ [X_{\alpha}]$ and so this space is homeomorphic to $\mathcal{BO}[\{X_{\alpha}\}_{A}]$.

Proof: Imitate the last proof. ◊

5. <u>APPLICATIONS</u>: Let X, Y be topological spaces and consider an <u>application</u> of X to Y, i.e., a continuous map $f: X \times Y + Y$. Then the map $f^*: [X \times Y] + [Y]$, defined by $f^*(S) = \{f(S) \mid S \in S\}$ ($S \in [X \times Y]$), is continuous (see Theorem 5.10.1, pp. 170, of [1]), so that the restriction of $f^*(S) = \{f(S) \mid S \in S\}$ is also continuous. Let $f^*(S) = \{f(S) \mid S \in S\}$ and $f^*(S) = \{f(S) \mid S \in S\}$ is also continuous. Let $f^*(S) = \{f(S) \mid S \in S\}$ and $f^*(S) = \{f(S) \mid S \in S\}$ and $f^*(S) = \{f(S) \mid S \in S\}$ is continuous on $f^*(S) = \{f(S) \mid S \in S\}$ is continuous if $f^*(S) = \{f(S) \mid S \in S\}$ and $f^*(S) = \{f(S) \mid S \in S\}$ is actually an application if furthermore $f(f^*(S) \mid S \in S)$

Examples: (1) If X is a topological semigroup, then so is K[X]. (2) If X is a topological semigroup whose multiplication is an open map, then O[X] is also a topological semigroup. (3) If X is a topological vector space, then the space of convex compact nonempty subsets of X forms a topological semivector space (see 2.1 of [2]), and this allows us to embed it in a topological vector space (see Theorem 3.1 of [2]).

REFERENCES

- [1] Michael, Ernest, "Topologies on Spaces of Subsets," Transactions of the American Mathematical Society, Vol. 71 (1951), pp. 152-182.
- Prakash, Prem and Murat R. Sertel, "Hyperspaces of Topological Vector Spaces: Their Embedding in Topological Vector Spaces," Preprint Series No. I/74-17, Easter 1974, International Institute of Management, West Berlin, or Discussion Paper No. 83, Center for Mathematical Studies in Economics and Management Science, Northwestern University, Evanston, Illinois, (1974).