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A NECESSARY BUT INSUFFICIENT CONDITION
FOR THE STOCHASTIC BINARY CHOICE PROBLEM

Abstract
The "stochastic binary choice problem™ is the following: let there be

given n alternatives, to be denoted by N = {1,...,n}. For each of the n!

possible linear orderings {>m):n1£1 of the alternatives, define a matrix

v{™ (1 <m<n!) as follows:
nxn
m
(m) _ 1 a> b
Yab = {
0 otherwise.

(m)

Given a real matrix Qan' when is Q in the convex hull of (Y }m?

In this paper some necessary conditions on Q--the "diagonal
inequality"--are formulated and they are proved to generalize the Cohen-
Falmagne conditions. A counterexample shows that the diagonal inequality

(hence, perforce, the Cohen-Falmagne conditions) is insufficient. The same

example is used to show that Fishburn's conditions are also insufficient.









1. Background and Motivation

The problem described above arises in the context of inconsistent
decision: suppose we observe an individual choosing between pairs of
alternatives under seemingly unchanged circumstances, who fails to stick to
a single alternative out of each pair. We may disregard this individual,

dubbing him "irrational," but the unfortunate prevalence of the phenomenon
calls for a second thought: it may well be the case that the decision maker
under discussion is completely rational, but some of the relevant variables
which affect his/her decisions are not known to us, and consequently the
circumstances which seem to be the same are in fact quite different.

Since we may assume that the probabilities Qab (of preferring
alternative a to b) are observable, the question is: What are the
conditions on these probabilities to justify the above explanation for
consistency? Or, equivalently, when can say for sure that, no matter what
relevant aspects of the decision we have failed to observe, the individual
whose behavior is represented by the matrix Q is irrational?

Another interpretation of this problem is the following: let there by
given a population, distributed among the n! possible preference orders

according to some probability vector p = (pl,....p ). The matrix

n!

]
Q = 2;;1 me(m) is the pairwise majority vote of this population. The
question is, therefore: What are the matrices Q that may be the majority
vote of some population?

Another problem, closely related to the one discussed here, is the

(m) _ (z(m)

t
a,A)aeAgN (for every subse

following: for each >’Il define a vector Z
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A of N and every element a of A there is an entry in the vector Z(m)), by:
m
1 (VWb €A, b=#a)la> b)
(m) _
Zaa~ {
' 0 otherwise.

Given a real vector R = (Ra,A)aeAgN‘ when is it a convex combination of

(m),n! "
(Z )

The interpretation of this problem is, of course, very similar, only

that we assume that the probabilities Ra are given for every A € N, while

VA

the previous problem assumed these data to be given only for |A| 2.
Necessary conditions on the vector R (to be in the convex hull of
{Z(m)}m) were formulated by Block and Marschak (1960), and their sufficiency

was provided by Falmagne (1978). Block and Marschak have also formulated
necessary conditions for the stochastic order problem discussed in this
paper, but they have not proved them to be sufficient. McFadden and Richter
(1970) provided a counterexample which showed that the sufficiency
conjecture was false. (This example was also found independently by Cohen
and Falmagne (1978), Dridi (1980), Souza (1983), and Fishburn (1987).)
Cohen and Falmagne (1978) and Fishburn (1988) also suggested new sets of
necessary conditions, without solving the question of their sufficiency
which will be solved in the sequel. Other works on this problem are
McLennan (?), Barbera and Pattanaik (1986), and Barbera (1985). A survey
which also contains additional references is given by Fishburn and Falmagne
(1988).

In the following subsection we cite both Block and Marschak's necessary
conditions (called "the triangle inequality"”) and the proof of their

insufficiency. Section 2 will formulate and prove the necessity of stricter
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conditions, to be named "the diagonal inequality.” Section 3 is devoted to
the proof of the insufficiency of the diagonal inequality, while Section 4
includes some remarks concerning this paper's results' relations to the
literature. More specifically, it proves that the Cohen-Falmagne condition
is a special case of the diagonal inequality (hence also insufficient) and
that Fishburn's conditions are insufficient (even in conjunction with the

diagonal inequality).

1.1 The Triangle Inequality

We begin with some trivial conditions that any matrix Q € conv{Y(m)}m

must satisfy:

(i) Qab >0 VY a,b € N
(ii) Qaa =0 VaeN
(iii) Qab + Qba =1 VYV a#b €N.

Next we turn to the triangle inequality. It is easily seen that, since >m

(m)

is transitive for all m £ n!, each Y has to satisfy

y® Lym g y™ g A b e,
ab bc ac

Hence, a convex combination of {Y(m)}m will also satisfy this condition.

Using condition (iii) one may conclude that, for all Q € conv{Y(m)}m,
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This condition is the famous triangle inequality.

It should be noted that a necessary and sufficient condition on Q to
belong to conv{Y(m)}m must be representable in the form of finitely many
linear inequalities. Hence it was natural to suspect that the triangle
inequality was sufficient. However, the counterexample, which keeps being

rediscoverd, is the following: consider the matrix Q shown in Figure 1.

Q satisfies the triangle inequality. Assume that Q is indeed in the convex

(m)

hull of {Y(m)}m. Now, if pm >0, Y must be zero where Q is zero. The

preference orders {>m}m. the corresponding matrices of which satisfy this

requirement, must satisfy

(*) 1> 4 2> 4 3> 5

Now consider the set of indices A, such that for every m € A, (*) holds and

6 >m 1. A contains the four indices of the preference relations satisfying

2,3 5™ 6 5" 1 5™ 4,5,

Similarly, let B be those indices m, the preference relations of which

satisfy (*) and 5 M2, They are the four relations for which

1.3 >" 5™ 2" 46,



And finally denote by C the indices for which both (*) and 4 >m 3 hold.

These preference relations satisfy

1,254 " 3 5™ 5.6.

It is easily seen that these three quadruples are pairwise disjoint.

=Q = 1/2,

However, as Q61 =Q 43

52

meC pm = 1/2

p =1L =L

meEA “m meB pm

has to hold, which is an obvious contradiction.

2. The Diagonal Inequality

Let there be given two sets of indices, A,B € N such that |A| = |B| = k
(1 £k £n). Consider the submatrix of dimension k X k, corresponding to

A XBCNXN. (See Figure 2).

(A and B are not necessarily disjoint.) Enumerate the elements A and B in

k

j=1 and consider the diagonal

. - k -
an arbitrary way: A {ai}1=1, B (bj}
k
{(a;.b )}y
Now choose any matrix Y(m), corresponding to >m. and consider its

submatrix defined by A and B. Suppose that for 1 £ i # j £ k it is true

(m) _ y(m)

that Y = 1.
aibi ajbj
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This implies ai >m bi and aj >m bj' Surely, either ai >m bj or
a, )m b. (or both) must hold. (Otherwise, a. M b. 2 a, > b, S a..)
J 1 J J 1 1~ J

(m) (m)

Hence Ya b " 1 or Ya = 1 (or both), that is: for every pair of 1's

1% i®;
on the diagonal there must be at least one 1 off the diagonal.

(m)

As each Y consists solely of zeros and ones, the number of 1's on

the diagonal is

and the number of 1's off the diagonal is

(m)

8 = Eicizjek¥a b -
1]

(m)

Hence, each Y satisfies

sz(D

o) = (1/2)D(D - 1).

Let us now consider the plane DS, and translate the quadratic
inequality into linear inequalities: for every r, 1 £r £k - 1 we draw the

string connecting the two adjacent integer points on the parabola:

r+1

(r,(g)) and (r + 1, ( >

).

As for each Y(m) D and S may assume only integer values, S must be
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above each of these strings. (For the integer points, this condition is

equivalent to the quadratic one.)

The equation of the line connecting (r,(;)) and (r + 1,(r;1)) is
S = reD - (rgl). This proves:

Theorem: A necessary condition for a given matrix Q to belong to the convex
hull of (v™) is:

for every k £ n, every {a.}?_ CcN

k
i C N, every {b.}j=

1 J 1

and every 1 < r £k -1,

Q - (1/2)r(r + 1).

>
Li<izi<k apb; * Li-1 % b

17i

Remark 1: Choosing k = 2, A = {a,b}, B = {b,c} and r = 1, one gets the

following necessary condition:

> -
Qac * Wb 2 Qp * Qe ~ !
or
<
Qab * ch =1+ Qac'
So the triangle inequality is a special case of the diagonal
inequality.

Remark 2: The matrix Q of the famous example quoted above does not satisfy
the diagonal inequality:
Let k = 3, A= {4,5,6}, B = (3,2,1}, for which S = 0, D = 3/2, and the

condition
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S2>2r «D - (1/2)r(r + 1)

does not hold for r = 1.

3. The Insufficiency of the Diagonal Inequality

This section is organized as follows: first we define the term "graph
decomposition"”; then we prove the existence of a graph that is not
2/3-decomposable, and only afterwards we prove the insufficiency of the

diagonal inequality using the graph which is not 2/3-decomposable.

3.1 Definition of graph decomposition

First we define the half complete graphs over N: a directed graph

G(N,E) is called half-complete (over N) iff for any a # b € N either

(a,b) € E or (b,a) € E (but not both), and for every a € N, (a,a) € E.

The set of half-complete graphs will be denoted by &. (This notation
as well as the rest of the discussion presupposes a given N. As long as no
confusion may result, we will suppress unnecessary subscripts.)

Denote by 8T the transitive half-complete graphs over N: (G € &) is

transitive iff
(a,b), (b,C) € E => (a,C) € E-)
T _ T T,,n!
&>2& = {Gm(N,Em)}m=1

(The set of edges of G; will henceforth be denoted by E;.)
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It is obvious that there is a one-to-one correspondence between {Gi)m

and {Y(m)}m. since every transitive half-complete graph defines a linear
preference relation over N, and vice versa.

We are interested in the distributions over ST. Let G; be a random

variable assuming values in 8T according to the probability vector

p = (pl,...,pn'). For (a,b) € N x N define an event Prefa (a is preferred

b

to b) as follows:

T T
Prefab = UmeMab (GR = Gm)

T .
= < < n! = =
b {1 <m<n! | (a,b) € Em}. (For a b Prefab @#.) By this

definition, Prob (Pref

where M
a

ab) - zmeM pm'
ab

Definition: A graph G(N,E) € & is u-decomposable for (u € [0,1]) iff there

exists a probability vector p = (pl,...,pn') such that for all (a,b) € E,
>
Prob (Prefab) > M.

For instance, every G € & is 1/2-decomposable, since P, = 1/n! defines

Prob (Prefa ) = 1/2 for all a # b. We would like to know whether every

b
G € & is 2/3-decomposable for all n.

The negative answer is given in the next subsection.

3.2 The existence of a graph which is not 2/3-decomposable

We will need:
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Lemma: Let G € & be 2/3-decomposable, and suppose that

(a,b),(b,c),(c,a) € E. Then, if p is a probability vector of a

G-decomposition, and Prob denotes the probability measure defined by p,

(i) Prob (Prefba n Prefcb) =0
(ii) Prob (Prefab) = 2/83.
Proof:
(i) If Prob (Prefba n Prefcb) = ¢ > 0, then
Prob (Prefba U Prefcb) = Prob (Prefba) +

Prob (Pref
c

- < -
b) Prob (Prefba n Prefcb) < 2/3 €,

whence Prob (Prefa n Prefbc) >1/3 + ¢,

b
. T T . . T
But, since for all G° € & in which (a,b), (b,c) € E",
it is true that (a,c) € ET.
Prob (Pref_ ) 2 1/3 + ¢
ac
and Prob (Prefca) < 2/3, in contradiction to the 2/3-
decomposability of G.
(ii) By definition of decomposability,
Prob (Prefab) > 2/3.
If the inequality is strict, Prob (Prefba) < 1/8.
This implies
<
Prob (Prefba U Prefcb U Prefac) <
Prob (Prefba) + Prob (Prefcb) + Prob (Prefac)< 1
whence Prof (Prefab n Prefbc n Prefca) >0
which is impossible since all the graphs in 8T are
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transitive. //

The definition of the graph

We need 54 vertices:
. 6 vertices will be called a, b, c, d, e, f.
. 48 vertices will be called (i,j.k) for specific values of i,j,k:
- i will assume the values {1,2,3}.
- For each of these i-values, j will assume the values
{1,...,8}.
- The possible values of k depend upon the value of j,

according to the following table:

j-value 1 2 3 4 5 6 7 8

k values 1 1,2 1,2 1 1,2,3 1,2,83 1,2,3 1

(Thus, typical vertices are (1,1,1), (3,6,3), etc.) The edges between the

vertices are the following:

(a,b), (b,c), (c,a) € E; (d,e), (e,f) (f,d) € E

{(x.y) | x € {a,b,c}, v € {d,e,f}} CE

(abc is a circle and so is def, where all the edges between them are
directed from abc to def; see also Figure 4.) To define the edges of the

vertices (i, j,k) we will need a few abbreviations.
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First, we define only those edges touching the vertices {(i'j'k)}j,k'
where the edges touching {(z,j,k)}j'k and {(3'j'k)}j,k will be defined
according to a cyclic symmetry: the edges of {(z'j'k)}j,k are like those of
{(l’j'k)}j,k' where d is replaced by e, e by f, and f by d. The edges of
{(3’j'k)}j,k are again like those of {(1’j’k)}j,k' where d is replaced by f,
e by d, and f by e.

Next, we define some abbreviations:

(1) Five vertices (xl,xz,x3.x4.x5) are in an A-structure if (xl,xs).

(Xs,xz), (x3,x5), (xs,x4) € E

{2) Six vertices (xl.xz,xs,x4.x5.x6) are in an upper B-structure if:
(1) (X5 %) (Xg.Xq). (X,.X5) € E

(i1) (xl,xz.xs,x4,x6) are in an A-structure.

(3) Six vertices (xl,x2 x3,x4,x ,X.) are in a lower B-structure if:

5'°6
(1) (Xg. %), (X,,%:), (Xg.X5) € E
(ii) (xl,xs,xa.x4,x6) are in an A-structure.
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(4) Eight vertices (xl.x X ,xs) are in an upper

2 %3 %Xy X5 Xg Xg

C-structure if:

(i) (xs,xl), (x,.x.), (

2 %6 Vo (xg.x5) € E

X6,X3

(ii) (x,.Xx ) are in an upper B-structure.

(5) Eight vertices (xl'xz,xs.x4.x5.x6.x7.x8) are in a lower C-

structure if:

(i) (x6.x2). (x,.x.), (x6,x4). (XS'XG) € E

3'76

(ii) (xl.x .x8) are in a lower B-structure.

2.X6,X5.X7

With these abbreviations we finally specify the direction of edges

touching the vertices {(l,J,k)}j K’

For j =1 (a,c,d,f,(1,1,1)) are in an A-structure.

For j = 2 (a,d,f,c,(1,2,1),(1,2,2)) are in a lower B-structure.

For =3 (d,a,c,f,(1,3,1),(1,3,2)) are in an upper B-structure.
For j = 4 (d,a,f,c,(1,4,1)) are in an A-structure.

For j =5 (a,b,d,c,f,(1,5,1),(1,5,2),(1,5,3)) are in a lower C-

structure.
For j = 6 (a,d,c,e,f,(1,6,1),(1,6,2),(1,6,3)) are in an upper

C-structure.
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For j =17 (a,d,e,b,c,(1,7,1),(1,7,2),(1,7,3)) are in a lower
C-structure.

For j = 8 (d.b,e,c,(1,8,1)) are in an A-structure.
Since all the structures defined for {(1'j'k)}j,k do not involve edges
touching the vertices {(i'j'k)}j,k for i # 1, the symmetric structures
defined for {(2’j'k)}j,k and {(s'j'k)}j,k will have the same property, and
hence these definitions do not contradict each other. The rest of the edges
in G (that must belong to E for G € & to hold) may be directed in an

arbitrary way.

The Main Claim: The Graph G defined above is not 2/3-decomposable.

Proof: Suppose G were 2/3 decomposable, and let p = (pl,...,pn!) be a
decomposition probability vector. By the lemma proved above,
Prob (Prefac) = 1/3, whence there exists at least one index m for which
pm > 0 and (a,c) € E:. The lemma also implies, as (c,a) € E has an opposite
direction in G; (i.e., (a,c) € E: and not (c,a) € E:), that the two other
edges in the same circle are directed in Gx as in G, that is,
(a,b),(b,c) € E;. or a > b > c.

Similarly, the vertices d,e,f may appear in G: in only one of the
following three permutations:

d>"es™f, esmfrmd, fs"ds"e.

(The other three permutations are possible only if there are two edges in G,
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the direction of which is reversed in Gi. which is impossible by the lemma.)

Mg,

Claim A: The permutation of d,e.f in G; cannot be d >" e >
Proof: For the proof we have to define some new abbreviations. These
definitions are dependent upon both the original graph G and the new graph

G; discussed above:

(1) Four vertices (xl,xz,xa,x4) are in position 1 iff:

(1) (xz.xl).(x4.x3) € E
(ii) (xl,xz),(xa,x4) € E:
(iii) (x,,%,) € E; or
(x4,x1) € E:

(In the figure, the straight line indicates the direction of the
edges in G:, where the arcs are original edges of G, which are

reversed in G:.)

) are in an upper position 2 iff:

(2) PFour vertices (xl,xz,xs.x4

(i) (x ,xl),(xa,xz) € E

2
. T
(ii) (xl,xz).(xz,xs),(xs,x4) € Em
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(3) Four vertices (xl’x2'X3'x4) are in a lower position 2 iff:
(i) (xs.xz).(x4,x3) € E
L. T

(ii) (xl,xz),(xz.xs),(xs.x4) € Em

(4) Five vertices (xl,xz,xa,x4,x5) are in an upper position 3 iff:

(i) (xs,xz) € E

(ii) (xl,xz),(xz,xs).(xs,x4).(x4.x5) € Ei

(5) Five vertices (x,.x,.Xx .x4,x5) are in a lower position 3 iff:

1’72’78
(1) (x4,x3) € E

(ii) (xl.xz),(xz.xs),(x3.x4).(x4,x5) € E;

We have to prove a few auxiliary claims:

Claim A.1: If there is a vertex x_ such that (xl. ,X_) are in an

5 Xy Xg: Xy Xg

A-structure in G, it is false that (xl.xz,xs,x4) are in position 1. (Recall

that the definitions of the structures refer to a single graph, which is

always G in our discussion, whereas the definitions of the positions refer
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to both G and G:.)
Proof: By the definition of an A-structure,
(Xl.xs),(xs.xz) € E.

X,) were in position 1, (x

If (xl,xz.xs. 4

T
2,xl) € E. But (xl,xz) € Em (this

, . T T
edge is reversed in Gm), whence (xl.xs).(xs,xz) € Em. (The other two edges

in the circle x_,x

1 %20 %

5 must have in Gi the same direction as in G.)

. T
Similarly, (xs,xs),(xs.x4) € Em.

e oy . T T
By the definition of position 1, either (xz,xs) € Em or (x4.x1) € Em.

T .
In the first case (xs.xz).(xz.xa).(xs,xs) € Em' and in the second

T Sy e .
(x5.x4),(x4,x1),(x1.x5) € Em. Both possibilities contradict the

transitivity of G:. whence (xl. ) are not in position 1. //

xz.xs.x4

Claim A.2: If there are vertices, X, for which (xl.x ) are

X5 % 2 X3 Xy X5 Xg

in an upper (lower) B-structure in G, it cannot happen that (xl,xz.xa.x4)

are in an upper (lower) position 2.
Proof: We will prove the claim only for the upper structure and position,

since the proof for the other case is symmetric.

By the definition of the B-structure:
(Xz,xs),(xs,xa) € E

By that of position 2,
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T
(x3,x2) € E; (xz'xs) € Em'

, , T .
This implies (x2,x5),(x5,x ) € Em. (Since only one of

3

) T .
{(x3.x2),(xz,xs).(xs,xs)} € E may be reversed in Gm and (x3.x2) is indeed

reversed.) Consequently, (

T
but (xl,xz) € Em.

T
x5.x4) € Em while (x4.x5) € E and (xz.xl) € E,

Therefore (xl,x . X

.x4) are in position 1. By the definition of the

2'°5

B-structure, (x ,xz.x5.x4,x6) are in an A-structure, which contradicts claim

1
Al //

Claim A.3: If there are vertices Xgi Xy Xg such that

(xl.x2,x3.x4.x5.x6,x7.x8) are in an upper (lower) C-structure, then

(x,,x x5) cannot be in an upper (lower) position 3.

1'% %3 %y

Proof: Again we give the proof only for the upper structure and upper
position since the lower structure and position are dealt with
symmetrically. As in the preceding proofs, here we have

T T
(x2'x6)'(X6'X3) € Em’ whence (xl,xe),(xs,x4),(x4,x5) € Em. while
(xs.xl).(x ,X,.) € E. That is, (xl,x ,X,,X_) are in an upper position 2.

46 645

But, by the definition of the C-structure, (xl,x ,X,,X,) are in an

6" %4 %5 %7 %g

upper B-structure, in contradiction to Claim A.2. //



We now proceed to prove Claim A, that is, that d >m e >" f is
impossible. Assume the contrary, i.e.: (a,b),(b,c),(a,c),(d,e).(e,f),(d,f)
T

€ Em. The two triangles abc and def, when "spanned" in the linear ordering

>m, may be in one of the following eight positions:

(1) One of the triangles is "above" the other one, i.e., (c,d) € Ei or
(f,a) € Ez. In this case, (a,c,d,f) are in position 1, but, by
the definition of G, (a,c,d,f,(1,1,1)) are in an A-structure, a

contradiction.

T
m

Note that (d.f),(f.c) € Ei while (f.d),(c,f) € E, whence (a,d,f,c)

(2) The triangle def is "covered" by abc, that is: (a,d),(f,c) € E

are in a lower position 2. However, (a,d,f,c,(1,2,1),(1,2,2)) are
in a lower B-structure, and hence this possibility has to be

excluded.

(3) The triangle abc is "covered” be def, that is: (d,a),(c,f) € E:,

In this case, (d,a),(a,c) € E:, but (a,d),(c,a) € E, whence

(d,a,c,f) is in an upper position 2. As (d,a,c,f,(1,3,1),(1.3,2))
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are in an upper B-structure, abc cannot be "covered" by def.

(4) The triangles "intersect" each other, where def is "higher", or:

(d,a),(a,f),(f,c) € E;. But (a,d),(c,f) € E, so that (d,a,f,c)

are in position 1, a contradiction to the fact that

(d,a,f,c,(1,4,1)) are in an A-structure.

If none of the situations (1)-(4) occurs, the triangles are bound to

"intersect" each other, with abc "higher" than def, that is:
(a,d),(d,c),(c,f) € E;. Describing the remaining possibilities, (5)-(8), we

will not repeat this fact. We are therefore left with one of:

(5) b is "above" d, i.e., (a,b),(b,d) € Ei. As (c,d) € E, (a,b,d,c,f)

are in a lower position 3. Since
(a,b,d,c,f,(1,5,1),(1,5,2),(1,5,3)) are in a lower C-structure,

this possibility contradicts Claim A.3.
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(6) b is "below" d, e is "below" c, namely,

(a,d),(d.c).(c,e),(e,f) € E;. Here (a,d,c,e,f) are in an upper
position 3, while (a,d.c,e,f,(1,6,1),(1,6,2),(1,6,3)) are in an

upper C-structure, again a contradiction.

(7) b _and e are "between" d and c, and e is "above" b or:

(a.d),{(d,e),(e,b),(b,c) € E;. (b,e) € E, hence (a,d,e,b,c) are in
a lower position 3, while (a,d,e,b,c,(1,7,1),(1,7,2),(1,7,3)) are

in a lower C-structure, which is impossible.

(8) b and e are "between” d and ¢, and b is "above" e:

(d,b),(b,e),(e,c) € E;. Recall that (b,d),(c,e) € E, whence
(d,b,e,c) are in position 1. However, since (d,b,e,c,(1,8,1)) are

in an A-structure, this possibility must also be excluded.

It is easily seen that possibilities (1)-(8) exhaust all possible inter-
relations between the triangles abc and def, and as they were excluded one

by one, we have proved Claim A, that is: it is impossible that d >m e
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We may now write:

Claim B: It is impossible that e > e s™ d.

Claim C: It is impossible that £ >" d >" e.

The proofs of these claims are identical to that of Claim A, where the
vertices {(1'j'k)}j.k are replaced by {(2’J'k)}j,k and {(3'J'k)}j,k'
respectively. Since the remaining three permutations of def were proved

impossible by the lemma, G is not 2/3-decomposable. //

3.3 Proof of the insufficiency of the diagonal inequality

In view of subsection 3.2, the main point is:

Lemma: Let G(N,E) € &. Define

-
| 2/3 a#b, (a,b) € E
|

Qab = i 1/3 a#b, (a,b) ¢ E
| O a=>b
L

Then Q satisfies the diagonal inequality.

Proof: Let there be given two indices sets A,B € N:
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Kk K
A=daghy B=ibyig
Denote
K
D = =
Liot %o S Liciziek Qb
ii 1]

We wish to prove that, for all 1 <r £k -1,

Distinguish between two cases:

Case (a): k = 2, whencer = 1. Here A = {a,.a

If S >0, then S 2 1/3. As Q < 2/3 for all a,b € N, D £ 4/3. This

ab ~

implies

S - rD + (rgl) >1/3 - 4/3 + 1 = 0.

If, on the other hand, S = 0, we necessarily have Q = Q = 0, whence
a,b a,b
172 271
a1 = b2. a2 = b1
. r+1
In this case, D = Q + Q = 1 and again S - rD + ( ) =
alb1 a2b2 2

0 -1+ 1=0, that is, the diagonal inequality holds.
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Case (b): k > 2. As Q < 2/3 for all a.b € N, D £ 2/3 k. To have a lower

ab ~ -

bound for S, we need:

Observation: Out of the k(k - 1) elements Qa b (i # j), at most k may be
i

zero.

Proof: Assume there are at least (k + 1) different pairs (i,j) for which

ai = bj‘ Then there must be at least one index j for which there are

i, # i, such that a = b, = a, . This contradicts the assumption that
1 2 11 1 i,

|[A] = k. //

Since for a # b, Qab > 1/3, we have

S 2 k(k - 2) « 1/8

whence

S-rD+ 1/2 r(r +1) 21/3 k(k - 2) - 2/3 kr + 1/2 r(r + 1) =

1/3 (k - r)(k -r -2) + 1/6 r(r - 1).
Again we distinguish between two cases:
(b.1) r <k - 2, which implies S - rD + 1/2 r(r + 1) 20
immediately, and

(b.2) r = k -1 in which case

S-rD+1/2r(r +1) 2-1/3 +1/6 (k - 1)(k - 2).
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But k > 2 implies (k - 1)(k - 2) 2 2, and hence
S -rD+ 1/2 r(r + 1) > 0.
So that Q satisfies the diagonal inequality. //

Qur desired conclusion is:

Claim: The diagonal inequality is not sufficient for a matrix Q to belong

(m)
to conv{Y }m

Proof: Let G be the graph constructed in subsection 3.2, which is not

2/3-decomposable. Define Q as in the lemma, which also assures that Q

)

satisfies the diagonal inequality. Note that were Q in conv{Y(m

} , G would
m

have been 2/3-decomposable. //

4. Remarks

In this section we will show that all the conditions mentioned in

Fishburn and Falmagne (1988) are insufficient.

4.1 The diagonal inequality generalizes the Cohen-Falmagne conditions

Proof: The Cohen-Falmagne conditions are the following: for every two
subsets A,B with |A| = |B] = mand AN B = @, and every 1-1 function f

mapping A onto B,
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< —
Liea Lkep\(f(i)) %k * Liea Qe(ipy MM - 1)+ L
Given A, B and f, let us enumerate the elements of A and B such that
f(aj) = bj for i £ j £m. Then in our notation this condition can be

rewritten as

m
Zlfiijfm Qaibj * Zizl Qbiai Smm - 1) + 1

or

X
i=1

1sigjsm (1 -, , ) * L. Q , Smm-1) +1
joi 171

which is equivalent to

> p.a, - 1.

Licizjcm Q a, i=1 "i%i
J

Note that this is exactly the diagonal inequality for r = 1 (k = m and

A and B are, unfortunately, in reverse roles). //

4.2 Fishburn's conditions are insufficient

Proof: Fishburn's conditions are of the form:

z

Cheet Uy -
(i.50€c” M~ Ly jyec- 0py < gk - 2
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where lC+} = 2|C | = 4k - 2 and k > 2. Let us assume that Qij € [1/3, 2/3]

for all i,j. Then it is easy to see that

z Q,, - L Q.. £2/3 (4k - 2) - 1/3 (2k - 1) =
(i,j)ec” *J (i,j)ec” *J
=2k -1 €3k - 2.

Hence these conditions are always satisfied for Q-matrices that do not
contain numbers smaller than 1/3 (equivalently, larger than 2/3). In
particular, the matrix Q of Section 3.3 above satisfies these inequalities,

my

although it is not in conv{Y n

(Note that we have in fact shown that the diagonal inequaltiy, the
triangle inequality, Cohen-Falmagne conditions, and Fishburn's conditions

taken together do not constitute a sufficient condition.)
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