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Abstract

The paper presents a simple pairwise meetings model of trade. The new
feature is that agents have asymmetric information about the true state of
the world. The focus is on the transmission of the information through the
process of trade. The qualitative question: to what extent is the
information revealed to uninformed agents through the trading process, when
the market is in some sense frictionless? In particular: does the
decentralized process give rise to full revelation results as derived by the
literature on rational expectations for centralized and competitive
environments? In the context of the model of this paper, it turns out that
the information is not fully revealed to uninformed agents, even when the

market is in some sense approximately frictionless.



1. Introduction

Much of the received economic analysis is concerned with markets
characterized by centralized trading. In such markets the trades are
carried out at publicly announced prices and all traders have access to the
same trading opportunities. In many important markets, however, the trading

process is decentralized--prices are quoted and transactions are concluded

in private meetings among agents. The present paper considers a market in

which the trading process is both decentralized and takes place under

conditions of asymmetric information. The main objective is to study the

transmission of information via the trade process in such a market.

Under conditions of asymmetric information the process of trade itself
may transmit some of the relevant information, and agents may attempt to
extract it before they trade. This insight motivates, of course, the
literature on rational expectations, which observes that in a market
characterized by centralized trading the price may aggregate and transmit
information. The concept of Rational Expectations Equilibrium (REE) refers
to a centralized market which is also competitive and requires that agents
indeed utilize whatever information that can be extracted from the
equilibrium price.

In markets in which the trading process is decentralized, prices may
not be publicly observed and it is of interest to investigate other forms of
transmission of information via the trade process. The present paper
investigates the transmission of information through the process of trade in
a market in which transactions are concluded in pairwise meetings of agents.
The agents have asymmetric information on some underlying parameter which

affects the value of the goods throughout the market, and they are aware of



the relationship between the value of this parameter and the distribution of
agreements reached in the market. The counterpart of extracting information
from price in a competitive market is sampling alternative trading partners
in an attempt to learn from the distribution of their offers about the value
of the parameter of interest. The main question concerns the extent to
which information is revealed to the participants through the trade process.
In particular, we shall inquire about the extent of information revelation
when such market is approximately frictionless in the sense that the cost of
sampling is negligible.

To address these questions we use a simple model with the following
features. There are two populations of agents: sellers who have one unit
of an indivisible good for sale, and buyers who seek to buy one unit. The
market operates over time. In each period all agents are matched with
agents of the opposite type at random. If two matched agents agree on the
terms of the transaction, they exchange the good and leave the market and if
they disagree, they stay in the market to be rematched. The asymmetric
information is about some parameter which we shall think of as the value of
all units of the good traded in this market and which can be either high
throughout or low throughout. Some of the agents who enter the market each
period know the true value of the good and others do not. The range of
possible "bargaining positions™ that agents can adopt is also restricted to
two: a seller can either insist that the true value is high and demand the
high price or be willing to concede to the low price, and similarly a buyer
can insist that the true value is low and demand the low price or be willing

to agree to the high price.



We characterize the steady state equilibria of this market. The
distribution of the agreements depends on the true value. The uninformed
agents are aware of this relationship and their equilibrium behavior
incorporates the optimal (given their information) amount of search to learn
about the true value. The force that limits the agents’ learning at
equilibrium is their impatience which is captured by a constant discount
factor 6.

To address the question of whether or not information is fully
revealed to the uninformed agents when the market becomes approximately
frictionless, we consider the equilibria when § approaches 1. We show that
the information is not fully revealed in the sense that a non-negligible
fraction of those who are uninformed as they come into the market end up
transacting at the wrong price--a price at which they would not want to
transact if they knew the true value. This is because when the market is
made frictionless there are two opposing effects. On the one hand, it
becomes less costly for an uninformed agent to insist on the more favorable
price and collect more observations before he concedes to the less favorable
price. On the other hand, when all uninformed agents prolong their search
in an attempt to acquire more information, there is less to be learned from
each meeting. Therefore, the overall effect need not be full revelation of
the information.

The related literature includes three lines of work. Firstly, there
is the literature on information transmission in REE (e.g., Grossman [1981]
and Grossman and Stiglitz [1980]) and, secondly, there is the literature

that looks at the microstructure of the REE (Hellwig [1982]; Dubey,



Geanakoplos and Shubik [1984]; Blume and Easley [1984]; Kyle [1986]; and
Laffont and Maskin [1986]). These two literatures are related to the
present paper because they deal with similar qualitative questions in the
context of a different type of market. An important difference is that here
there are no commonly observed prices, and hence information is transmitted
by other means than the price. Finally, in terms of its basic model the
paper is related to the literature on matching and bargaining markets. It
differs from most other contributions to this literature in that the agents
are asymmetrically informed about some payoff relevant marketwide
parameters. In this respect the most closely related models are Rosenthal
and Landau [1981] and Samuelson [1987], which include some form of imperfect
information. They differ from the present model in that they consider the
case of imperfect information of the independent values variety, while here
the asymmetric information is of the common values variety--it concerns

marketwide parameters which affect all traders.

2. The Model

The market is envisioned as an ocean of agents. There are two
populations of equal size: sellers who are interested in selling a unit of
some indivisible good, and buyers who are interested in buying a unit of the
good.

The market operates over time which is divided into discrete periods.
We do not consider an initial or final period so that the time index can be
thought of as going from -® to «. In each time period each agent meets at
random exactly one agent of the other type. In the end of the period a

meeting terminates either with an agreement, in which case the two agents



transact and leave the market, or in disagreement, in which case the two
agents stay in the market to be rematched. There are constant streams of
new arrivals: in the beginning of each period, before the matching stage, a
measure M of new buyers and a measure M of new sellers join in.

The payoffs from an agreement depend on the underlying state of the
market, which affects both the value of the good to the buyer and the cost
to the seller. There are two possible states: the high value-high cost
state, H, and the low value-low cost state, L. The true state is the same
for all units of the good traded throughout the market and it does not
change over time. It is either H for all units throughout, or L for all
units throughout. (The reason that we introduce two states though only one
state actually prevails is that, as we shall see later, some agents will be
uncertain as to whether the true state is H or L.) Let s and uy be the
seller’s cost and the buyer’s utility in state i = H,L. That is, if in
state i a good is sold for price p, the resulting seller’s and buyer'’s
surpluses will be p - s and u; - P, respectively. It is assumed that
Uy > cy >u. > c.. Note that ug > i i = H,L, means that in each state

L L

there is room for a mutually beneficial transaction, and u; < ¢, means that,
if a seller thinks that the state is H and a buyer thinks it is L, there is
no room for agreement.

All agents discount expected future benefits using a constant discount
factor § < 1. Thus, the payoff to an agent who ends up with surplus y

after having spent t periods in the market is 6ty. The payoff to an agent

who never transacts is zero.



The prices are determined in bargaining. The bargaining takes place
within one period and can be described by a simultaneous announcements game
in which each agent names a state. Let the lower case letters h and £ stand
for announcements of states H and L, respectively. The following matrix
describes how the two announcements determine whether and at what price the

exchange takes place.

buyer
h 2
h hh .
(1) P disagree
seller
2 £h 22
P P
where uy > phh > ey >y > p22 > e, and phh > pzh > pjg.

Thus, when both agents agree on a state, they trade at the
; ; hh 2 " "o
corresponding price p or p ; when both are "soft," i.e., the seller
. £h
conceding to £ and the buyer to h, they trade at p~ ; and when both are
"tough," i.e., each insisting on the state which is more favorable to him,
they do not transact. The assumptions that relate the prices to the
parameters u, and c; assure that, when the agents agree on the true state,
both enjoy positive surplus. But if they agree on the wrong state, one of
them will suffer a loss. The latter property follows from u < ey and its
purpose is to rule out a class of pooling equilibria in which there is one

position which all agents adopt in both states, since these equilibria are

uninteresting for the analysis of the present paper.



As mentioned above, the true state is the same for all units and all
agents and the reason we consider two states is that some agents will be
uncertain as to whether the true state is H or L. Regarding the
information, it is assumed that a fraction x_. of the sellers and a fraction

S

Xy of the buyers who enter each period know the true state. The other
entrants do not know the true state and upon entry they just have (the same)
prior beliefs that the true state is H with probability ay and L with

probability a = l - a In subsequent periods an agent’s information

H
includes the information with which he entered the market and his personal
history of meetings since entry. It is assumed that what an agent learns in
a meeting is just the position of the other agent.

Having specified the agents’ information, we can define a strategy. A
strategy for an agent is a sequence of decision rules prescribing the
agent's position, h or £, in each meeting, as a function of his information.

Consider now a snapshot of the entire market in period t. There are

K(t) sellers and (by assumption) an equal number of buyers. The

distributions of agents between positions are given by

Fraction adopting position

h 2

sellers Sh(t) Sj(t) =1 - Sh(t)

buyer B8R (¢t) 8¥e)y = 1 - BR(e)




That is, S(t) with the superscript h means the fraction of all sellers who
at that period adopt position h, etc.

The description of the matching process can be made now more precise:
at date t the probability that a seller (resp. buyer) has of meeting a buyer
(resp. seller) who adopts position j is Bj(t) (resp. Sj(t)). In the
aggregate, it is assumed that in date t the number of meetings between
buyers who adopt position j,j = h,£, and sellers who adopt position
i,i = h,2, is K(t)Si(t)Bj(t). This assumption can be motivated by assuming
continuum of agents and taking proper care to avoid the complications that
arise when one considers a continuum of random variables, but here we take
it as a primitive of the model.

The strategies and histories of the agents who are present in the
market in period t together with the strategies of the agents who enter at
period t+l determine the evolution of K(t+l), Sj(t+l) and Bj(t+1) from their
predecessors in period t. For example, recall from table (1) that the
meetings that result in disagreement are between sellers who adopt position
h and buyers who adopt position £. Therefore, only the K(t)Sh(t)BE(t)
sellers (buyers) who participated in such meetings at t continue to t+l and
hence K(t+l) = K(t)Sh(t)Bz(t) + M.

We shall say that the market is in a steady state if K(t), S(t), and

B(t) are the same for all t. In what follows we shall focus on steady
states and therefore omit the argument t.

An equilibrium consists of two numbers KH and KL; two distributions of
the seller population S : hog?

2 . . .
= (S ’SH) and S, = (SL’SL)’ two distributions of

H L



the buyer population B (B;,Bﬁ) and B, = (Bi,Bi); and assignment of

H L
strategies to agents such that:
(1) Each agent'’s strategy maximizes his payoff, given the

distributions Si and Bi’ i =H,L.

(ii) If the true state is i = H,L, the steady state characterized

by Ki’ Si’ and Bi is consistent with the strategies.

Thus, the equilibrium is based on two steady state configurations:
one corresponding to state H and one corresponding to state L. All agents
know that the market is in one of the two. Condition (i) requires that each
agent'’'s strategy is optimal, given this knowledge and his private
information regarding the true state. Condition (ii) requires that, if the
true state is i, the equilibrium behavior of all agents combined together
indeed sustains the appropriate steady state. That is, if K(t) = Ki,
S(t) = Si and B(t) = Bi and all agents follow the equilibrium strategies,
then these magnitudes evolve so that K(t+l) = Ki’ S(t+l) = Si' and

B(t+l) = Bi'

3. The Equilibrium

Agents know the distribution of the positions h and £ prevailing among
agents of the opposite type, conditional on the true state. Thus, an
optimal strategy maximizes an agent’s expected payoff, given these
distributions and given what the agent knows about the true state. An
informed agent knows the true distribution and hence the optimal strategy is

one of optimal search from a known two-point distribution. An uninformed
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agent does not know the true state and hence the optimal strategy is one of
optimal search from an unknown distribution which belongs to a family of two
such distributions.

Notice that once a seller adopts the position £ or a buyer adopts the
position h, they reach agreement immediately. Therefore, the only relevant
seller’s strategies are of the form: 1insist on h for n meetings in a row
and then switch to £ (where n can also be 0 or infinity). Similarly, the
relevant buyer’s strategies are of the form: insist on £ for n meetings in
a row and then switch to h. Let us refer to a strategy by the integer that
characterizes 1it.

Suppose that the market is in a steady state. All agents know that,

if the true state is H, the steady state distributions of buyers’ and

. - . h £ h 2, .
sellers’ positions will be BH (BH,BH) and SH (SH'SH)’ if the true state
. . . . . h £ h .4
is L, the steady state distributions will be BL - (BL,BL) and SL - (SL,SL).

Given BH and BL’ let Vs(n,Q) denote the expected value of strategy n to a
seller who believes with probability Q that the true state is H. Define the

set NS(Q) by

(2) NS(Q) = Arg Max Vs(n,Q) ,
n

where n can assume the value = as well. Now, an optimal strategy for the
seller is an integer in the appropriate set NS: for an informed seller this
is an integer in Ns(l) or in NS(O) according to whether the true state is H
or L; for an uninformed seller this is an integer in NS(QH).

Notice that Vs(n,Q) and NS(Q) depend on B, and B.. However, although

H L

BH and BL are endogenous to the model, we chose to supress them as arguments
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of VS and NS’ since for much of the following discussion the distributions

BH and BL are fixed and the focus is on how the optimal strategies depend on

Q. It will be useful, however, to remember this dependency when we consider
later the equilibrium determination of B, and B. .

H L

Claim 1:

(1) For any By and BL’ Ns(l) = {=}.

(ii) NS(O) = {0} or («} or (O0,...,=}.
c o 2 2
(iii) If BH < BL , then NS(aH) - {ns} or {ns,ns+1) ,
where 0 =< ng < o,
(iv) If BE > 52 then N_(a,) = {0) () {0,=)
yzB en N (ay or or , or
{O,...,=}.
(v) For any BH and BL, Max NS(O) < min Ns(aH).

The claim is proved in appendix A, but it is explained informally
below. Note that (i) and (ii) deal with the best responses of the
informed sellers. Part (i) follows immediately from the facts: puZ < c

and phh > p2 , since they imply that, when the true state is H, it is a

H

dominant strategy for the informed seller to insist on h perpetually. Part
(ii) follows from the fact that the seller always prefers to sell at a
higher price, but in state L he is also willing to sell at pgz. Thus, if BE

is sufficiently small, say Bz = 0, it will be optimal for the informed
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seller to adopt position £ and sell for pgﬂ, while if Bi is high, say B: =
1, it is optimal to adopt position h and sell for phh, and for some
intermediate value of Bg the seller will be just indifferent between the
two positions.

Parts (iii), (iv), and (v) deal with the best responses of the

uninformed sellers. These best responses, Ns(a are simply sandwiched

ny
between NS(O) and Ns(l). If » ¢ NS(O) so that in state L it is optimal for
the informed seller to insist on h, then a fortiori it is optimal for the
uninformed, who assigns some positive probability to the possibility that
the true state is H. If NS(O) = {0), then there exists a level

QS,O < QS < 1, such that it is optimal for the uninformed seller to adopt
position h or £ according to whether the probability of the true state being

H is above or below QS' Now, after sampling n buyers who took the position

£, the updated belief in the true state being H is (using Bayes’ formula)

(3) Prob(H|n) = ay (Bﬁ) Y ey [Bfl)“ + aL(Bf) i

Part (iii) of the claim follows from the fact that if Bﬁ < Bi, i.e., in

state L the fraction of buyers who adopt position £ is greater than it is in
state H, then Prob(H|n) is strictly decreasing in n. Therefore, there is a

finite n such that Prob(H|n) < QS' Let ng denote the minimal such n. TIf

Prob(HInS) < QS’ then NS(aH) =n If Prob(HlnS) = Q then after ng

S’ S’

unsuccessful draws the uninformed is just indifferent between positions h

and £ and NS(aH) = {nS,nS+1}.
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Part (iv) follows from the fact that if Bl = B}, then Prob(H|n) is

L’
increasing with n and hence NS(aH) = {0} or {«) or {(0,...,»} according to
whether ay < QS or ay > QS or a = Qs.

Since the role of buyers and sellers is completely symmetric, we can
repeat the above discussion to obtain the analogous magnitudes for the
buyers. Letting VB(n,Q) denote the expected value of strategy n for a
buyer who believes with probability Q that the true state is L, and

NB(Q) = ArgMaxVB(n,Q), we can restate claim 1 for the buyer'’s strategies:
n

for any S, and S NB(l) = (@} ; NB(O) = {0) or {=} or {0...x) ; if

H L’
h h . h h
SL < SH , NB(aL) = n, or {nB,nB+l) , 0 = ng < o ; and if SL > SH ,
NB(aL) = {0} or {=) or {0,x}) or {0,...,o}. Note that VB and NB depend, of

course, on SH and SL although they do not appear as arguments. Note also

that to keep the symmetry, a strategy n for the buyer means adopting
position £ (rather than h in the seller’s case) for n times, and that the

argument of N_ is the probability that the true state is L (rather than H).

B
The agents’ strategies determine jointly the market magnitudes: the
. . - h 2 h 2 .
distributions Si = (Si'si) and Bi - (Bi’Bi)' i = H,L, and the total numbers
KH and KL. At equilibrium, these magnitudes satisfy the steady-state

conditions which require that they are constant over time. The stationarity
of Ki’ i = H,L, is equivalent to the requirement that, in each of the
states, the flow of arrivals M is equal to the endogenously determined flow

of departure. That is, in state H,

@ e el
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Since each seller meets a buyer, the group of sellers who transact and
. £ .o h_h
depart consists of those KHSH who adopted position £ and those KHSHBH who

adopted the position h and met a buyer who agreed to it. Similarly, in

state L,

|l

h 2
(5) M = K B + KBS

The stationarity of Si and Bi’ i = H,L, amounts to similar
requirements on the equality of inflows and outflows into and from the
populations of agents of each particular type who adopt a particular
position. Suppose, for example, that all informed sellers use strategy « in
state H and strategy 0 in state L and all the uninformed sellers use

strategy nS,O < n, < . Then the stationarity of SE

S y requires,

i 2. Mg
(6) s, = (1 - xOM(B) S/

In state H, the LHS captures the fraction of the seller population who
adopted position £ last period (and hence transacted and left), and the RHS
captures the number of sellers who switched to position £ only this period
divided by KH. The latter group consists of those out of the (l-xS)M

uninformed sellers, who entered the market n_, periods ago and who have not

S
met a buyer who would agree to h. Since an uninformed seller experiences

n
such a history with probability (Bé) S, the RHS indeed captures the size of

that group. Similarly, the stationarity of SE

requires.
L q

(7) si = [XSM + (1 - XSJM(Bi]ns]/KL
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That is, in state L the fraction of all sellers who adopted position £ last
period and departed (on LHS) is equal to the number of those, who have just
adopted position £, divided by KL (on RHS). This number consists of those

uninformed who were disappointed for n_ periods and the XSM informed who

S
have just entered.

Analogously, if all informed buyers use strategy « in state L, and

strategy O in state H, and if all the uninformed buyers use strategy

nB,O < nB < 1, then the stationarity of Bi and BE amounts to
h hy Tg
(8) B, = (1 - xB)M(sL) /Ky
(9) B - [x.M + (1 - x )M[sh)nB]/
H B B H KH
. h 2 _h _2 .
Now, suppose there exist values K,,S,,S.,B.,,B.,i = H,L and numbers n
i’1717 171 S
and ng such that NS(O) = {0}, Ns(l) = (@}, NS(aH) = {ns),NB(O) = {0},

NB(l) = (w0}, NB(a {n_}, and such that equations (4)-(9) hold. Then this

L - ing

configuration is an equilibrium. Notice, however, that an arbitrary
equilibrium does not have to satisfy (6)-(9), since these equations are
derived for a particular configuration of optimal strategies and, as claim 1
asserts, there are several possible configurations of the optimal
strategies. In the end of this section we shall use the same principles as
above to derive the other relevant versions of conditions (6)-(9).

The first proposition shows that, at least, for some interpretable

range of the parameters there exists an equilibrium.
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22 hh
- [chH + aLcL] > 0 and or aguy +oaup - P > 0,

Proposition 1: 1If p LL

then there exists an equilibrium.

The sufficient condition states that, at least for one type of agent,
the expected benefit from trading at the less favorable price, evaluated at
the prior probabilities is positive. This condition rules out a situation
in which the uninformed agents of both sides keep accumulating in the market
without ever taking the risk of agreeing to trade at the less favorable
price.

The following proposition provides two observations that help in the

characterization of equilibrium.

Proposition 2: 1In equilibrium:

(i) If © ¢ NS(aH) , then « ¢ NB(aL)

2 2 h h
u < BL and SL < SH

(ii) B
The proof is deferred to appendix A. The implication of part (ii) of the
proposition together with claim 1 is that, in equilibrium, the sellers’ best

responses are either

(10) Ng(1) = (=) ; Ng(0) = {0) ; Ny(ap) = {ng) or (ng,nc+l}) , ng < ()

or

(11 Ng(1) = A=) 5 Ng(0) = (0,...,=) ; Ng(ap) = (=)
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Similarly, the buyers’ best responses are either

(12) NB(l) = (o} ; NB(O) = (0} ; NB(aL) = (n,} or {(n,,n,+1} , n, < («)

B B’ B
or

(13)  Np(D) = (=) 5 Ny(0) = (0,...,®) ;  Nyla) = (=)

Furthermore, it follows from part (i) that the only possible configurations
in equilibrium are (10) and (12); (10) and (13); (11) and (12). That is,
the configuration consisting of (11) and (13) is impossible in equilibrium.

Recall that the steady-state conditions (6)-(9) were derived for the
case in which the sellers’ and buyers’ strategies are given by (10) and
(12), respectively, and where both NS(aH) and NB(aL) are singletons. Now,
to each possible configuration of the strategies corresponds a different
version of the steady-state conditions (6)-(9) (conditions (4) and (5) are
always the same).

Thus, if (10) holds and NS(aH) = (ns,ns+l}, then (6) and (7) are

replaced by

(6") s = (1 - xS)M(Bﬁ)ns{gs + (1 - gs)(Bﬁ)]/KH
(7") si - {XSM + (1 - xs)M(Bi)nS[gs + (1 - gg) (Bi)]}/KL :

where g € [0,1] captures the fraction of the uninformed who adopt strategy
ns, while the remaining fraction l-gs adopt ns+1 (note that when Eg = 1,

(6') and (7') coincide with (6) and (7)).
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If the sellers’ strategies are given by (11), then (6) and (7) are

replaced by

(6") s =0

oo T~

(7") S} = rgxM/KL

where rg ¢ [0,1] is the fraction of the entering informed sellers who adopt
strategy O, while the remaining adopt strategyl @,
Analogously, if the buyers'’ strategies are given by (12) and if

NB(aL) = {nB,nB+1}, then (8) and (9) are replaced by

(8") B

L= [LxQM(San[gB + (1 - gB)SE]/KL

o e 0 i

where By ¢ [0,1] is the fraction of the uninformed buyers who adopt strategy
ng.
If the buyers’ strategies are given by (13), then (8) and (9) are

replaced by

(8") B, =0

(9M") By = rpxpM/Ky
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where ry ¢ [0,1] is the fraction of entering informed buyers who in state H
adopt strategy O.

Finally, notice that the proposition does not allow all possible
strategy configurations. It may not happen at equilibrium that an informed
agent strictly prefers to "misrepresent" and insist on the other state.
Thus, at equilibrium, in state L(resp. H) an informed seller (resp. buyer)
is at most indifferent between h and £, but may not strictly prefer h
(resp. £). It also may not happen at equilibrium that both (1l1l) and (13)
hold simultaneously. Thus, if (1l1) holds so that uninformed sellers do not
modify their behavior due to learning and some of the informed sellers may

"misrepresent" their information in state L, then (12) must hold so that the

informed buyers strictly prefer position h in state H.

4, Revelation of Information

The information in the market is originated in the informed agents who
enter the market knowing the true state. This information is expressed in
the market by the different distributions of positions which prevail in the
different states. Thus, if an uninformed agent could observe the
distribution of positions throughout the market, he could learn the true
state. However, uninformed agents cannot make such an observation, but can
only learn about the distribution by sampling agents of the opposite type
and observing their positions. Obviously, since due to the discounting,
search is costly, uninformed agents will usually draw only a limited sample
before they transact, and hence will not learn the true state with
certainty. Therefore, as long as there are frictions which make the search

costly, it is not surprising that the information is not fully revealed
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through the trading process. That is, a non-negligible percentage of the
uninformed agents end up transacting at the "wrong price"--a price at which

they would not want to trade if they knew the true state. The interesting

question then is to what extent is the information revealed through the
trading process when the frictions are made negligible?

We shall say that the market is approximately frictionless if the
common discount factor § is sufficiently near 1. O0f course, if everything
remains the same and only the discount factor of one uninformed individual
is made arbitrarily close to 1, then this individual will be inclined to
search more and hence will be unlikely to end up transacting at a price that
he would reject if he were informed. When the frictions are lessened for
all participants in the market, then all the uninformed will be prepared to
search more. However, this does not guarantee that they will end up being
better informed, since the equilibrium will be such that, at each state and
each period, more uninformed agents will be searching the market, and hence
the informative content of each meeting will be poorer.

Thus, it is not immediately obvious whether or not the information is
revealed through the trading process when it is made approximately
frictionless. To examine this issue in detail, let fs denote the fraction
of the uninformed sellers who in state H end up transacting at pgh or p
To compute fS notice that, when the true state is H, the uninformed sellers
who depart in each period after transacting at pﬁh or p22 are exactly the
KHS£ sellers who adopt position £ in that period. Therefore,

fS = KHsﬁ/(l— xS)M, which is the above number divided by the number
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(1 - xS)M of the uninformed sellers who enter each period. It follows from

(6) and (6") that

(2] s .
, [BH] if NS(aH) = ng ¢ (0,x)
(14) £ = St _ {1 if N (a.) = O
S (1-x )M S‘"H
0 if Ng(ay,B,) = =

Analogously, let fB denote the fraction of the uninformed buyers who

at state L end up transacting at p'Eh or phh. Observe from (8) and (8") that
((.£) g .
{SL] if Ny(ap) = ng e (0,=)
h
KLBL
(15) fB = m =<1 if NB(aL) = 0
L0 if NB(aL) = ®

Now, the question of whether the information is fully revealed at
equilibrium, when the market is approximately frictionless, reduces to the
question of whether the limiting values of fs and fB are positive, when the
limit is taken over a sequence of equilibria corresponding to a sequence of
§ converging to 1. The meaning of positive limits is that, even when the
market is approximately frictionless, a non-negligible fraction of the

uninformed traders do not learn the information and transact at the wrong

price.
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Proposition 3: Consider a sequence of § converging to 1 and a corresponding

sequence of equilibria such that limfS and lime exist. Then at least one

of these limits is positive.

Since the complete proof is rather long, it will be useful to provide
first an informal explanation of the intuition. Suppose that the true state

is H and that NS(QH) =n_ < o and NB(aL) =n <o, If fS is close to zero

B
£h £L
so that almost no sellers trade at p° or p =, it must be that buyers rarely

S

trade as long as they adopt position £, so that almost all the uninformed

buyers stay in the market for the full n_ periods until they switch to h,

B
and almost all the M buyers who depart each period are those who adopted h.

Thus, in a given period the number of buyers who adopt £ is about nB(l-xB)M,

while the number who adopt h is about M, so that

B£ 3 nB(l - xB)M _ nB(l - XB)
H nB(l - xB)M + M nB(l - xB) + 1

n
Since fs = (Bé) S for it to be small, say smaller than (1 - xB)/(2 - xB), it

must be that either np = 0 or g is larger than ng because
o TS ng
2 nS nB(l - xB) np 1 - Xp DB

fg = (B = ng(1 - %) + 1 Z[ ]

h .
But by analogous arguments, SL = ns(l - xs/[ns(l - xs) + 1] and if np = 0 or

h nB
n. > n_ then fB =1 or fB = (SL) > (1 - XS)/(2 - X

g B ). Therefore, it may

S

not be that both fs and fB are arbitrarily small.
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Proof: Throughout the proof we shall ignore the case of NS(aH) - {ns,ns+1}

or NB(a {nB,nB+1}. That is, we shall assume that in any of the

R
equilibria in the sequence considered, each agent has a unique best
response: either a finite integer or «». We make this assumption just to
reduce the complexity of the following expressions. The reader can verify
that all the arguments go through, essentially without any modification, for
cases with more than one best response by replacing expressions such as
(Bé)ns by (Bé)ns[gs s (1 - gS)Bé].

In each period the number of sellers who sell at a particular price is
equal to the number of buyers who buy at that same price. Thus, in
equilibrium, if the true state is H, the equality between the number of
sellers (on the LHS) and the buyers (on the RHS) who transact at the price

£h 22 . eqss
P or p is expressed in terms of the equilibrium parameters as

hn+l
(16) (L - xJmMeg = (1 - xB)M[l - (sy) B } ,
in the case nB < o ; and it is
£
(17) (1—xS)MfS = (1 - erBSH)M , where 0 < rB <1 ,

in the case np = @. To verify the RHS of (16), recall from (8) that the
uninformed buyers who end up not transacting at pﬁh or pg)2 are those who

switched to position h after n_, meetings with sellers who adopted position

B

h and in the (nB+1) time met once again a seller who adopted h. They make

. hn+l
up fraction (SH) B of the uninformed buyers and hence the RHS of (16)



24

captures the number of the remaining buyers. The RHS of (17) follows
from (9").

Analogously, if the true state is L, the equality between the number
of buyers (on the LHS) and the sellers (on the RHS) who transact at the

price pzh or phh is expressed in terms of the equilibrium parameters as

Ji ns+l
(18) (1 - xB)MfB = (1 - xS)M[l - (BH) ] ,

in the case Ng < o ; and it is

h
(19) (l-XB)MfB = (1 - erSBL)M , where 0 < Lo <=1 ,

in the case ng = .
Suppose that there exists a sequence of § approaching 1 and a
corresponding sequence of equilibria such that over this sequence limfs =0

and lime = 0. In what follows we show that the implications of this

assumption lead to a contradiction.

Implication 1: In all equilibria in the sequence (except perhaps a finite

number ns < o and nB < o,

To see this observe that, if there is a subsequence over which np =

then equation (17) holds. But, since Xg < 0, the RHS of (17) is bounded

away from zero, while by the supposition fS approaches zero as § goes to 1.

Therefore, in all equilibria far enough in the sequence ng < @, and using

(19) in an analogous manner, we have ng < « as well.

Implication 2: ng = and np = @ over the sequence.
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Suppose to the contrary that there is a subsequence over which

— n
ng < n < o, Recall from (1l4) that fS - (Bﬁ) S. Since limfs = 0 and since

g is bounded, it must be that Bé approaches zero. But, observe that Bé is

either bounded away from zero (when n, = 1), or equal to zero (when n, = 0),

B~ B

and hence in all the equilibria far enough in this subsequence ng = 0.

Therefore, it follows from (15) that fB = ]l--contradiction.

n n
Implication 3: lim(Sg) B _1 and lim(Bi) S - 1.

Since both ns’< « and ng < o, the relevant equations are (16) and
n
(18). Equation (18) together with limfs = 0 imply lim(S:) B - 1, and

n
equation (16) together with limf_ = O imply lim(Bi) S - 1.

B

Observe from (1l4), (15), and the fact that ng < o and ng < o (see

o.n h. D
implication 1) that fo = (By) S and fp = (S1) B As well, recall that when

both n, < @ and n, < =, equations (6)-(9) hold. Solving (5) for M/KH,

S B
substituting the result into (7), using the fact BE + Bi = 1 and

rearranging, we have

£ 2.0
(1 - BO)[x, + (1 - x )(B) 5]
(20) st L S S L

2

2 2.0
(1 - B)) + (1 - x)[1 - (8)) SIB]

Dividing both numerator and denominator by (l-Bi) and by (1 - xS) we have

n
>+ (8} S
h " Xg L
(21) S =1 -
L Xs 2 2"
ﬁ+l+BL+...(BL)
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Analogously, we get from (4) and (9)

X

n
2 1l - Xp L
(22) BL =1 - "
B h h nB
1——‘_—XB+1+SL+...(SL)

n
We may now use (21) and (22) to evaluate 1imfs - 1im(B§) S and

. . h Mg
llme = 11m(SL)

Claim 2:
2.0 h D
(i) If both lim(BL) S =1 and lim(SL) B - 0, then the sequence
approaches =,
h D JARS
(ii) If both lim(sy) B -1 and lim(B}) S = 0, then the sequence

approaches =,

The details of the proof are deferred to appendix B. The idea,

n
however, is quite simple. When lim(Bf) S = 1, the RHS of (21) is of the

n
order of magnitude of 1 - %—. Therefore, (Si) B is on the order of

B
1,% _ 1,"%)ns
-7

n n
Recall that ns -+ « gnd nB - o and note that if lim ;E < o, then lim(Sz) B
S
_1: n n
is on the order of e lim(np/ng) > 0. Thus, lim(S;) B_o implies that ;E
S

approaches infinity.

ng
S

ng

nR
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The assumption that limfs = 0 and lime = 0 means lim(Sz)nB = 0 and
lim(Bfl)ns = 0 and implies that lim(Bi)ns = 1 and lim(S:)nB = 1 (see
implication 3). Hence, the claim contradicts the assumption, since it is
impossible to have both ;E and g% approaching infinity. Therefore, at least
one of limf_ or 1ime is positive. Q.E.D.

S

n
Recall that fs = (Bé) S is the fraction of the uninformed sellers who

3 £h 22 . .
end up transacting at p or p°”. Note that the fraction who transact just

at ng is given by (Bé)ns+l but since ns -+ o that limit is, of course, the
same as limfs.

Proposition 3 has established that the revelation of information is
incomplete. That is, even when the market is approximately frictionless in
the sense that § is close to 1, at least in one of the states, a non-
negligible fraction of the uninformed traders transact at the "wrong"
price--a price at which they would not trade if they knew the true state.
Roughly speaking, the result owes to the fact that the cost of acquiring a
given amount of information is not negligible even when § is close to 1.
This is because this cost depends both on the cost of making an additional
observation and on how informative each observation is. When § is close to
1, the cost per observation is small, but at the same time the number of
uninformed agents in the market is relatively high, so that each observation
is less informative.

Notice that the proposition does not require that both limfs and lime

are positive. 1If, for example, a, is very small, it is conceivable that all

H

uninformed agents assume that the true state is L and adopt always position
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2. In this case Si = 1 and the uninformed buyers never err in buying for
hh £Zh X .
P or p° when the true state is L. But then, of course, uninformed
sellers will err, if the true state is H.
Finally, recall that we have not claimed uniqueness of the equilibrium

in the model. 1Indeed, proposition 3 does not rely on any uniqueness result.

It speaks about any sequence of equilibria.

5. Discussion

Comparison with Centralized Trading

Since the actual interaction in markets with decentralized trade
seems very different from the interaction in markets characterized by
centralized trading, it is not obvious that the Walrasian paradigm is
appropriate for the analysis of decentralized trading processes. Gale
[1987] explained the sense in which, under conditions of perfect
information, the Walrasian paradigm provides an approximation of the outcome
of decentralized trading processes when the frictions are small in the
specific sense that § is close to 1 (i.e., when the pace of meetings is
rapid).

The natural extension of this line of the thought is to inquire
whether such a result also holds for models of decentralized trade with
asymmetric information. The relevant question in this case is whether the
outcomes are approximated by a Rational Expectations Equilibrium (REE) of a
corresponding centralized trading model, when the frictions are small.
Obviously, if the sense in which we think of the frictions as being small is
that 6§ is close to 1, then the answer is negative. This is because, as

we know from proposition 3, in the equilibrium of the present model,
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non-negligible volumes of transactions can take place at each of two
different prices, while in a market with centrally announced prices, by
definition, all transactions take place at one price. Thus, our analysis
suggests that, under conditions of asymmetric information, it might be
impossible to approximate what goes on in a nearly frictionless
decentralized market by using the REE of a corresponding centralized market.

The fact that non-negligible volumes of trade occur at two different
prices means that the information is not fully revealed through the trading
mechanism. This aspect in itself is not special to the case of
decentralized trade and may appear in models of centralized trade as well
(see the discussion of Grossman and Stiglitz [1980] below). However, in the
centralized version of the example analyzed here, the information is fully
revealed by the REE price. 1In this version a single price in announced in
each period and sellers and buyers decide whether to sell or buy,
respectively. The steady-state REE is a price function specifying a price
as a function of the state such that the uninformed know the price function
and base their decision on it; demand is equal to supply in each period; and
the market is in steady state. It is easily verified that a steady-state
REE here is fully revealing: the equilibrium price will be higher in state
H, say phh, and lower in state L, say plz. This result does not depend on
the magnitude of the fractions x_, and x, of sellers and buyers who are

S B

informed, but only on the fact that they are positive.
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The Relationship Between External Information and Revelation

Proposition 3 does not capture explicitly, in terms of the parameters
of the model, the extent to which the information is not revealed. To get
some idea of the magnitude of this phenomenon and on how it depends on other

parameters, consider the completely symmetric model in which

Xg = Xp = X,ap = 5 = ap and the payoffs are symmetric in the sense that
hh hh 22 by £h 1, hh 22 .
Uy P =p T Cy U TP =p T Cp and p = E(p + p ). In this
. . S s . - h 2 2 h
case there exists a symmetric equilibrium in which SH = BL’ SL = BH’ and
Ng = np = n. As § » 1, let us look at a sequence of symmetric equilibria

n
and let k = 1im(32) over such a sequence.

1

Proposition 4: The limit k exists and satisfies k = (1 - k)k(l - X)

The proposition is proved in appendix B. The formula is interesting
because it captures a qualitative relationship between k and the percentage
of informed agents x. It can be verified that k is a decreasing function of
x: the more external information there is, the lower the percentage of
transactions carried out at the wrong prices. Further, as x varies between
0 and 1, k attains any value between 1/2 and 0. That is, the magnitude of
the phenomenon is non-negligible: when the percentage of informed is close
to zero, almost half of all transactions (the half owes to the symmetry
assumed here) are made at the wrong price.

The relationship between x and k points to another qualitative
difference between the equilibrium of the present model and the REE of the
centralized trading version of the model. In the REE the information is

fully revealed regardless of the magnitude of the external information as
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captured by the xi’s and this is in some sense an artifact of the too
perfect transmission of information through prices. 1In contrast, in the
present model, the extent of information revelation is closely related to
the amount of external information. When X is close to 1, so that most
agents are informed, the fraction of uninformed agents who end up
transacting at the "wrong” price is close to zero.

This property of the model is in some sense reminiscent of the work of
Grossman and Stiglitz [1980], where we can also find an analogous result to
the nonrevelation of information result of proposition 3. They considered a
centralized market for an asset about the (expected) value of which agents
can get information at a cost. Uninformed agents can extract some
information from observing the price, but the supply noise prevents them
from learning all the information from the price. The extent of information
acquisition is determined endogenously so as to equate the net benefit of
acquiring the information with the benefit of using whatever information
that can he extracted from the price. What corresponds in their model to
the reduction of frictions in our model is making the supply noise smaller.
Other things equal, this reduction enhances the revelation of information
through the price, but in equilibrium this effect is counteracted by a
resulting decrease in the purchase of information and hence an increase in
the fraction of the uninformed. This is reminiscent of the irrevelation of
information in our model in which the effect of a reduction in sampling cost
is counteracted by the diminished informativeness of the search due to the

increase in the fraction of the uninformed.
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6. Concluding Remarks

The framework of a random pairwise-meetings model already incorporates
some special assumptions. In addition, the foregoing analysis has imposed a
number of extra assumptions: the populations of buyers and sellers are
equal; an agent is matched in every period; the menu of bargaining positions
is limited to two. Although I did not analyze the model in the absence of
these assumptions, the intuition that I developed leads me to believe that
the first two assumptions simplify the analysis significantly but are
probably not essential for the qualitative results. If, for example, the
assumption on equal populations and/or the choice of the particular matching
technology were relaxed, agents may be able to extract information from the
frequency of their meetings. This would imply that an agent’'s strategy will
not be characterized by a single integer, but rather will also depend on the
information that can be learned from the frequency of past meetings as
well. Nevertheless, this extra complexity does not seem likely to affect
the basic forces that prevent full revelation in the present model.
However, 1 do not know how essential the assumption that limits the range of
bargaining positions is. It is not intuitively obvious from our analysis
whether or not a richer set of prices will facilitate full revelation.
Therefore, this feature of the model presents probably the most pressing

need for further investigation.
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Appendix A
Claim 1:
(i) For any BH and BL' Ns(l) = (o)
(ii) NS(O) = {0) or {=) or (0,...,=)
(iii) If B£ < B£ then N_(a,,) = {n.) or {n.,n, + 1) where 0 < n_ < o
H L’ S*H S S'"S S ~
(iv) If BR > BE then N_(a,,) = {0} or {«) or {0,x} or {O0,...,=)}
H™ "L’ S*"H ’ ’ ’
(v) For any BH and BL' If © ¢ NS(O), then NS(aH) = (o}
Proof: Recall that Vs(n,Q) and VB(n,Q) denote the expected benefit of

strategy n to a seller (buyer) who believes with probability Q that the true

state is H(L). Observe that

n-1

i{_2)i_h{_hh n(.2)%|_h{_£h 2( 24
(A.1) Ve(n,1) -igos [BH] BH[p -CH] + 6 [BH] BH[p -cH] + B (p -cH] ,

where the first term on the RHS captures the seller’'s expected discounted

profit in the event that, during his first n periods, he meets a buyer who

2.i-1 h
2B

the second term captures the expected discounted profit in the event that the

agrees to h (the probability of such meeting in the i-th period is (B

seller does not meet such a buyer in the first n periods and switches to £.

Similarly, observe that,
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n-1
i{_£2)i_h{ hh n{_2)n|_h Z£h 2 2R
(A.2) Vs(n,O) -iEOS [BIJ BL[p -CLJ + § [BLJ {BLp + BLp -CI}

Notice that (A.l) can be written as

n-1
g
(A.3) Vg(n,1) = V(0,1) +£061[BH]1[VS(1’1) - VS(O,l)]

That is, the value of adopting position h for n periods in a row and then
switching to 2, Vs(n,l) is equal to the value of switching immediately,
VS(O,l), plus the incremental value of postponing the switch one period at a

time for n periods. Similarly,

n-1
VS(O,O) )
i=

(N
(A.4) Vg (n,0) 51[BL]1[VS(1,0) - vs(o,o)]

0

Finally, since Vs(n,Q) QVS(n,l) + (1-Q)Vs(n,0), we have from (A.3) and (A.4)

n-1 . .
(A.5) Ve(n,Q) =V (0,Q) + ¥ 51{[13;;]1[%(1,1) - vs(o,lj]Q
i=0
i
+ [BL]l[vs(l,oj - VS(O,O]}(I-QJ}
Since phh-cH > 0, pif-cH < 0, and phh > plh, we have Vs(l,l) - VS(O,l) > 0.

But Vs(l,O) - VS(O,O) may be positive or negative.
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(i) Since Vs(l,l) - VS(O,l) > 0, expression (A.3) is clearly maximized
for n = =,

(ii) Observe that (A.4) is maximized at n = «, n = 0, or is constant for

all n, according to whether Vs(l,O) - VS(O,O) is positive, negative, or zero.

(iii) If Vs(l,O) - VS(O,O) > 0, then observe that (A.5) is maximized at

n=o, If Vs(l,O) - VS(O,O) < 0, and Q < 1, then since Bﬁ < Bi there must be

some finite n such that

(A.6) ()" [vg(1.1) - vg(0,1)]a + () [vg(1,0) - v4(0,0)](1-Q) = 0

Let n_. denote the minimal such n. Observe that for n > n_, inequality (A.6)

S S
holds strictly. Thus, (A.5) is maximized at n = ng and if ng satisfies (A.6)
with equality, then (A.5) is maximized at n = N1 as well.
. . . . 2 2 .
(iv) If for some n inequality (A.6) holds, then since BH > BL it must

hold for any integer smaller than n and hence VS(O,Q) > Vs(n,Q). If the
reverse of (A.6) holds for some n, then it must hold for any larger integer
and hence Vs(m,Q) > Vs(n,Q). Therefore, (A.5) is maximized at n = 0, n = «,
or at both depending on whether VS(O,Q) is greater, smaller, or equal to

Vs(w,Q). If Bﬁ - B£ and (A.6) holds with equality, then (A.5) is constant for

L
all n.
(v) If = ¢ NS(O), then Vs(l,O) > VS(O,O). Therefore, (A.5) is maximized
at n = o,
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Recall that the different versions of the steady-state conditions
(6)-(7), (6')-(7'), and (6")-(7") correspond to the different strategy
configurations described in claim 1 except in the case of Ns(aH) = {0,o) or
{0,...,o}, described in part (iv) of the claim. In this case part (v)
implies that NS(O) = {0}, and the appropriate version of the steady-state

conditions is

L 2-
(6''") sy, = (1 - Xg) Mg /K

LA 2
(7''") sp = [xgt + (L-xJMe ]/,

where tg € [0,1] captures the fraction of the entering uninformed sellers who

adopt strategy O while the rest choose strategy =.

Analogously, the appropriate steady-state conditions for the case

NB(aL) = {0,o}) or {(0,...,o}) are
(8"") BY = (1 - x )Mt /K
L B B’ L
(9''") B - [x M+ (1 - x )Mt ]/
H B B B KH
Proposition 1: 1If p£2 - [a,c,, + a,.c.] > 0 and/or « + a u, - phh > 0, then
‘ H°H © “L°L H'H T LML :

there exists an equilibrium,

Proof: Consider the following point-to-set mapping from [0,1]4
2 .2 _h _h h 2 h 2

Of i ts subsets. FOI a i ven 4-tuple = - - -
,e h »e }l

£ _h
BL - 1-BL, and BH = l-BH. If (SH,BH) # (0,0) solve (4) to obtain

into the set
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h_h Y
(A.7) Ky = M/[spBy + s.]
h £ .
If (BL,SL) = (0,0), rearrange (5) to obtain
2.2 h
(A.8) K = M/[BS] + B]

Use (A.5) and (2) to compute Ns(aH) and NS(O) and analogously compute NB(aL)
and NB(O)' On the basis of this, choose the appropriate version of the
steady-state conditions (6)-(9). Substitute (A.7), (A.8), and the chosen

values of B%,Sg i=H,L, j=h,£ into the RHS of the appropriate version of (6)-

(9). Let g:,gi,ﬁt,ﬁ; denote the sets obtained from the LHS of the described

four equations when: r, and ti' i=S,B, are varied over [0,1]; Bg varies over

(0,1] if NS(aH) = (ns,n + 1} and otherwise gs = 1; and gB is varied over

S

[0,1] if NB(aL) - | + 1} and otherwise gB - 1.

Ng: g

The above defines a point-to-set mapping that maps (S.,S.,B ,B;)
~h
’BH

A

such that (Sé,BE) = (0,0) and (Bt,Si) = (0,0) to the set (S

This mapping will be extended continuously by defining §2 = 0 and

H
éH = {l/[(l-xB)(nB + 1 - gB) + l]lgB e [0,1]} when (Sé,BE) = (0,0), and by

S B ).

o ol e ot S
(@SN N
(qulit=al e lien

.- ~h 24
defining BL = 0 and SL - {1/[(1-xs)(nS + 1 - gs) + 1]|gS €[0,1]}) when

(Bz,si) = (0,0). The correspondence is convex valued since gg and
Bi,i-H,L, j=h,2, are either singletons or closed intervals. The
correspondence is also upper semicontinuous, since over the ranges in which
the strategy sets NS and NB are singletons, the correspondence is, in fact, a

continuous function. The discontinuity points of this function are where one

of the sets NS or NB (or both) is not a singleton, but these gaps are filled
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by letting 8y and ti’ i=S,B, range over [0,1]. Thus, the correspondence

ry,
satisfies the conditions of Kakutani'’s fixed point theorem (see, e.g., Todd
[1976]) and hence has a fixed point.
- - - 2 _h h .2

If the fixed point is such that (SH’BH) = (0,0) and (BL,SL) = (0,0),
then there is an equilibrium. This is because, by the construction of the
correspondence, the fixed point is consistent with optimal strategies for all
agents and the appropriate version of the steady-state conditions holds.

Thus, to complete the proof it remains to show that (Sé,B:) = (0,0) and
(BE,S{) » (0,0). Suppose, to the contrary, that the fixed point has

2 _h

(SH’BH) = (0,0). This implies that « ¢ NS(aH) and « ¢ NB(aL) and also

h £ . . h h
(BL,SL) = (0,0). It follows immediately from BH - BL = 0 that Vs(m,aH) - 0
and analogously VB(w,aL) = 0. Observe from (A.1)-(A.5) that
L4
VS(O,aH) - p - [chH + aLcL] and analogously that

hh . .
VB(O,aH) - apu, + au - P Thus, it follows from the assumption of the
proposition that either VS(O,aH) >0 = Vs(m,aH) and/or
VB(O,aL) >0 = VB(m,aL), so that either = ¢ Ns(aH) and/or = ¢ NB(aL). This
2 _h

contradicts the earlier conclusion and hence both (SH’BH) = (0,0) and

h £
(BL,SL) = (0,0).

Proposition 2:

(i) In equilibrium if = ¢ NS(aH), then o ¢ NB(aL).

.. ey 1 s . £ 2 h h
(ii) In equilibrium if BH < BL and SL < SH'
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Proof: Part (i) was proved in the course of the proof of proposition 1. To
. h
prove (ii) suppose, to the contrary, that in equilibrium SL > SE, and let us

check the following possibilities.

[1] If NS(aH) = ng < =« and Bﬁ < Bi, then
2 5Ho 20
(A.9) sp = [xgtt + (L-xJu(B)) S]/k, > (1-xM(B]) S/K;

> [1-xS)M(B£)nS/KL > (l-xS)M[Bé)nS/KH - sf; ,

where the first equality follows from (7); the first inequality is obvious;

the second inequality follows from Bi > Bé;
from (A.7) and (A.8) by observing that S? > SE

the third inequality is obtained
d BE < B£ impl > K. ; and
and By < By imply Ky > Kp;

the last equality follows from (6). But the conclusion from (A.9) that

Si > Sﬁ contradicts the supposition.
[2] If N (a,,) = {n.,n_+1), n. < «» and B£ < B’2 then the argument
S*"H S''S S H L’
n
is exactly as above except that we replace (Bi) S by
2 ns £ ns+1
[gg(B]) ° + (1 - go)(B) ].
[3] If N_(a,) = (=) then Sh = 1 and hence Sh < Sh implies Sh =1 Part
S'H H H™ "L L ’

(i) implies that it may not be that = ¢ NB(aL). It also may not be

that NB(aL) = {0,») or (0,...,»), since then (8'‘'’') and (9''') hold
and therefore Bh > K Bh but Sh = 1 and Sh = 1 together with (4)
KBy > KB H L e

and (5) imply that KHBE = KLBE.
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Steps [1]-[3] eliminate all the possible configurations of NS(aH) which

< Bi (see claim 1). Furthermore, step [3] eliminates the

2 2
S(aH) = (o}, Therefore, BH > BL and NS(aH) = (0} or {0,w™} or

{0,...,o}. Observe from (6), (7) and (6'''), (7''') that in all these three

may arise if Bé

possibility of N

h h . .
cases SL = SH implies KL > KH‘
e h h . . 2 .
Thus, the supposition SL > SH implies B =2 BL and KL > KH. But by going

£
qz
2 2. . h h
through the analogous arguments we have that BH > BL implies SL = SH and
KH > KL, contradiction. Therefore, in equilibrium SE < SE and Bé < Bi.

Q.E.D.
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Appendix B

Proofs of claim 2 (in proposition 3) and proposition 4:

The proofs use the result of the following lemma.

Lemma: Let {zn) be a sequence such that for all n, 0 = z_ =< 1.

n

lim 22 =z > 0, and let R be a constant. Then,

Suppose that

(i) lim (1 + R(1-z )" = 2}
n—ro n

n z-(Z + R/ - 2) if z <1

z + R n
(ii) lim [1 + ] -

n-1
l+z + ...+ 2z 1 +R
n n e ifz=1

Proof of the lemma:
(i) Consider the sequence (n(l-zn)). It must be bounded from above.

Otherwise, for any F there is an n such that n(l-zn) > F and hence there is a
F . . . n . Fon -
subsequence such that z < 1l - a implying that z = lim z < lim(1l - ;) =e

for any arbitrarily large F, in contradiction to z > 0. Let v be a cluster

point of the sequence n(l-zn), and consider a subsequence converging to v.

For any ¢ there is n(e¢) such that for n > n(e)

Therefore, for any cluster point v,

F
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z=1limz" = lim (1 - )% = eV
n n

which means that v = -Znz and that lim n(l-zn) exists and is equal to v.

Therefore,

1im[1 + R(l_zn))n - lim[1 + Rn(l-zn)/n]n _ e-REnz -,k

(ii) If z = 1, then for any &€ > 0 and sufficiently large n,

zn + R zn + R 22 + R
1+ 2 — <1+ L =1+ o5
n n-1 n(l - &)
14z + ... + z
n n

By raising to the power of n and taking limits we get that the desired limit

(1+R)/(1-¢) 1+R

. . 1+R A
is sandwiched between e and e and hence it is e

If z < 1, rewrite

+ R

n z n
1im[1 + = _1] - lim[l + ———(1-z )]
l4z_ + ... + z" -z" n
n n n

33

-

Now, it follows from (i) that the last expression is equal to z-(Z+R)/(1_z).

Q.E.D.



43

Corollary: Let (zn} and R be as above,

Z(z + R)/(1 - 2)

R + z o ifz<1l
lim (1 - o -
n—+wo R+1+z + ... + 2z
n n e-(1+R) ifz-l
Proof: This follows from the lemma and the fact that
R + 2z R + 22
1 - =1/11 + = o
R+1+ 2z + + z 1l +z + + z
n n n n
Q.E.D.

Claim 2:
(i) If both 1im(Bi)ns =1 and 1lim (S;)nB = 0, then the sequence gg
approaches .

. . h,. Mg Y AL ns
(ii) 1If both lim (SL) = 1 and llm(BL) = 0, then the sequence ;g

approaches .

Proof: Raise both sides of (21) to the power of n_, to get

B
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X
s g0 B
Tox " (8) S “s|ns

h nB
(B.1) (sp) B=14t - —

S £ £ ns
T—T—;; + 1 + BL + ... + [BL)

Recall from implication 2 that, as § - 1, both ng * @ and ng ~ . Suppose

n
that over some subsequence limr—]E = F < », Then, it follows from the
S

corollary above that over this subsequence the RHS of (B.l) approaches

l+xg/(1l-%g) ]F n

-{ . . . . h nB B .
e > 0, in contradiction to 11m(SL) = 0. Therefore, HE is
unbounded over any subsequence.

The proof of part (ii) is completely analogous. It just uses (22)

instead. Q.E.D.

Proposition &:

1

h.n k1o L
The limit k = lim(SL) exists and satisfies k = (1-k)
. syt s h 2 -
Proof: In the symmetric equilibrium Ng = np = n and SL = BH' Consider a

subsequence such that lim(S}Ij)n exists and call it k. By proposition 3, k > 0
and from (18) lim(Bi)n -1 - 1im(Bfl)n =1 - k. Raising both sides of (21) to

the power of n and using the corollary for the case z < 1, we have

1

K = (1_k)k(1~x)

. . . . . . . h.n .
Since this equation has a unique solution, it must be that 11m(SL) exists and

equal to this solution. Q.E.D.
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Notes
1. Note that in this case the informed sellers are indifferent among all
strategies 0,...,», so that there might be an equilibrium in which informed

sellers adopt strategies other than 0 and «». However, for any such
equilibrium there exists rg ¢ [0,1] such that (7") holds, where rg here is
some weighted average of the fractions of informed sellers who choose the
different finite strategies. Thus, for our purposes we need not treat this
case separately.



