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Abstract

This paper demonstrates that an optimizing model of a monetary economy
can produce perfect foresight equilibria, in which the price level fluctuates
forever in a stationary environment. These equilibrium paths are bounded so
that neither the transversality condition nor the fractional backing of paper
money proposed by Obstfeld and Rogoff (1983) can rule them out.

The chaotic dynamics is also considered. Although an economy with a high
rate of money supply growth is more likely to be in the chaotic region (an
increase in the growth rate of money supply leads to a period-doubling
transition to chaos), the chaos can emerge even with a constant money supply
and an arbitrarily small discount rate.

The paper also shows that some fluctuating equilibria give higher welfare
than the steady state equilibrium.
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1. Introduction

It is almost an axiom among monetary economists that stable money supply
ensures stable prices in a stable environment. Recently, Obstfeld and Rogoff
(1983, 1986), among others, have subjected this assertion to logical scrutiny.
Following Brock (1974, 1975), they studied an optimizing model of a monetary
economy, where a demand for money arises through the assumption that an
agent’s utility depends on his real money balances as well as his consumption
level. Their model can produce divergent price paths with a constant money
supply. They showed, however, that some weak and economically sensible
conditions are sufficient to rule out these divergent paths and to select the
steady state as the unique equilibrium path.l

Their analysis crucially depends on the assumption that the one period
utility function is separable in real money balances and the consumption good.
With a nonseparable utility function, this class of models can generate
multiple perfect foresight equilibria. For example, it is relatively well
known that, when real money balances and the consumption good are Edgeworth
substitutes, there may exist multiple convergent path to the steady state;
see Gray (1984) and Obstfeld (1984).2 Although this type of multiplicity has
profound implications concerning the assumption of perfect foresight and the
validity of comparative dynamics, its empirical significance seems unclear,
since the price level eventually stabilizes along any equilibrium path.

What is relatively unknown is that the model can produce multiple bounded
equilibrium paths that do not converge to the steady state. This paper
considers constant elasticity utility functions and demonstrates that, for
certain parameter values, there exist a continuum of equilibrium paths, and
that the price level fluctuates forever in almost all of these equilibria.

In other words, the model can produce endogenous price fluctuations. These
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paths are bounded so that neither the transversality condition nor the
fractional backing of paper money proposed by Obstfeld and Rogoff (1983) can

3 Moreover, some fluctuating equilibria give higher welfare

rule them out.
than the steady state equilibrium. It will be also shown that equilibrium
price fluctuations can be either periodic or arbitrarily complicated, by
utilizing some results from discrete nonlinear dynamics.

It is now widely recognized that the complex dynamic behavior is an
inherent feature of many deterministic nonlinear systems. Numerous writers
have already found interesting applications in economics. Most studies
demonstrated the possibility of complex dynamics in either descriptive
aggregate models (Bhaduri and Harris (1987), Day (1982, 1983)) or "short-
lived" overlapping generations models (Grandmont (1985)). Boldrin and
Montrucchio (1986) and Deneckere and Pelikan (1986) found chaotic behavior in
an infinite horizon optimizing model of growth. But their examples require a
heavy discounting, and therefore, hard to interpret as a demonstration of high
frequency fluctuations observed in the real world.%

This paper provides an example of how even a standard infinite horizon
optimizing model of a monetary economy with a common specification of
preferences and an arbitrarily small discounting can generate the complex
behavior of the price level.? This exercise is partly motivated by the fact
that the existing literature on endogenous fluctuations, such as Azariadis
(1981), Azariadis and Guesnerie (1986) and Grandmont (1985), fails to generate
the interest among macroeconomists that I believe it deserves. The reason may
be that it considers a class of models that do not belong to the tool box of
most macroeconomists. This consideration alone seems to provide a sufficient

justification for the present analysis.



The rest of the paper is in five parts. Section 2 first expounds the
Brock (1974, 1975) model and derives a two-parameter nonlinear first order
difference equation of the price level. The parameters depend on the constant
rate of money supply growth, the discount factor and the intertemporal
elasticity of substitution. This section then considers the case of a large
substitution, which yields global divergence. Section 3 demonstrates that a
sufficiently small substitution implies global convergence, while there exists
a medium range of elasticity of substitution that implies cycles and other
nonconvergent equilibria. Section 4 considers the chaotic dynamics. It shows
that an economy with a high rate of money supply growth is more likely to be
in the chaotic region (an increase in the growth rate of money supply leads to
a period-doubling transition to chaos) and that the strongly chaotic dynamics
can emerge even with a constant money supply and an arbitrarily small
discount rate. Section 5 provides an intuitive explanation of the conditions
necessary for convergence, cycles and chaos. Section é presents some

discussions. The main result is also summarized in Figure 4.

2. The Brock Model: Global Divergence

The economy is inhabited by a fixed large number of identical infinitely
lived, utility maximizing agents with perfect foresight. Each agent maximizes

the present discounted value of his utility stream,
© t d
W= Zt=0 B U(Ct’mt)’ 0<pg<l,

subject to the flow budget constraint,

d . d .
c-1’ with M. =M given,

d
M = Pt(y-ct) + Ht + M 1 1

t

where B8 is the discount factor, y is his constant endowment of the perishable
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consumption good, c. denotes his consumption, and mi is real balances
demanded, defined by the ratio of Mg, nominal money holdings, and Pt’ the
price level. At the beginning of period t, each agent receives Hc units of
paper money from the government through a "helicopter drop", thus considered
to be independent of his own money holdings. Consumption loans are not
considered explicitly; The assumption that agents are identical means that in
equilibrium the quantities of loans traded are zero, thus leaving equilibria
intact. Of course, the model allows one to compute the real interest rate, as
will be done in section 5, where an intuitive explanation is offered of the
results obtained below.

The first order condition for the agent’s problem, or the arbitrage

condition, is given by,

d

d d
Uelep,m) = Unlep,m) + BUcle  yomeyy

)Pt/Pt+l'

The total supply of the good in the economy is fixed and given by y.
There is no government consumption and the money supply grows at a constant

rate: that is, M + H, +...+ Ht = ptM where pu > 5.6 The

t
-1+ = (g

O l)’

markets clear when Mi = utM and c. =V for all t. This means that, along an

0

equilibrium path, we have,

. t
(1) BUc(y,m_ Om 1 = sm (Ug(y,m) - Up(y,m)) , with m_ = u M /P_

Brock (1974, 1975) and Obstfeld and Rogoff (1983, 1986) restricted their
analysis to the case of a separable utility function, U(c,m) = u(c) + v(m).
With reasonable assumptions on u and v, the first order difference equation,
(1), possesses the unique steady state equilibrium, mt =m or Pt = ut(MO/a),

where m is given by (u-g)u’'(y) = pv'(ﬁ), and it can be shown to be unstable.’
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Any price sequence satisfying (1), if it starts with PO > Mo/a , is explosive

(hyperinflation) and, if it starts with PO < MO/E , is implosive
(hyperdeflation). Brock and Obstfeld and Rogoff examined the conditions under
which these divergent paths can be ruled out.

This paper drops the separability assumption and instead considers the

following specification of the utility function,

aml-a 1-v

(c Yo/ (1-) , ify=1, vy>0,

(2) U(e,m) =

alog ¢ + (l-a)log m , if vy =1,
for 0 < @ < 1. One interpretation would be that caml-a is the one-period
utility index and vy is the reciprocal of the intertemporal elasticity of
substitution. This functional form satisfies all the standard properties of
neoclassical utility functions. Namely, U., Uy, UccUmm - UemVUme > 05 Ucer Umnm
< 0, as well as the normality conditions and the Inada conditions. It has
been frequently used in the literature; see, for example, Fischer (1979) and

Obstfeld (1985). From (2), equation (l) can be written as, after some

algebra,

(3) (m )7 = (1+6)(m) 7 [1-((L-a)/a) (y/m)]

where

Q
1

“(l-a)(1-y)-1 = (l-a)y+ (a-2) > a-2 ,

o
1]

p/B - 1>0

(The economic interpretation of the two parameters, o and §, will be given in

section 5.)

There exists the unique steady state equilibrium of (3), given by m =
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[(1~a) (148)y]/(ab) or Pt = ut(MO/a). Let us normalize the price level by
defining P, = {(l-a)y/a}(Pt/ptMO) = {6/(l+5))(5/mt) = {(l-a)/a)(y/mt). Then,

(3) becomes,

o o
(%) (" = 1+ (L-p)

with p = (p-B)/p = §/(1+§) being the unique positive steady state. Two points
should be made here. First, if P, > 1, (4) cannot hold with any Piy] > 0,

violating the feasibility condition. Second, if ¢ = 0, (4) becomes P, = p for
all t. Thus, the steady state is the unique equilibrium path. In what
follows, only the case of o0 O is considered. Then, from (4), any

equilibrium path needs to satisfy,
_ _ l/0 i 1/0 .
(5) Piyl = F(pt) = (1+46) pt(l pt) , with 0 < P < 1 for all t.

Note that, although F has the two fixed points, 0 and p, only the latter is
economically meaningful.

Figure 1A depicts the case of a large elasticity of substitution (a-2 < ¢
< 0). It can be easily verified that F is increasing and convex in [0,1) with
F(0)=0, F » ©w as p t 1, 0 < F'(0) = (l+6)l/g < 1. The steady state 1is
unstable and any sequence starting with Py * P = (u-B)/u = 6/(1+6) will
diverge. Whether these divergent sequences can be ruled out may be examined
in a manner similar to Brock (1974, 1975) and Obstfeld and Rogoff (1983,
1986). Note that y = 1, or ¢ = -1, means the separability so that it is a
special case of what they examined. The possibility of hyperinflation and
hyperdeflation is not the main concern of this paper, however. The next

section turns to the case of o > 0.
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3. Global Convergence and Bounded Fluctuations

With ¢ > 0, F has the following properties.

(P.1) F(0) = F(1) = 0
(P.2) F has a single peak at p* = ¢/(l+0); F is strictly increasing on
[0,p*), strictly decreasing on (p*,1]

(1+6)% > 1

(P.3) Fr(0) =
(P.4) F'(p) =1 - 6/0
(P.5) F(p*) < 1 if § < A(0) = a‘”(1+a)1+” - 1; F(p*) =1 if § = Aa(0);

F(p*) > 1 if § > A(o). Thus, F maps [0,1] into itself if § < A(o).

F maps (0,1) into itself if § < A(o)

It is straightforward to verify (P.1)-(P.5). A map F: [0,1] - [0,1]
satisfying (P.1) and (P.2) is called unimodal: see Devaney [1987,Definition
18.1]. Thus, if § < A(o), F is unimodal. Some properties of A(co) are

summarized below.

1]

Lemma A(o) a_a(l+a)l+a — 1, defined on (0,x), is strictly increasing,

lima»O A(o) 0 and A(o) > 20 for all o > 0.

Proof See Appendix.

Let us now define Fc iteratively by Fl(p) = F(p), Fi+l(p) = F(Fi(p)) for
i=1,2,3,,,. From (P.5), if § < A(¢), F maps (0,1) into itself and therefore,
{Ft(po)} defines a sequence on (0,1) for any po e (0,1). If § = A(o),
{Ft(po)) defines a sequence on (0,1) only for some pO e (0,1). The nature of
the dynamics crucially depends on the local stability of the steady state.
From (P.4), it is monotonically stable if 0 < § < ¢ (Figure 1B), and damped

oscillations if ¢ < § < 20 (Figure 1C). 1If 20 < §, then the steady state is
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locally oscillatory unstable (Figure 1D). The possibility of a locally stable
steady state has been discussed by Gray (1984) and Obstfeld (1984). 1In fact,
the steady state is globally stable when 0 < § < 20. To prove it, it is
convenient to define G(p) = {Fz(p)/p}o. Clearly, G(E) =1. TIf G(p’') =1 for
some p' € (0,1)/p, then there exists a period-2 cycle of F and p’ is a period-

2 point.8 From (5), G(p) has the following properties,

(P.6) G(p) = (1+6)2(1-p) (1-F(p)) ,

’ 2 1/0
(P.7) G’ (p) = (1+8)°[((1+8) (1-p)) /% ((2+1/0)p-1)-1] ,
(P.8) " (p) = (1+86) P 110y (1-p) MOV (2 (241 /0)p)

Proposition 1: If 0 < § < 20, then all sequences starting at po € (0,1) remain
in (0,1) and lim_, _ FS(p) = p for all p ¢ (0,1)

Proof: From Lemma, 20 < A(o) for o > 0, thus § < A(g), which proves the
first half of the theorem. Next, let S = 20/(1+20). Then, from (P.8), G'(p)
is strictly increasing in (O,E), strictly decreasing in (;,l] and, from (P.7),
G'(p) = (1+6)2[{(l+5)/(l+2a)}1/a—1] < 0. Thus, G'(p) <0 in (0,1)/p, or G(p)
is strictly decreasing in (0,1). Therefore, E is the only solution of G(p) =
1. 1In other words, F has no period-2 cycles. From the theorem of Coppel
(1955), which states: if f is a continuous map of a compact interval to itself
that has no period-2 cycles, the sequence ft(x) converges to a fixed point of
f for every x in the interval, limtqm Ft(p) = E or limtqm Ft(p) = 0. But,
(P.3) implies that no p ¢ (0,1) cannot approach asymptotically to O and (P.1l),
(P.2), and F(p*) < 1 jointly imply that it cannot be a preimage of 0, either.

Therefore, lim_ F'(p) = p for any p € (0,1). Q.E.D.

Therefore, when § < 20 so that the steady state is locally stable, a continuum
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of equilibria exist, but the price level will eventually stabilize at the
steady state level in any equilibrium. On the other hand, whenever the
steady state 1s unstable, endogenous price fluctuations can occur along

equilibrium paths, as demonstrated below.

Proposition 2: If 0 < 20 < §, then a period-2 cycle exists.

Proof: It is sufficient to show that G(p) = 1 has a solution in (O,l)/a.
From (P.1) and (P.6), G(+0) = (l+6)2 > 1 and G(1) = 0. Thus, the Intermediate
Value Theorem implies that there exists p ¢ (0,p) such that G(f) = 1 if G'(p)

> 0. From (P.7), G'(p) = (146)(§/0-2) > 0, or 20 < §. Q.E.D.

Thus, if Py = p or F(p), the price level exhibits a cycle of period 2 forever.
(Figure 2A suggests the existence of a period 2 cycle.) The condition of this
theorem implies that, for any § > O, there exists a range of intertemporal
elasticity of substitution, (2-a)/(l-a) < y < {§/2+(2-a))/(l-a), that implies
cycles. On the other hand, a small substitution means global instability and
a large substitution global stability. It also implies that, if ¢ > 0, a
period-2 cycle can be generated with a sufficiently rapid money supply growth:
u > B(l+20).

Proposition 2 is sufficient to demonstrate that the possibility of
endogenous price fluctuations. However, one might also be interested in how
large the set of fluctuating equilibria is as a subset of all possible
equilibria. For this purpose, we first show that any sequence satisfying (5)

are bounded away from zero, if F(p*) < 1.

Proposition 3: Suppose that ¢ < § < A(¢). Then,

(3.1) 0 < Fz(p*) < p < F(p*) < 1 and F maps [Fz(p*), F(p*)] into itself.

(3.2) For any Py € (0,1), there exists T > 0 such that FT(pO) €
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[F (p%)  F(p*) ]
Proof: (3.1) Note that ¢ < § implies that p¥ < p = F(p) < F(p*). Also, §
< A(o) implies F(p*) < 1, so that p ¢ (p*,F(p*)) c [p*,1]. From (P.2), 0 <
Fz(p*) < p = F(p) < F(p*) < 1. Since F maps [p*,F(p*)] onto [Fz(p*),F(p*)},
nothing remains to be proved if p* =< F2(p*). When Fz(p*) < p*, F maps
[Fz(p*),p*] onto [F3(p*),F(p*)]. Since F2(p*) < p* < 5, Fz(p*) < F3(p*). (If
Fz(p*) > F3(p*), there exists a fixed point of F in (O,Fz(p*)], which
contradicts with the uniqueness of the fixed point.) Thus, F maps [Fz(p*),p*}
into [Fz(p*),F(p*)], which proves (3.1).
(3.2) Divide (0,1) into three parts: (O,Fz(p*)), [Fz(p*), F(p*)] and
(F(p*),1). A simple graphic analysis shows that (3.2) holds for (O,Fz(p*)).

Since F maps (F(p*),1l) onto (O,Fz(p*)), (3.1) implies (3.2). Q.E.D.

All sequences starting in (0,1) will eventually be trapped into [Fz(p*),
F(p*)], and therefore, bounded away from zero. (The box in Figure 1D depicts
this trapping interval.) Hence, neither the transversality condition nor the
fractional backing of paper money proposed by Obstfeld and Rogoff (1983, 1986)
can rule them out. The question is then; Do any of these equilibria exhibit
persistent fluctuations? The following theorem states that almost all of them

fluctuate forever if the steady state is locally unstable.

Proposition 4: Suppose that 0 < 20 < § < A(g). Let N be the set of points p «

(0,1) such that Ft(p) converges. Then, N is at most countable, and therefore,
has Lebesgue measure zero.

Proof: Let p be a point in N and p» be the limit point of the sequence

starting at p. From the continuity of F, po = lim Ft+1(p) = F(lim 00Ft(p))

t2 t—>

= F(pw), therefore, the uniqueness of the fixed point implies po = p. Since
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20 < § implies that E is locally unstable, Ft(p) cannot approach it
asymptotically. Therefore, p must be a preimage of the steady state: that is,
pef{q ] FT(q) = E for a finite T ). This set is at most countable points,
since that F is unimodal implies that, for any y, there are at most two x's

that solve y = F(x). Q.E.D.

It should be noted that this result is about the size of the set of
fluctuating equilibria, not about the likelihood of such equilibria. Without
a compelling theory of equilibrium selection, the analysis here has nothing to

say about how often we observe price fluctuations.

4, The Chaotic Dynamics

The preceding analysis has shown that persistent fluctuations are regular
rather than exceptional, when F(p*) < 1 and the steady state is locally
unstable. However, one might be also interested in knowing how the price
level fluctuates, either periodically or erratically. Also the case of F(p¥%)
> 1 has not been fully analyzed. In order to address these questions, this
section heavily borrows some results from the recent development in discrete
nonlinear dynamics.9

A good starting point is the case of ¢ = 1, or v = (3-a)/(l-a). Equation

(5) then becomes,

(6) P1= F(P) = (/AP (1-p) = (1+6)p (1-p)

This first order difference equation, known as the logistic equation, has
been applied to a variety of economic problems; see, for example, Day (1982,
1983), Jensen and Urban (1984) and Bhaduri and Harris (1987). From the

results in the last section, one can easily verify that equation (6) is
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globally convergent if 0 < § < 2; it has a period-2 cycle if § > 2; almost all
sequences exhibit persistent fluctuations in the interval [(l+5)2(3-6)/l6,
(1+6)/4] if 2 < § < 3. 1In fact, stronger results are known. As § increases
from 2, or as u increases from 38, period 2 points appear first, then they
bifurcate to period 4 points, which in turn gives way to a cycle of period 8.
This process of period-doubling bifurcations continue to generate period-2n

cycles until § = 2.5699... For § = 2.5699.. a period-3 cycle exists. As

shown by Sarkovskii (1964) and Li and Yorke (1975), the existence of period-3
cycles implies that there are cycles of every integer period and that there is
an uncountable set of initial prices, S C (0,1), which give rise to chaotic

(i.e., aperiodic and not asymptotic to a cycle) price fluctuations in S. If §

=3 (p=4p), or,

(7) Piy1™ F(pt) = 4pt(l-pt) ,

2
we have an analytic formula for the solution. Let P, sin Gt. Then,

. 2 . 2 .2
sin 0t+l = pt+l = Apt(l-pt) = (251n9tcos€t) = sin (29t) ,
t
so that § = 2746, or,
t 0
. 2,.t
(8) p, = sin (2 60)

Therefore, if Py = sinz(kﬁ/Zn) for some integer k and n, P, eventually
converge to 0O, violating the feasibility condition. Otherwise, P, remains in
(0,1) forever, thus qualified for equilibria. In particular, by setting Py =
sinz[kw/(Zn-l)] with appropriate choices of k and n, one can generate a cycle
of any period. If Py sinz[kw/(Zn-l)], then the solution is chaotic. In

fact, one can show that the sample distribution of the price level will
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. . 1/2
converge to the density function l/n[p(l-p)] for almost all Py € (0,1).
Thus, along almost all equilibria, the price movement appears purely
stochastic as if it is a random variable drawn from this density distribution.

(A map F, when satisfying this property, is called strongly chaotic.)

Furthermore, (8) shows that the dynamics of (7) has "sensitive dependence on
initial conditions." A slight change in the initial price magnifies
exponentially at the rate equal to log 2 > 0. Boldrin and Montrucchio (1986)
and Deneckere and Pelikan (1986) also considered this strongly chaotic
equation (7). Their example requires 8 = 0.01l. On the other hand, the
example here requires f = p/4, which is consistent with an arbitrarily small
discounting. Jakobson (1981) proved that, for a set of parameter values §
having positive Lebesgue measure in (2.5699..., 3], (6) generates the

dynamics similar to the case of § = 3. If 6§ > 3 (u > 4B8), most initial prices
will violate the feasibility condition after finite periods, but there exists
a totally disconnected set, C C (0,1) such that, if pO ¢ C, the price sequence

remains in C forever.lO

See Devaney (1987) and Lauwerier (1986) for more
discussion of the dynamics governed by (6).

Many properties that (6) possesses are also shared by (5) with o = 1.
First, let us demonstrate the existence of period 3 cycles, which is a

sufficient condition for the existence of periodic equilibira of every integer

period, as well as chaotic equilibria.

Proposition 5. For any ¢ > 0O, there exists an open interval J containing A(o)

such that a period 3 cycles of F exists if § ¢ J.

. 3 o 3o 3
Proof Define H(p) = = (F (p)/p)} . Then, H(+0) = (F’'(0)) = (1+6)" > 1
and H(B) = 1. From the Intermediate Value Theorem, it is sufficient to show

that there exists p ¢ (O,B) such that H(p) < 0. If § = A(o), then p* < E and
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F(p*) =1 so Fz(p*) = F3(p*) = 0 or H(p*) = 0 < 1. From the continuity of H

on §, there exists a neighborhood of A(c) such that H(p*) < 1. Q.E.D.

Next, let us ask how large the set of chaotic equilibria is as a set of all
equilibria. We can apply the powerful mathematical results, if F satisfies,

besides being unimodal, that its Schwartzian derivative, SF, exists and is

negative on the relevant interval, whenever p = p*, where,

SF = F"' /F’ -(3/2)[F"/F’12

Note SF < 0 if log IF'| is concave. Some algebra can verify that log|F'|

indeed has a negative second derivative on [0,1]/p* if O < ¢ < 1. Therefore,

Proposition 6: Suppose 0 < 0 < § <= A(o) and 0 < 1. Then,

(6.1) F has at most one weakly stable cycle.ll This cycle lies entirely
in the interval [Fz(p*),F(p*)}. When F has a weakly stable cycle, it attracts
p*, that is, the set of the weakly stable periodic points is the set of
accumulation points of {Ft(p*)}.

(6.2) If F has a weakly stable cycle, then the set of points p in (0,1)
such that Ft(p) does not tend to this cycle, E, has Lebesgue measure zero.
(6.3) If {Ft(p*)) converges to an unstable cycle, the empirical
distribution of the price level generated by (5) converges weakly to a unique
absolutely continuous distribution function on [Fz(p*),F(p*)] for almost all
Py € (0,1). That is, F is strongly chaotic.

Proof: Since F is a unimodal map with a negative Schwartzian derivative and
that O is a unstable fixed point from (P.3), it satisfies the condition of
Theorem 2, Proposition 4 and Corollary 6 of Grandmont (1984). (6.1) is the

mere restatement of Theorem 2. From its Proposition 4, E n (0,F(p*)) has



15
Lebesgue measure zero. Since F maps (F(p*),l) into (O0,F(p*)), (6.2) results.

Likewise, (6.3) follows from Corollary 6. Q.E.D.

Proposition 6 has some important implications. First, it states that almost
all sequences have the same asymptotic behabior (see also Guckenheimer and
Holmes [1986, p.270]). Second, (6.1) provides an "experimental" way of
recognizing this asymptotic property. In particular, if Ft(p*) does not
converge, then one has good reason to believe that F is strongly chaotic.
Figures 2D and 2E plot the first one hundred observations of Ft(p*) for 6§ =
0.03, 0 = 0.01 and § = 0.015, o = 0.005, respectively. Both sequences appear
very chaotic. 12

Third, (6.3) provides a sufficient condition for almost all equilibria to

be chaotic and for all periodic equilibria to be unstable. In particular,

Corollary: Suppose that § = A(¢) and O < ¢ < 1. Then, the sample
distribution of the price level generated by (5) converges weakly to a unique
absolutely continuous distribution function on (0,1) for almost all Py €
(0,1).

Proof: Note that the condition implies that F(p*) = 1. Thus, Fz(p*) =0,
which means that p* converges to an unstable cycle, 0, thereby satisfying the

condition of (6.3). Q.E.D.

Several remarks about Corollary should be made here. First, not all Py €
(0,1) is consistent with the equilibrium condition, since p* and its preimage
will eventually converge to zero, violating the feasibility condition.
Second, (7) is a special case that satisfies the condition of Corollary.
Third, from Lemma, lima»o A(o) = 0, thus one can find ¢ satisfying the

condition for an arbitrary small § = u/8 - 1. A large discounting is no
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longer necessary for generating the strongly chaotic dynamics, even with a
constant money supply (g = 1). Finally, although these chaotic price
sequences satisfy the transversality condition, the fractional backing
considered by Obstfeld and Rogoff can rule them out, since the price level
will become arbitrarily close to zero along these equilibria. Of course, this
does not imply no fluctuations. As seen in the logistic equation, there is a
countable dense set, although with measure zero, of initial prices that lead
to "unstable" cycles.

Next, note that F(p*) = p* if § = 0 and F(p*) =1 if § = A(0).
Therefore, for any given 0 < ¢ < 1, F as a one parameter § family of maps with

§ € [o,0(0)] is a full family.13 Also, from Lemma, A(c) is invertible and

therefore, for any given 0 < § < 1, F as one parameter family —o of maps with
g ¢ [A_l(S), §] is also a full family. Therefore, from Theorems 7 and 8 in

Grandmont (1984) (see also Devaney [1987, sec. 1.19] and Guckenheimer and

Holmes [1986, pp.346-9]), one can conclude,

Proposition 7 As one increases § from o to A(o) (as the rate of money growth

increases from [l+o]B to [1+A(0)]B) for any given 0 < ¢ <= 1, or decreases o
from 6§ to A—l(é) for any given 0 < § < 1, the dynamics given by equation (5)
experiences "period-doubling transition to chaos." That is, for any 0 < ¢ <
1, there exists a value A*(o) such that 20 < A*(g) < A(o) and if § ¢
[20,80%(0)], all cycles of F have a period that is a power of 2, and there
exists an uncountable set of values of § in (A*(0),A(o)] such that F has no
weakly stable cycles. A similar statement can be made when one fixes § and

varies o.

Figures 2A-2D demonstrate Proposition 7 for § = 0.03. As o declines, a stable
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period 2 cycle appears first (Figure 2A), then a period 4 cycle (Figure 2B),
and then a period 8 cycle (Figure 2C) and eventually a chaos (Figure 2D).
(It should be noted that the results analogous to Propositions 6 and 7 also
hold for the case of o > 1. The difficulty is that, when o > 1, the
Schwartzian derivative is negative only on an interval [O,p+], where p+
satisfies p* < p+ < 1. Therefore, one needs to restrict § to guarantee F(p*)
< p+ so that F has a negative Schwartzian derivative on the trapping
interval.)

Finally, consider the case of F(p*) > 1, or § = A(o). See Figure 3.
Note that there exists a closed interval of initial prices, IO’ that leave
(0,1) after one period. There are two open intervals of initial prices that
remain in (0,1) after one period. Note that F maps each of these intervals
monotonically onto (0,1). This implies that there are two disjoint closed
intervals of prices that leave (0,1) after two periods. This suggests that
one can construct the set of initial prices that are consistent with
equilibria by successively removing closed intervals from the "middles" of a
set of open intervals. Using the technique explained in Devaney (1987), one
can prove, when § is sufficiently large or ¢ is sufficiently small, that the
set of the initial prices consistent with equilibria is a totally disconnected
set, that the number of periodic points with period less than or equal to n is
2n—1, and that there exists an equilibrium path that comes arbitrarily close

to other points in this set.l4 Again, we have very complex dynamics.

5. Making Sense of Cycles and Chaos

This section provides an intuitive explanation of the conditions
necessary for generating convergence, cycles and chaos. First, note that

equation (1) can be rewritten as follows, by defining Ht = Pt+l/Pt = pmt/mt+l,
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the gross inflation rate and Rt = Uc(y,mt)/ﬁUc(y,m ), the gross real

t+1

interest rate.

Un(y,m)/Ue(y,m) = 1 = 1/(RI)

The above expression states that the marginal value of liquidity services is
equal to the liquidity cost, which increases with the real interest rate and
the inflation rate. When the consumption good is normal, the L.H.S. is
decreasing in m_ so that we have m_ = L(Rth), L’ < 0. That is, demand for
real balances negatively depends on the gross nominal interest rate. From Rt

) and m

= Uc(y,mt)/ﬂUc(y,m = pmt/Ht, the real rate of interest generally

t+1 t+1

depends on Ht/p and m_, yielding the expression Rt = A(Ht/u, mt) or,

(9) m = LA /p,m )1 ]

The steady state is given by Ht = u, Rt =1/8, Rth = u/B = 1+6 and m_ = m =
L(pg/B)}. Thus, § is the nominal interest rate in the steady state.

From equation (9), it is easy to see why the separability leads to a
global convergence. The separability implies that the real interest rate is
constant and given by (1/8)-1. Now, suppose that L < m. Then, L{up/B) = m >

m_ = L(Ht/ﬂ) so that Ht > g, or m > m_ >m

. In order to make the agent

t+l’
willing to hold lower real balances, the nominal interest rate should be
higher than its steady state level. With the real interest rate being
constant, this implies that the inflation rate must be higher than the money
growth rate. Repeating this shows that real balances will continue to
decline. Likewise, if m, > m, real balances will continue to rise forever.

With a nonseparable utility function, this need not be the case since a

deviation of the inflation rate from its "fundamentals", II/u, affects the
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real rate of interest. If an inflation rate higher than its steady state
level reduces the real interest rate so much that the nominal interest rate
declines, then an inflation rate lower than the money growth rate is necessary
to reduce demand for real balances. (If m < m, Ht/p < 1 so that m < mt+1.)
If this "perverse" effect on the real interest rate is very strong, only a

small deviation of the inflation rate would suffice, therefore m, < L < m,
generating a convergent path. On the other hand, if the effect is relatively
small, then a large deviation of the inflation rate is necessary, therefore m,

<m < generating an oscillatory movement.

Merl
Under the specification of the utility functions considered in the

previous sections, Rt = (l/ﬂ)(p/ﬂt)a+l and thus,

R/ (u/B) = R /(L+8) = (NI /u)

so that —o is the elasticity of a deviation of the nominal interest rate from
its steady state level with respect to a deviation of the inflation rate from
its steady state level. Therefore, a small, positive ¢ gives rise to cycles
and chaos, while a large, positive ¢ implies convergence. The reason for a
large 6 implying cycles and chaos and a small § implying convergence when o >
0 is that the nominal interest rate elasticity of money demand,
ldlogL/dlog(RH)l, evaluated at the steady state, is equal to (1+6)/6,
negatively depending upon §.

The above argument has two important implications. First, it suggests
that endogenous price fluctuations are not necessarily unique to the Brock
model. Any model in which the real interest rate declines when the inflation
rate is higher than the growth rate of money supply would have the possibility

of generating complex price dynamics.15 Second, equation (9) implies that
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periodic and chaotic movements of price and real balances are accompanied by
periodic and chaotic movements of the nominal and real interest rates. This
is consistent with the findings of strong evidence of chaos in stock and T-

bill returns by Scheinkman and LeBaron (1987) and Brock (1988).

6. Discussions
This section addresses some of the issues that the preceding analysis
might provoke.

a. Welfare Implications.

The analysis here can be considered as a demonstration of price
destabilizing speculation consistent with perfect competition and rational
expectations in a general equilibrium setting, since intertemporal arbitrage
by agents is a driving force behind the price dynamics. One may feel
intuitively that such a price destabilizing speculation is "bad," but, if so,
one's intuition is faulty. To see this, note that, from (2) and the

definition of ¢ and pt,

UCy.m) = =(B/(1+6)) (p) 7 = (B/(1+0))((B/w) (p,, - (2 7).

t+1

where B is a positive constant, independent of u, and use has been made of
equation (4). Therefore, one can easily calculate the welfare level under a

constant money supply (g = 1) as follows:

W= Eh_ o 8T Uly,m) = (B/ (o)) (35 5B, )7 ()]

(B/(1+0)) [1imy, B (p)7 - (p)7]

Consider the case of ¢ > 0, where there are multiple bounded equilibria. From

the boundedness, limTQmﬂT(pT)U = 0 so that,
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W= BT UGy,m) = —(B/(1+)) (p)°
Therefore, an equilibrium with a lower initial price gives higher welfare
under a constant money supply. In particular, when § > 20 > 0, all
fluctuating equilibria starting with Py < p are better than the steady state
equilibrium.

Pareto dominance is sometimes suggested as a criterion for equilibrium
selection in a model with multiple equilibria. The above result implies that
even if one subscribes to such a criterion, fluctuating equilibria cannot be
eliminated.

b. Money in the Utility Function

In the model discussed above, demand for money arises through the
assumption that an agent’s utility depends on his real balances. This
approach has been adopted here, not because it is the best way of putting
money in an optimizing model, but because it is the approach favored by many
"mainstream" macroeconomists. The results here should be interpreted as a
caution to the proponents of this approach that even a simple model of money
can generate complex dynamics.

The money-in-the-utility-function approach is often considered as a way
of capturing the role of money in reducing transaction costs associated with
imperfect markets: see, for example, Brock (1974, pp.768-9) and Feenstra
(1986). Viewed in this way, the analysis here is akin to Woodford’'s (1987)
study. He demonstrated that the chaos can arise with a small discounting if
some agents face liquidity constraints. It seems therefore hard to ignore the
16

possibility of complex dynamics in an economy with market imperfection.

One potential problem is that, if agents derive utility from holding
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money because it helps them to save resources such as leisure, then it is hard
to justify unbounded utility functions. Equation (2) implies that u(c,m) - =
as m - « when y > 1, and u(e,m) - -« as m - 0 when 0 < y < 1. However, this
problem does not reduce the validity of the main result; i.e., bounded
equilibrium fluctuations of prices and real balances. All we really need is
that the utility function has the form given in (2) only over the trapping
interval.

c. Discrete Time Specification

Most studies of complex dynamics in economics deal with discrete time
models. This is partly because we can generate cycles and chaos much easier
in discrete time systems than in continuous time ones. Therefore, critics may
argue that endogenous fluctuations are an artifact of a coarse discrete time
approximation: Natura non facit saltus.

The present analysis seems less prone to such a criticism than other
studies in the literature. First of all, it is hard to take continuous time
models literally. Although financial markets may open anytime, nobody goes
shopping every second nor eats incessantly. The neoclassical (Fishian)
approach to the consumption-saving decision and its implication of
consumption smoothing make sense only if the time interval between consumption
decisions is interpreted to be sufficiently long. This is particularly true
in the Brock model, where the single consumption good actually represents a
composite of various consumption goods. Moreover, if one thinks that
economic activities of a typical household consist of production (working),
consumption, and transaction (shopping), then it seems reasonable to take the
time interval to be at least as long as a week or a month. And it is no

accident that most studies of money, including the voluminous literature on
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the transactions demand for money and the cash-in-advance constraints, adopt a
discrete time specification. Although a continuous time specification is
analytically convenient and innocuous for many purposes, a discrete time model
seems to be closer to the reality. One appealing feature of the present
analysis is that cycles and chaos can emerge with an arbitrarily small
discounting or with an arbitrarily short time interval. Therfore, the
restriction imposed by a discrete time specification is considered negligible.

It should be emphasized, however, that complex dynamics are not unique to
the discrete time system. It is known that nonlinear differential equations
are also capable of generating chaotic behavior if the number of variables is
at least three (see Guckenheimer and Holmes (1986)). Although the
theoretical literature on high dimensional nonlinear systems is still sparse,
the limited results suggest that higher order systems, both discrete and
continuous, can produce chaotic dynamics with less nonlinearity. Introducing
some state variables, such as consumer durable goods and consumer’s habit

formation, would be an important extension.



Proof of Lemma

First, note that 1+A(og)

log[1l+A(c) ], we have,

A (o) =

24

Appendix

a—a(l+a)l+a > 0. By differentiating

[1+A(0) ]log(l+1l/o) > O ,

so that A(o) is strictly increasing. Next,

llma*O
thus lim A(o) = 0.
a-0

Z(g) =

. . o,
[1+A(a) ] = [llma»O(l+a>][llma+0(1+l/a> ] =1,
To prove that A(g) > 20, define

log[ (1+A(0)) /(1+20)]

It is sufficient to show that Z(og) > 0. Since lima»O Z(o) = log(l) = 0, it is

sufficient to show,

Z' (o)

Since lim Z'(g) = 0,
fod)

Z"(U) —

A'(a)/[1+a8(a)] = 2/(1+20)
log(l+l/0) - 2/(1+20) > O
this is proven by demonstrating Z"(¢) < 0, as below;

~lo(a+) (1420217 <0 . Q.E.D.
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Footnotes

1. For the closely related literature on stochastic bubbles, see Blanchard
(1979), Blanchard and Watson (1982), Diba and Grossman (1988) and Flood and
Garber (1980).

2. It is also possible to have multiple steady states in a nonseparable
utility function; see Brock (1974, 1975). However, this possibility can be
eliminated if real balances are normal.

3. Obstfeld and Rogoff (1983) introduced a nonproducible capital in the
Brock model and showed that, if the government sells capital for money at an
arbitrarily high pre-set nominal price with some probability, explosive price
paths can be ruled out. A similar analysis can be easily made in the present
context so that capital will not be introduced explicitly below to simplify
the notation. The government can replicate Obstfeld and Rogoff’s scheme if it
prints money on the paper that has small intrinsic value. Farmer (1984)
considered an alternative way of ruling out hyperinflations in an overlapping
generations economy. It is not clear whether his scheme can eliminate
fluctuating equilibria considered here.

4. After the first draft of this paper had been written, I became aware that
Woodford’'s (1987) model of capital market imperfection and Deneckere and
Judd’s (1987) model of product development also generate the chaos without a
heavy discounting. I am indebted to Prof. Brock for bringing my attention to
Woodford’'s work.

5. Baumol and Benhabib (1987) anticipated the possibility of chaos in the
Brock model, but the reason for the emergence of chaos they suggested seems
quite different from what we discovered here.

6. If o <= B, then no equilibrium exists: see Brock (1974, pp.764-5).

7. Strictly speaking, Py = » is another candidate of the steady state
equilibrium. This is the situation where paper money has no value. One can
show that, for the class of utility functions assumed below, Py = = can be
ruled out as an equilibrium,

8. A period-k cycle is defined by (po ) such that Fk(po) = P, and

i ’pl)’)pk_l
F (pO) = P; * P for all i = 1,2,..,k-1, and 1 is a period-k point.

9. See Devaney (1987, part I), Grandmont (1984) and Guckenheimer and Holmes
(1986, sections 5.6, 6.3 and 6.8). Grandmont's paper provides a summary of
the results contained in Collet and Eckmann (1980), which I have not yet seen.

10. One can show that the union of C and the set of (pl FT(p) = 0 for some T}
is a Cantor set (i.e., a closed, totally disconnected, perfect set).
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11. A cycle (po ) is weakly stable if IDFk(p0)| <1l. It is

)ply y ka-l
unstable if |DFk(po)| > 1.

12. Since iterations must be stopped after a finite time, this experimental
way is unable to distinguish between chaotic behavior and the periodic
behavior of a long period.

13. This definition of a full family is due to Guckenheimer and Holmes (1986,
p-272). It is slightly (and without significance) different from Grandmont's
(1984) or Devaney’s (1987, p.1l49) definition of a transition family.

14. Devaney (1987, section 1.7) proves the essentially same results for (6).
His proof only requires that F is everywhere expanding, that is, |F’(p)| > 1
for any p such that IF(p)] < 1. Although this condition does not hold in our
example, if one defines q = (p)? and considers the first order difference
equation in g, then it can be shown that the condition holds if
{6/(1+6)19[(1+46+0) /(1+A(o))] > 1. This is guaranteed by choosing § large
enough or ¢ sufficiently close to zero. The qualitative dynamics of p and g
are equivalent since they are topologically conjugate. The results here
differ from Devaney’'s only because Devaney considers the removal of open
intervals in the middles from [0,1], while we consider the removal of closed
intervals from (0,1).

15. This condition should not be confused with the so-called Mundell (1963)-
Tobin (1965) effect: an inflation due to a higher money growth reduces the
real interest rate in the long run. In the Brock model the steady state real
interest rate is 1/8, independent of the money growth rate and the steady
state inflation rate.

16. Given the Turnpike properties of efficient allocations with a small
discounting, such as Brock and Scheinkman (1976), Cass and Shell (1976) and
McKenzie (1976), it seems hard, though not impossible, to obtain complex
dynamics with a small discounting in an economy where the first welfare
theorem holds.
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