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CONTINUOUS REPRESENTATION OF PREFERENCES

Kenneth R. Mount and Stanley Reiter

1. INTRODUCTION

There are problems of economic analysis in which the preferences of
agents are allowed to vary in some class. Such problems have been studied in
connection with the so-called 1limit theorems, with the continuity
properties of the Walras correspondence and in other contexts. In
such problems it is often convenient to be able to represent a class of
preferences by a utility function which is jointly continuous in preferences
and commodities. Hildenbrand [ 1 p. 175] has constructed such a utility
function for the class of continuous preferences which are monotonic, where
the consumption set is the non-negative orthant of the (Euclidean) commodity

space. Subsequently, Neuefeind [ 3 ] constructed such a utility function

for the class of continuous preferences whose indifference surfaces
have Lebesgue measure zero, where the consumption set is connected and is
the closure of its interior in f-dimensional Euclidean space.

In this paper we construct a utility function for the class of con-
tinuous preferences which satisfy the assumption of local non-satiation at

non-bliss points (AssumptionIID) on a consumption set which is an arcwise

L

connected subset of R”. We show that given a preference relation in this
class and given a utility indicator for it which belongs to a certain subset
of functions representing the given preference relation, there is a utility
function for the class of preferences which has that indicator as its value at

the given preference relation.



Our construction relies on the joint continuity in preferences and
commodities of the distance between the upper contour sets determined by
preference relations and commodity points. This is established in Lemmas 1
and 2 of Section 2. OQur construction affords some insight into the basic
structure of the problem of continuous representation of a class of prefer-

ences. [See Section 3.]

Finally, we provide examples to show that the assumption of local non-
satiation cannot be dispensed with in Lemmas 1 and 2 (Example 1.), and that
the class of preferences satisfying Neuefeind's assumptions does not include
those satisfying the assumption of local non-satiation [Example 2]. It is
clear that preferences whose indifferences classes are of Lebesgue measure

zero do satisfy local non-satiation at non-bliss points.

2. CONTINUITY OF DISTANCE BETWEEN CONTOUR SETS

To avoid inessential complication we hold the consumption set constant

for all agents and denote it by X c Rﬂ. An agent is then characterized by

his preference relation, a complete preordering < of X, or by its graph,

{(xy) e xxX | x<y}.

Assumption I. X 1is an arcwise connected subset of Rﬂ.

Assumption II. The preference rélation < 1is a continuous preordering on X.

~

Assumption III. If x ¢ X 1is not a greatest element for < on X, then for

every € > 0 there exists y € X such that y > x and \y - X \ < €.
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We denote by 2 the class of agents satisfying assumptions I, II, and
III. The elements of & are the graphs of preference relations. We give &
the topology of closed convergence. [1, p. 165].

We shall define

,%:»?XX—»Zbe

2(p,x) = {x ¢ X \ x> x}.
p

We use \°[ to denote the norm in Rz and d(A,B) to denote the distance
between sets A and B for A and B subsets of R".

We use the same symbol d(+,¢) for all m, relying
on the context to distinguish d(A,B) from d(p,q) when A and B are
subsets of X and p and q subsets of X x X, i.e. m=4 vs. m= 24,

We now establish the joint continuity of the distance between contour sets.—

Lemma 1: If p ¢ » then for each x ¢ X and each ¢ > 0 there exists

§ > 0 such that

(x - X) < 6 implies d(&(p,x),&(p,x)) < ¢

on every compact set K C X,

Proof: let p e @ and let < denote the preordering of X given by bp.
Since p 1is fixed throughout the argument we shall write .%(k) for Z(p,x).
To show that for ¢ > 0 there exists J€ = J such that dQ&(xj),ﬂﬁ(x)) < €
for all j > J, since either ,%(xj) C &(x) or H(x) Ciﬁ(xj), it suffices to

show that

1) for each j > J there is a point yj € &(xj) such that \yj- &(x)\ < €

2) for each j > J there is a point =z ¢ &(x) such that L&(xj) -z| <e,

ol /
'

We are indebted to Leonid Hurwicz for useful comments on an earlier version
of this result.
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where |y - %(x)| = Min |y - z!,
ze & (x)

e &y iswithin e of £(x) and A&(x) is within ¢ of £(x,)  for

j> J.

Given ¢ > 0 and X, 0 x e partition the set {xj} into three subsets;

(1) those elements for which xj ~ X (2) those such that xJ. > X

(3) those such that Xy < X,
For the terms (1), Q(Xj) = 2(x) and hence d(&(xj), (X)) = 0< ¢.
So we consider first A = {yj ] xj > x} and suppose there are infinitely

many elements in A. (If A contains only finitely many elements we may ignore
it.) Since Xj > x 1implies "Q(Xj) C %(x) and hence if 2z ¢ .&(xj) then

}Z - -<9(X)'( < ¢ for all ¢ > 0, it remains to show that _g”:(xj) is within

¢ of 2(x), i.e., it remains to show that if y ¢ Z(x), then

]y-.&(xj) < e for all j > J (&)
Suppose not. Then there exists €y > 0 such that for each integer J,

there exists k > J such that

- ! . . o { b
{ y ‘g«(x.k) > €, (To lighten notation we shall write ' for
sequence so constructed.)

Now, y e &(x) =2y> x ,



If vy > X for some k
then vy e.@(X£). Hence

Ly -a) i<y -y | =0,

0]

contradicting | y - @(xk) > s 0.
Hence we may conclude
Y <% for all k.
By continuity of preference, there exists an open sphere /}ﬁ,(y) of radius
' > 0 about y such that
v' e Gg' (y) implies y' < X for all k.
Let ¢ = min (¢', eo). It follows from local non-satiation of preference,
that there exists 2z ¢ @e(y) such that
z> y.
Now, if
z > X, for some k, it would follow that =z ¢ &(Xk) for the same k.

But since

|l v -z ] <ec< €,

and

zZ e ﬁ(xk), it follows that [ y - &(xk) ] < g < €
contradicting

Ly - &(xk) P> ey for all k.
Hence we may conclude that

z < X for all k.

In summary, we have shown that

(*) xSy <z < x, for all k.



(7':*)
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Let u be any continuous utility indicator of the preference relation <

Since X 1is arcwise connected there is an arc, which we denote by [x,xk],
connecting x and x and which is contained in X. It follows from

continuity of preference, and the intermediate value theorem applied to u,

that for each k there exists v, € [x,xk] such that

u(vk) =u(z), (i.e., v, ~ 2).

k
Hence

U(Vk) = u(z) <u (Xk) for all k .
is continuous, it follows that

Now because X X (since x, % x) and u
J
u (Xk) % u (x). Furthermore, because u(z) < u (xk),
it follows that
u (z) < lim u(xk) =u (x).
Then, combining inequalities (*) and (*%),
u (x) <u (2) <u (x)

which is a contradiction.

The conclusion follows for the case xk > X. Notice that no reference

to compact sets was made in the argument so far.

Consider now the set B = {xj [ Xy < x}. Since x, <x implies
&(xj) D %(x), and hence that &(xj) is within ¢ of %(x), it remains
to show that &(x) M X is within ¢ of &(xj) N K for all j sufficiently
large, and every compact set K. Suppose not. Then there exists a compact
set K and o > 0 such that for every J there is k >J and
Yy € &(xk) such that

v - NK | >e .

-~
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I.e., there is an infinite set C of points e H(x,) N K such that
P Yk Xk

: - K € .
Vi Z(x) K- > o for all k

cC = {yk | Vi € () © K and ?yk - A x> eo}

Since C < K, and K 1is compact,there is at least one point, 1y, in the
closure of C such that for every £>0 5,(y) = fx e X! Ix-yl <8

contains infinitely many points of C.

€
If y ¢ %(x) then for 5§ < 7? there exist values of k such that

which contradicts | y, - &(x) I > ¢, for all k.

Hence y # &(x). Since £&(x) 1is closed, it follows that y < x,1i.e.,

u(y) < u(x)
Moreover, 'y - 2(x) | > 0, and further
there exists a point z' ¢ .%(x) such that

vt | = ly-elso0

1t follows that

u(y) < u(x) < u(z').
Let [y,z'] denote an arc in X connecting y and z'. By

continuity of preference there is a point 2z € [y,z']

such that

u(z) = u(x).



Hence z ¢ £(x). Thus,

uly) > u(z) = u(x)
Let a = u(i) - u(y) >0

Again, by continuity of u, there is a point v ¢ [y,z] such that

u(v) = u(y) + %

and hence there is a sphere '3p(y) with center y and radius p > 0 such that

u(§) < u(v) for all § € 3D(y).

Now, since Xj converges to x the subsequence %
also converges to X.
By continuity of u, for ¢' = %- > 0, there exists J(¢')
such that j > J(¢') implies
IECHERIONES
Since W ¢ ﬁ(xj) implies u(w) > U(Xj)
it follows that for j > J(¢')
80D 2 ule) > u@) - 3

and, since
W e(}g(y) implies

uw) < u(x) - 2

-

it follows that

]
o

3xp) N6,

j ! ¢ (y) contains at most finitely many points
for all j > J(e"). Hence, o y
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of C. This contradicts the statement that every sphere about y contains

infinitely many points of C.

Hence the assumption that & (x) is not within =2 of .f“(xj) for all
j sufficiently large is false.
This establishes the conclusion that if xj X

d(.)z«(ij 4 (x)) =+ 0.

Lemma 2: For every ¢ > 0 there exists & > 0 such that if p and p'’

belong to ¢ then d(p,p') < § and \x—x'} < 5 imply d(&(p,x), &(p',x")) < ¢.

Proof: Given ¢ > 0 let p and p' belong to % and be such that d(p.p') < -g- We
choose 5 > 0 so that if |x - x'| < 5, then d(&,p,x), &(p,x')) < % Now
assume that y e &(p,x). Because |x - x'| < &, there is a y' ¢ &(p,x")

such that |y - y'| < % . But d(p,p') < —;— , hence the set distance
d@s(p,x'), Z(p',x")) < % Thus there exists a y" ¢ &(p',x') such

that ]y' - y"] < % . Hence ]y - y"] < e, i.e. &(p,x) 1s within an
¢-neighborhood of %(p',x'). Conversely, assume that z ¢ %(p',x'). Then
d@(p',x"),&(p,x")) < % . Thus there is a z' ¢ &(p,x') such that

lz - z'] < % . But |x - x'l < 5, hence d&(p,x), &(p,x")) < -g'- .

Thus there is a 2" ¢ &(p,x) such that ]z' -z"| < % Thus ]Z -z" < g,

i.e. z 1is within an e¢-neighborhood of &(p,x).
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3. CONSTRUCTION OF UTILITIES

In this section we construct an indicator of preference on the class
2 which is jointly continuous in preferences and commodities. 1I.e., we

construct a function
u: 2 x X+ R

which is continuous on & x X and such that for each p ¢ £, u(p,) is an
indicator of the preference relation p.

Llet p ¢ #; we shall also write > for the preference relation on X,

~

corresponding to p.
Choose x_, € X arbitrarily, and define u(x )= 1. */
For x ¢ X either x> X or x<x . If x.x, let u(x) = u(x ) = 1.
~Z 7o o o o

u(xo) + d@%(xo),.$(x)), where %(x) 1is, as in

If x> X, let u(x)

Section 2, the upper contour set on x determined by the preference relation <
If x<x, let u(x) =u(x) - d@&(x)), &(x)).

It follows from Lemma 1 that d(-,¢) 1is continuous on X for any p e &

and hence that wu(p,*) 1is continuous on X. It follows from Lemma 2 that

u 1is jointly continuous on & x X.
It is clear from the construction that u is increasing with respect

to < since x f y implies &(y) C &(x).

We may summarize this construction in the following Lemma.

Lemma 3. If # 1is a class of agents satisfying Assumptions I, II, and III,

then there exists an indicator of preferences u: # x X+ R continuous on & x X.

/

R

If the consumption set ¥ was permitted to vary we would choose x in
the intersection (assumed non-empty) of all the consumption sets.
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X
For the fixed consumption set X let R denote the class of
continuous real valued functions on X.

Define the mapping

m:RX + X x X

by

w(@ =p={(xy) eXxX]|qx)<qym}

Thus, ¢ associates to each function q the continuous preference relation
©(q) given by the contour sets of q.

Let Q Dbe the inverse image of 2 wunder ¢, i.e., Q C.RX is the set
of utility functions whose contours give preference relations in &£.

We note first that ¢ 1is continuous on Q in any topology such that
convergence of functions qj + q 1implies convergence of preferences in &
and also of the contour sets,

The topology of uniform convergence is sufficient for this, in the presence
of local non-satiation. To see this it suffices to show that for any =2 >~ 0

there exists an integer J such that for any x e X, j > J implies
dc&(uj,X), &(u,x))< €.

Since &(uj,x) ={yeX | uj(y) > uj(x)}
and
2(u,x) = {ye X | u(y) = u®}
it suffices to show that if vy e &(uj,x) for all j e J then there exists
y' € &(u,x) such that l|y' -y | <e and if y e &(u,x) there exists
v e.&(uj;x) for all j > J such that |y' -y | <e.
Let vy e,&(uj,x) for all j > J(e)

Then uj(Y) = uj(X), for all j > J(e).
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We consider first the case uj(y) > uj(x), and taking y' = y, compute
u(y) - u(x).
u(y) - u®) = u(y) - uj(y) + uj(y) - uj(X) + uj(X) - u(x)

= uj(y) - uj(x) +28 >0

where j > J(5) implies \uj(z) - u(z) ] < 8% for all z ¢ X. Since this

argument is symetric in uj and u, it can be applied to show that

u(y) - u(x) > 0 implies uj(y) - uj(x) >0

for j sufficiently large.
Now consider the case uj(y) = uj(x). If u(y) < u(x), then the argument
above implies uj(y) < uj(x) contrary to hypothesis. It follows that

uj(y) = uj(x) implies wu(y) = u(x). Similarly,
u(y) 2 u(x) implies uy (y) = uy (%)
for all j sufficiently large.

The correspondence @-1: % 4 Q assigns to each (continuous) preference
relation in & the set of (continuous) representations of it.

Let Q/o denote the quotient space of Q under o, (i.e., an equivalence
class in Q consists of all functions representing the same preference relation)

and let Q/qp have the quotient topology.

The situation may be summarized in the following diagram.
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. N Q _ -1 .
Here wm 1is the projection of Q@ on o and h=¢ -w . We note first
that h is 1 - 1, since elements of Q are equivalent if and only if

they have the same ¢-image. Further, h 1is onto because ¢ 1is onto,
(i.e. every preference relation in & is continuously representable.)
The function h is continuous, since for 5 < &, § open, @-1(9)
is open by continuity of ¢, and w 1is open by definition of the quotient

Q.

topology on ©

-1

This argument is symetric in w and «¢. Hence it follows that h

is continuous if and only if ¢ 1is open. It then follows that ¢ open
Q
©

is equivalent to and ¢ homeomorphic,

Let

Q=fqeQ | q=FOu(p,+) for some p ¢ &}

where F 1is a uniformly continuous strictly increasing function from R to R,

and u(p,*) denotes the standard representation of p according to Lemma 3.
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— X ) ) = -1
Theorem If q, ¢ Q, there is a continuous selection g€, from o

which has q, in its range.

P f: t = » . : . : ‘3_
roo Le 9 € Q and P, Q(qo) P, € £ since q, € Q. Since q, Q there

exists a uniformly continuous strictly increasing function FO:R-+ R such that

= o .
9 Fo u(po, )

Let §O(P) =F % u(p,s) for pe . Then §O maps £ onto Q, and
takes the value q_  at P,- It is well-known that if wu(p,¢) 1is a utility

indicator for p then so is Fo % u(p,*) and hence §O is a selection from

-1
[ds] .

It remains to show that go is continuous on #. To see this, let

p € &, let pj + p. Then it follows from Lemma 2 that
u(Pj,') + u(p,).

I.e., for 8 > 0 there exists J(5) such that
]u(pj,x) - u(p,x) | <8 for all j > J(§)

and all x ¢ X. Since FO is uniformly continuous, for every ¢ > o there

exists 6&(e), such that for r and s in R,

lr - s| < 8() implies |F(r) - F(s) | < e.

For € > o, take & = 6(e). Then j > J(5(e)) implies

lFo(u(pj,x)) - F_(u(p,x)) | < e, for all x e X.

Thusl go(Pj) - E.lo(p)-
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Thus, if q 1is a utility function obtained by a uniformly continuous

strictly monotone transformation from the standard representation of the

preference relation P’ then there is a utility indicator continuous in

preferences which hits q,

It follows from a result of Michael [2 Proposition 2.2, p. 362] that

the correspondence o given by

sy = <teyn 7,

NN

is lower semi-continuous.According to another remark of Michael's [2,Example 1.1
- -1
p. 362] o is lower semi-continuous if and only if the restriction of

© to Q is open. Denote by 5 the restriction of ¢ to Q. Then,

supplementing Figure 3.1 we have Figure 3.2,

Q

T ©
\V%
5 h
Q N 2
— -
voe

h-l
Figure 3.2
Now, it follows from the fact that 5 is open, that Q and £ are

©

homeomorphic since the argument used above to establish the continuity of

is symetric in n and .
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4, EXAMPLES
We show first that Assumption 111, (local non-satiation) cannot be
%,

dispensed with for continuity of the contour set correspondence

Example 1:
v _ 52 . 2
Let X = R+, (the non-negative quadrant of R”),and let x= (0,0) y = (1,1
= 221}

2 2
T = [z e X |z ~x) = Lz e Rl 2 = 2 Uz e Kl 2

2
U {(zlzz) € R+ 1 Zy 7 3 zt.

Let
2 1,
L(x) = {(2429) € R | 2, 22 2} ul(z z,)e R*_] 2z, <% 2}
U I(x)
[and, of course, z <x for all z ¢ L(x).]
Let x., =+ x, such that xj > x for all j.
]
~ \
s/ ~ ) \e
. -
y than ¢ for any j.



We show next that the class £ of preferences satisfying Assumptions I,

II, and III is not included in the class of preferences having indifferent
surfaces of Lebesgue measure zero. We take the consumption set to be R
~ +

and hence to satisfy Neuefeind's Assumption I, i.e. it is connected and

the closure of its interior in R.

Example 2:

Preferences satisfying the condition that indifference sets have
Lebesgue measure O do not necessarily satisfy local non-satiation at

non-bliss points.

Let X = R, and let the preference relation be represented by the

utility function

u(x) = x sin x X

I\
(@]

Then,
1) there is no absolute maximum of u on X;
2) indifference sets have Lebesgue measure zero, since they are of

the form

+ .
{x e R x sin x = c},
which consists of isolated points;
3) the local maxima of u are points at which local non-satiation

fails.



