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Abstract

This paper establishes that efficient outcomes of static bargaining
with two-sided incomplete information can be achieved in infinite-horizon,
offer-counteroffer games. The entire ex ante Pareto frontier can often be
reached by equilibria of the standard games in which a single player
successively makes offers. OQOur equilibria are sequential and stationary,
but do not utilize delay as a screening device; they have the property that

most information revelation and most trade occurs in the initial two periods.



1. Introduction

In a remarkable paper, Myerson and Satterthwaite (1983) analyzed static
bargaining with two-sided incomplete information, in direct mechanism terms.
Two players simultaneously report their valuations to a mediator, who
carries out trade with prescribed probabilities and expected transfers in a
single trading round. Myerson and Satterthwaite characterized ex ante
efficient bargaining for fairly general seller and buyer distribution
functions. Moreover, they demonstrated that, when the supports overlap, ex
ante efficiency requires ex post inefficiency: in particular, there exist
pairs (s,b) of valuations such that positive gains from trade exist (i.e.,

b > s), yet the players trade with probability zero.
The direct mechanism approach can be criticized on account that, in

real life, traders do not bargain in this way. First, bargaining better

fits a dynamic rather than a static description. For example, after any
given round of negotiations, players usually "are unable to commit to
walking away from the bargaining table" (Cramton, 1984, pp. 579-580).
Second, bargaining typically progresses through successive, rather than
simultaneous, moves; actual mediatorless bargaining seldom involves
simultaneous bids, and the role of real mediators is quite different from
that posited by mechanism design. Thus, much of-the bargaining literature
has examined extensive form games which are dynamic and infinite-horizon,
and in which offers and counteroffers are made successively (Rubinstein,
1982). See Wilson (1987), Rubinstein (1987), and our previous papers for
reviews of this literature.

The belief in the bargaining literature has been that sequentiality

comes at the expense of efficiency. Researchers have argued that, if the
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duration of bargaining is not artificially cut off, then delay is needed to
credibly signal valuation. Since trading with delay corresponds (in
mechanism terms) to a probability strictly between zero and one, this would
imply an efficiency loss relative to the Myerson-Satterthwaite optimum.
Additionally, the fact that simultaneous moves are not permitted would seem
to preclude efficient information revelation, further contributing to waste.

The results of this article thus stand in stark contrast to most
previous contributions to the sequential bargaining literature. We analyze
the two simplest infinite-horizon, offer-counteroffer extensive forms--the
seller-offer and buyer-offer games--for fairly general distributions of
valuations. Surprisingly, despite the apparent restrictiveness of these
games (especially as regards information revelation), we demonstrate that
they admit extremely efficient outcomes. We construct sequential equilibria
where essentially all usable information is revealed in the initial two
trading rounds, and with the limiting property that trade occurs
instantaneously or not at all.1 In fact, we demonstrate that a portion of
the Myerson-Satterthwaite efficient frontier is implementable in the seller-
offer game and another portion is implementable in the buyer-offer game;

together, often, the entire Pareto frontier is obtained.

(Insert Figure 1 about here)

Consider the well-known example where traders' valuations are both
uniformly distributed on the unit interval. Our main theorem, when
particularized to this special case, establishes that all ex ante efficient

mechanisms which favor the seller (i.e., with seller weight X € [1/2, 1])
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are implementable in the seller-offer game. Symmetrically, all efficient
mechanisms favoring the buyer (i.e., A € [0, 1/2]) are implementable in the
buyer-offer game (see Figure 1). Thus, the trading rule that maximizes ex
ante expected gains from trade (i.e., A = 1/2), which is known to be an
equilibrium of the sealed-bid double auction (Chatterjee and Samuelson,
1983), does not require the availability of simultaneous moves. Even more
surprisingly, its implementation does not even depend on the ability of both
players to make bids.

Successive exchanges of offers are probably the oldest and still most
commonly used bargaining institutions. As economists, we should ask whether
"these institutions survive because they employ trading rules that are
efficient for a wide class of environments" (Wilson, 1987, p. 37). Our
answer is affirmative. For fairly general distributions, offer-counteroffer
games may collectively be viewed as unbiased institutions: changing the
relative weights attached to traders, or changing the distributions of their
valuations, does not require an alteration of the rules of the games.
Rather, traders can simply play different equilibria of the same trading
institutions and continue to realize efficiency. In fact, it is frequently
the case that the two simplest offer-counteroffer games (where a single
party has the exclusive ability to make offers) are sufficient to "span" the
Pareto frontier.

It is illuminating to contrast the robustness of the seller- and buyer-
offer games with the nonrobustness of the sealed-bid double auction. When
the buyer's bid pb exceeds the seller's bid ps, let trade occur at
kpb + (1 - k)ps. Fixing k = 1/2, this double auction implements efficiency

under equal weighting and uniform distributions. However, efficiency for
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A # 1/2 requires a change in k, and efficiency for other distribution
functions generally requires other modifications in the trading institution.

Two other points should be emphasized. First, while efficient
sequential bargaining is possible, tremendously inefficient sequential
equilibria also exist.2 Second, despite the multiplicity of equilibria,
this is not a realm for folk theorems. There exist many static mechanisms
which are not implementable in various offer-counteroffer games.3

The article is structured as follows. Section 2 defines the sequential
game and static mechanism concepts. Sections 3 and 4 establish results on
the splittability of mechanisms. Sections 5 and 6 develop results on two-
price mechanisms. Section 7 states the implementation theorem for efficient
sequential bargaining, with proof provided in the Appendix. We conclude in

Section 8.

2. The Model

Two parties, a seller and a buyer, are negotiating over the price of a
single indivisible object worth s to the seller and b to the buyer. At the
time the bargaining commences, each trader is aware of his own valuation,
but treats his opponent's as a random variable. These random variables are
distributed independently on the common interval [0,1], according to the
(commonly-known) distribution functions Fl(s) and Fz(b). Each distribution
function Fi(-) possesses a density fi(o) which is continuous and positive on
the interior of the support. Traders are interested in maximizing their
expected monetary gain.

A bargaining mechanism is a game in which both parties simultaneously

report their reservation prices to a mediator, who then determines whether
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the good is transferred, and how much the buyer is to pay the seller. A
bargaining mechanism is completely characterized by the two outcome
functions, p(e,e) and x(e,¢), where p(s,b) denotes the probability of
transfer given the reports of s and b, and x(s,b) denotes the expected

payment. With every bargaining mechanism {p,x), we associate:

51(8) fé D(S,Vz)fz(vz)dv2 ﬁz(b) = fé p(vl,b)fl(vl)dv1

(2.1)

X, (s) = Il x(s,v,)f (v,)dv x.,(b) Il p(v,,b)f_ (v, )dv,_,
1 0 2722 2 2 0 1 171 1

where El(s) is the probability of agreement and il(s) is the expected
revenue to the seller of type s, and Bz(b) is the probability of agreement

and iz(b) is the expected payment for the buyer of type b. Thus, the

seller's and buyer's (interim) expected payoffs are given by:
(2.2) Ul(s) = xl(s) - spl(s) and Uz(b) = bpz(b) - xz(b).

A bargaining mechanism is incentive compatible if all player types have an

incentive to report truthfully, i.e.,

(2.3)  Uj(s) 2 x,(s") - spy(s'), U,(b) 2bp,(b') - x,(b'),

for all s, s', b and b' in [0,1]. A mechanism {p,x} is individually

rational if all player types want to participate voluntarily, i.e.,
Ul(s) 2 0 and U2(b) > 0, for every s,b € [0,1]. Mechanisms satisfying both

the individual rationality and the incentive constraint will be referred to
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as incentive compatible bargaining mechanisms (ICBM's).

The usual description of bargaining, rather than being static and
direct in nature, involves players making repeated offers and counteroffers
through time until an agreement is concluded, or an impasse is reached. By

an offer-counteroffer game, we will mean any extensive form game (finite or

infinite) in which at discrete moments in time one (and only one4) of the
players is given an opportunity to make an offer, which the other player can
then either accept or reject. Acceptances always conclude the bargaining;
rejections may or may not do so. We also assume that the time between
successive bargaining rounds is bounded away from zero, and that players
discount the future with a common interest rate, r. Hence, if the good is
traded at time t for the price mw, the seller obtains a surplus of
e—rt(" - s), and the buyer a surplus of e—rt(b - m). Note that implicit in
the definition of offer-counteroffer game is the assumption that money only
changes hands if the good changes hands. 1In particular, the rules of the
game do not permit players to pay each other history-contingent transfers
unrelated to the accepted offer. One example of an offer-counteroffer game
is the seller-offer game, in which the seller gets to make all the offers at
discrete moments in time, spaced z apart.

The revelation principle implies that to eQery Nash equilibrium of an

offer-counteroffer extensive form there corresponds a sequential bargaining

mechanism.5 Such a mechanism specifies a pair of outcome functions t(e, )
and x(e,e), where t(s,b) denotes the time at which the good will be
transferred and x(s,b) the discounted expected payment from the buyer to the

-rt(s,b)

seller, given respective reports of s and b. Letting p(s,b) = e we

see that every Nash equilibrium maps into an ICBM {p,x}. Similarly, every
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sequential equilibrium of an offer-counteroffer game induces an ICBM after
any history of the game.

It is interesting to know whether a given mechanism {p,X} can be
supported by sequential equilibria of some offer-counteroffer game (see also
Ausubel and Deneckere, 1988a,b). If we restrict ourselves to equilibria
that involve no randomization along the equilibrium path, then one necessary
condition for this is that it be possible to repeatedly "split" the

mechanism into incentive compatible "submechanisms," thereby tracing out the
equilibrium histories of the game. We now turn to an investigation of this

issue.

3. Splittability and the B Functions

Consider any ICBM {p,x}, with the seller and buyer distributed
according to the distributions Hl(S) and Hz(b). Let S = supp Hl c [0,1] and

B = supp H, € [0,1]. Let {Sa}aeA be a partition of S, and let H?(s) be the

2
conditional probability distribution of s given that s € s< (and the initial

distribution is Hl).

Definition 3.1: A (seller) split of an ICBM {p,x} with initial

distributions H1 and H2 is a (nondegenerate) partition {sa}aeA of S =

supp H1 such that the submechanisms {pa.xa}, each defined by restricting
p(s,*) and x(¢,») to the domain Sa X B, are ICBM's relative to the

distributions (H?,Hz).

This definition guarantees that incentive compatibility and .ndividual

rationality are maintained after the split. A mechanism for which there
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exists a seller split will be called (seller)-splittable. Obviously, there

is an entirely analogous definition for buyer splits.

Consider now any sequential equilibrium of any offer-counteroffer game.
First, observe that if only pure strategies are used along the eguilibrium
path, then the information revelation pattern along the equilibrium path
takes the form of a successive refinement of the initial information
partition. Second, let us denote by Hl(s) and H2(b) players' posteriors
after some (arbitrary) history. By sequential rationality, the equilibrium
strategies induce a sequential equilibrium on the remainder of the game, and
hence an ICBM {p.x} relative to the H1 and Hz. (For accounting reasons, p
and x are discounted relative to time zero.) If the player who has the next
move utilizes pure strategies, and if his action refines the current
information partition, then {p,x} is splittable.

In what follows, we only consider binary splits, where the index set A
consists of exactly two elements. There is no loss of generality in doing
so, since we can always add superfluous moves to the game (occurring in
virtual time), where the player who induces a split first announces which of
the two sets of actions he will subsequently pick from. For example, if the
seller is about to induce the split {sa}aeA by taking the action {ma}aeA' he
can be convinced to first make one of the two announcements: "I am about to
take an action in Ml" (or Mz). where Mi = {ma: o € Ai} and {Al.Az} is a
binary partition of A.

One interesting example of a split is a convex split, where each
element of the partition is convex. For example, in offer-counteroffer
games, the accept/reject decision induces a convex split. In addition, all

equilibria with which we are familiar in the literature (on infinite-
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horizon bargaining with incomplete information and a continuum of types)
involve convex splits along the equilibrium path. It is therefore important
to know under what conditions a mechanism is convexly splittable. As argued
above, it will be sufficient to investigate the possibility of binary convex
splits. It should also be observed that, although our theorem below is
stated in terms of the initial mechanism {p,x} (relative to the
distributions F1 and Fz), our distributional assumptions permit a repeated
application of the theorem (relative to the corresponding conditional

distributions). Let us introduce some notation:

G (s) = 3 Jg (v, - (1 = Fy(v,))/1,(v,)]
- [v1 + Fl(vl)/fl(vl)]}p(vl,vz)fz(vz)fl(vl)dvzdv1
1 1
Gz(b) = Ib IO ([V2 - (1 - F2(V2))/f2(V2)]
- [V1 + Fl(vl)/fl(vl)]}p(vl,vz)fl(vl)fz(vz)dvldv2
Bl(s) = Fl(s)Ul(s) - Gl(s)

B,(b) = [1 - F,y(b)]U,(b) - G,(b).

We will say that the mechanism {p,x} is convexly splittable at s if it is

seller-splittable and if it induces the binary partition {[0,s),[s,1]}.

Similarly, {p,x} is said to be convexly splittable at b if it is

buyer-splittable and if it induces the binary partition {[0,b),[b,1]}.

Theorem 3.2: If the ICBM {p,x} is convexly splittable at s, then
Bl(s) = —Fl(s)Ué(O), where U;(O) refers to the utility of the lowest buyer
type in the submechanism corresponding to [0,s). If it is convexly

splittable at b then Bz(b) = -[1 - Fz(b)]Ui(l), where Ui(l) refers to the
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utility of the highest seller type in the submechanism corresponding to

[b,17.

Proof: Let I = [0.s) and II = [s,1], so that Fi(vl) - F,(v,)/F (s) and
Fil(vl) = [Fl(vl) - Fl(s)]/[l - Fl(s)] are the conditional probability
distributions. Also, let Ui(vl) and U;(vz) refer to the seller's and the
buyer's utility in the mechanisms {pI,xI} (relative to the distributions Fi
and Fz). By incentive compatibility of {pI.xI} and Myerson and

Satterthwaite (1983, Theorem 1):

I I _ s 1 N N
(3.1) Ul(s) + Uz(o) = fo JO {[v2 (1 F2(V2))/f2(v2)]

- v, + Fi(vl)/f;(vlj]}pI(vl,v2)f2(v2)fi(vl)dv2dv1.

I _ . I a
Now Ul(s) = Ul(s) by Definition 3.1. Also, p (vl,vz) = p(vl.vz) on

I x [(0,1], and hence (3.1) may be rewritten as:
I
Ul(S) + Uz(O) = Gl(S)/Fl(S),

from which the desired result follows. The derivation for a buyer split

proceeds entirely analogously. (1
We can add some more content to Theorem 3.2 by assuming that the split
is induced by a move in an offer-counteroffer game. First, we need to prove

the following result:

Theorem 3.3: Let {p,x} be an ICBM induced by a sequential equilibrium of an
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offer-counteroffer game (in which the discount factor between periods is
bounded away from 1). Then U2(O) = Ul(l) = Gz(O) = Gl(l) = BZ(O) = Bl(l) =

0.

Proof: We will argue that 02(0) = 0. The argument for Ul(l) proceeds in an
entirely analogous fashion.

First, since acceptances are ex post IR, (strictly) negative buyer
offers are rejected by the seller with probability one. It will follow that
02(0) = 0 if we can show that the seller never offers a (strictly) negative
price. This will certainly be the case if negative prices have probability
one of acceptance. Let Q be the infimum of all seller offers which are
rejected with positive probability (the infimum taken over all seller types,
all sequential equilibria, and all histories). Using an argument entirely
analogous to Fudenberg, Levine and Tirole (1985, Lemma 2) we can establish
that the lowest buyer's equilibrium utility is bounded above by 1. Using
the Lipschitz continuity of utility (with Lipschitz constant of one), it
follows that a buyer of type b can earn no more than (1 + b); consequently,
any offer below -1 has probability one of acceptance. We have just shown
that Q 2 -1. Next, we claim that Q = 0. Suppose instead that Q < 0, and
let § < 1 be the minimal discount factor betweeﬁ periods. Then there exists
an offer q < 8Q, made by some seller type in some sequential equilibrium
after some history, which is rejected with positive probability. But any
buyer rejecting such an offer is irrational, since he cannot hope to receive
a future offer below Q, and since any negative offer the buyer might make
will be rejected with probability one. Consequently, Q = 0, and Uz(o) = 0.

Observe, furthermore, that Gl(l) = 02(0), and that Gl(l) =
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U2(0) + Ul(l) (Myerson and Satterthwaite, 1983, Theorem 1). This
establishes that Gl(l) = 02(0) = U2(0) = Ul(l) = 0, and hence also that

B,(1) = B,(0) = 0. [1

A mechanism for which Ul(l) =0 = U2(0) will be called balanced.

Theorems 3.2 and 3.3 have an immediate implication:

Corollary 3.4: Suppose {p,x} is an ICBM induced by a sequential equilibrium

in an offer-counteroffer game, and suppose that {p,x} is convexly splittable

at s (b). Then Bl(s) =0 (Bz(b) = 0).

Proof: Consider the continuation game after the seller splits and reveals
that his valuation belongs to [0,s). As argued in the proof of Theorem 3.3,
the players never trade at a negative price; individual rationality thus
implies U;(O) = 0. Applying Theorem 3.2, we conclude that Bl(s) = 0 (and

analogously for the buyer). []

There are many mechanisms which are convexly splittable. In

particular, we have:

Theorem 3.5: Every seller-first mechanism is convexly seller-splittable at

all s, i.e., Bl(s) = 0.

Proof: A seller-first mechanism is a mechanism which remains incentive
compatible if the seller publicly announces his type before the buyer

announces his type to a mediator (see Ausubel and Deneckere, 1988b).
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Consequently, the mechanism is (seller)-splittable at every s. Hence,

Bl(s) = 0. (1

In general, however, it need not be true that Bl(s) (or Bz(b)) equals

zero. Consider, for example, the Chatterjee-Samuelson (1983) mechanism:

(s + b+ 1/2)/3 if b2s + 1/4
(3.2) p(s,b) = x(s,b)

0 otherwise,

~————
1]
e ——

where s and b are uniformly distributed on [0,1]. Myerson and Satterthwaite
(1983) established that this mechanism maximizes expected total gains from
trade over all ICBM's. Some direct computations show that Bl(s) =

(s/6)(3/4 - s)2, which is a strictly quasiconcave function on [0, 3/4] with
Bl(O) = Bl(3/4) = 0, and with peak s* = 1/4. Since p(s,b) = 0 for all

s 2 3/4, only seller splits with s < 3/4 have any relevance. However, there
exists no s € (0, 3/4) such that Bl(s) = 0, and consequently the above
mechanism is not convexly splittable. In fact, since splittability depends
only on p(e,+) and not on X(e,e), no other transfer function x'(e,s) will
yield a convexly (seller)-splittable {p,x'}. Finally, since Bz(b) = ———-,
the mechanism is not convexly (buyer)-splittable either. In fact, as we
will argue in the next section, the impossibility of convex splits in ex
ante efficient mechanisms (not coinciding with either monopoly or monopsony)
holds quite generally. Before moving to this topic, it is of some interest
to investigate the possibility of nonconvex (binary) splits. In what

follows, we let 0 = s0 < S < s2 el < sn = 1, and we denote by
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I = [0.31) U [32,33) U... and II = [sl,sz) U [s ) U ..., a binary

354

partition of [0,1}.

Theorem 3.6: If the ICBM {p,x} is seller-splittable in the binary partition

{I,II}, then Z?=O (-l)lBl(si) —a(n)U;(O), where a(n) = a if n is even,

n-1

a(n) = a if n is odd, and a, = Fl(sk) - F ) +

K 1(5k-1

F1‘Sk-2) - Fl(sk—s) + ... t Fl(sl)'

Proof: For the sake of brevity, we will only consider here the case where n

is even. Define, for k = 0,...,n/2 - 1:
i r
- <
:wWT )31 :ﬂ%y%q Sk = V1 < Soiet
I I _ .
Fl(vl) = 1 fl(vl) = i if
| P21 Io Saie1 = V1 € Sakee’
L L
Then:

1.1 I ~
Jo do g = v Py v )f (v, (vy)dv,dv, =

U (1) + U;(O) N jé jé {Fi(tl)fz(tz) .1 - Fz(tz)]fi(tl)}p(tl,tz)dtldtz

UL (1) + Up(0) + [} J (FL(E)E(t,) + [1 - Fy(ty)IE] (¢ )Ip(t, t;)de dt,

1 I
+ IO III Fl(tl)fz(t2)p(t1'tz)dtldtZ'
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where the first equality follows from manipulations similar to those of

Myerson and Satterthwaite (1983, p. 270). Equating the two expressions

vields:
oy (v, - (- F(vo)) /e (v,)] - Ty, + Br v )/elv )
To Jp v, 2(V))/T,(v, vy + Byt vy
1
P(Vl,V2)f1(v1)f2(v2)dv1dv2
1 n/2-1 _I Sok+2 -
T U ) H U0 By FyGapag) T Py (ty)dty
2k+1
) I n/2-1 _I
= U (1) #0000+ By g o Fy o) 101 (Sapg) — Uy (Sppap) ]
Now:

1 I |
a 5o JI {v2 - (1 - Fz(vz))/fz(vz) - [v1 + Fl(vl)/fl(vl)]}
D(Vl,v2)fi(v1)f2(v2)dv1dv2 =
-l _

- [v1 + Fl(vl)/fl(vl)]}p(vl,vz)fl(vl)fz(vz)dvldv

2
1 on/2-1 S2k+1
* o B0 Bk Js2k (). ty)f,(t,)dt,dty
= {G(sl) - G(sz) + G(ss) cee = G(sn_z) + G(sn_l)}
n/2-1

*Eeo gk (Ug(sy) — Uiy )0

We conclude that:
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G(s)) - G(s,) + ... + G(s _4) =
- a_ U (1) + U(0)] + Lo (-0 N ¢ a U (s) - a LU (s )
I n-1 k-1
=a U, (0) + B ) (-1)7 "F (s, )U (s ),

where the last equality follows from the fact that ak + ak_1

that s, = 1. The result now follows from noting that Bl(sk) = Fl(sk)Ul(sk)

= Fl(sk) and

- Gl(sk). [1

4. Ex Ante Efficiency and the Quasiconcavity of the B Functions

Direct inspection of the B functions reveals that they are
differentiable almost everywhere, and that Bl(o) = Bz(l) = 0. Furthermore,
we have seen that if {p,x} is supported by a sequential equilibrium in some
offer-counteroffer game then the mechanism is balanced and so Bl(l) = BZ(O)
= 0. We would now like to understand what (if any) extra structure is
imposed on the B functions associated with ex ante efficient mechanisms.
Recall that a mechanism {p,x} is ex ante efficient if it maximizes
AI; Ul(s)dFl(s) + (1 - A)Ié Ua(b)sz(b) (over all ICBM's), for some weight
X € [0,1]. Ex ante efficient mechanisms have a nice characterization only

under the distributional assumption:

Assumption 4.1:

(a) vyt Fl(vl)/fl(vl) is strictly increasing on [0,1],

(b) Vy - f1 - F2(v2)]/f2(v2) is strictly decreasing on [0,1],
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which we will maintain henceforth. This assumption has a clear economic
interpretation. Assumption 4.1(b), for example, holds if and only if for
every s < 1, the static payoff function from charging a single price q,
m(g,s) = [1 - Fz(q)][q - s8], is strictly quasiconcave in q. Before stating

the next result, it is necessary to make the following definition:

Definition 4.2: A mechanism {p,x} is a 0-1 mechanism if it is an ICBM and

if there exists a nondecreasing function g(s) such that p(s,b) = 0 for

0 <b < g(s) and p(s,b) =1 for g(s) £ b £ 1.

Theorem 4.3 (Williams, 1987): Suppose that Assumption 4.1 holds. Then if

{p,x} is ex ante efficient,6 it is a balanced 0-1 mechanism.

Balanced 0-1 mechanisms often induce strictly quasiconcave B1(°)

-

functions on [0,;], where s = sup {s € [0,1]: Bl(s) > 0}. When this is the
case, the fact that Bl(O) =0 = Bl(;) implies that Bl(s) # 0 for all

s € (0,;), and so the mechanism is not convexly seller-splittable. For
future reference, observe that Bl(o) is a C1 function for any 0-1 mechanism

having a continuous boundary and its derivative, Bi(-), satisfies:
(4.1) Bi(s)/f (s) = U, (s) - [g(s) - s][1 - F,(g(s))] = x,(s) - g(s)p,(s),

for all s € [0,1].

Also for use in the next theorem, define g*(e) implicitly by:

(4.2) g¥(s) - s - [1 - Fz(g*(s))]/fz(g*(s)) = 0, for all s € [0,1].
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Assumption 4.1(b) guarantees that g*(s) is uniquely defined for all

s € [0,1]. We refer to g*(e) as the monopoly boundary . The monopsony

boundary is defined analogously, and analogous results to those below can be

proved for the function Bz(.):

Theorem 4.4: Suppose {p,x} is a balanced 0-1 mechanism with strictly
increasing continuous boundary g(s) 2 s. Suppose also that Assumption
4.1(b) holds and that there exists s € (0,1) such that g(s) < g*(s) for
s € [0,s) and g(s) > g*¥(s) for s € (g,;). Then Bl(s) is strictly

quasiconcave on [0,s].

Proof: Define pl(s) = Bi(s)/fl(s) (see (4.1)). We will show that there
exists a unique s* € (0,;) such that ﬂl(s*) = 0. Since g(¢) is monotone,
yi(s) exists a.e., and: yi(s) = g'(s)fz(g(s)){g(s) - s -

[1 - Fz(g(s))]/fz(g(s))}. Observe that pi(s) >0 if s > s, and yi(s) <0 if
s < s. Then since #l(o) is increasing on [g,;], and since pl(;) = 0 by
definition, it follows that pl(s) < 0 on [E,;]. On [0,§], on the other
hand, My is strictly decreasing, and hence can have at most one zero.

-~

Consequently, B1 can have at most one stationary point in [0,s]. Since
Bl(O) = Bl(s) = 0, and since Bl(s) > 0 on [g,s], such a stationary point

exists and it is a maximum. []

Finally, we present a sufficient condition under which ex ante
efficient mechanisms satisfy the conditions of Theorem 4.4, and hence are

not convexly splittable.
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Theorem 4.5: Let {p.x} be any ex ante efficient mechanism with boundary
g(e) (not coinciding with g*(s)). Also suppose that Fl(s)/fl(s) and

[Fz(b) - 1]/f2(b) are strictly increasing functions. Then Bl(s) is strictly

quasiconcave on {0,s],

Proof: By Theorem 4 of Williams (1987), b = g(s) satisfies the equation:

b - of1 - Fz(b)]/fz(b) = s + T[Fl(s)/fl(s)],

for some og,7r € {0,1] with g # 1 and T # 0. Subtracting (4.2) yields:

(1 - 0)[1 - Fy(g*(s)) )/t (g*(s)) = TIF (s)/f (s)].

at any s such that b = g(s) = g*(s). Since g*(s) is strictly increasing in
s, the left side of this equation is strictly decreasing in s, while the
right side is strictly increasing. Consequently, there is at most one value
s such that g(g) = g*(g). At the same time, at s = 0, the left side
strictly exceeds the right side, and vice versa for s = 1. Consequently,
the existence of s € (0,1) is guaranteed. Meanwhile, using the above
equations for the boundary, it is straightforward to show that g(s) < g¥*(s)

for s < s, and the reverse for s > s. ]

5. Two-Price Mechanisms

In this and the next two sections, we will be interested in mechanisms

associated with sequential equilibria of the seller-offer game. Consider
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any balanced 0-1 mechanism {p,x} with strictly increasing boundary g(e) and
strictly quasiconcave Bl(o) on [0,s]. We have shown in Corollary 3.4 that

the first revealing move in an equilibrium inducing this {p,x} must be a

nonconvex seller split. Observe that any nonconvex seller split necessarily

involves some amount of pooling between different seller types. This
pooling cannot continue indefinitely, since (by strict monotonicity of the
boundary) sellers with high valuations transact with strictly fewer buyer
types than do sellers with lower valuations. In fact, since p(s,b) = 1 for
b 2 g(s) (and p(s,b) = Q for b < g(s)) buyers must know almost
instantaneously whether or not to transact. Any further revelation must
thus occur very quickly. In this section, we will consider mechanisms with
the simplest possible description satisfying this requirement (termed two-
price mechanisms): information is revealed in exactly two stages. In the
first revelation stage, sellers of different valuations pairwise pool: for
every a € [0,s*), there is associated a unique c(a) € [s*,;), offering the
same initial price Py More precisely, sellers with valuation s € [0.;), by
naming the initial price po(s), reveal which doubleton {a,c(a)} they belong
to; sellers with valuations in [;,1] merely pool by making nonserious
offers. 1In the second revelation stage, the doubletons split into
singletons: seller s € {a,c(a)} reveals whether s = a or s = c(a) by
offering the boundary price g(s).7 Buyers merely optimize given their
knowledge of the offer structure. Let g(s) be the lowest buyer valuation
accepting po(s). Then, since the seller types a and c(a) are

indistinguishable at the first offer:

(5.1) po(c(a)) = po(a) and B(c(a)) = p(a), for all a € [0,s*).
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For sales to be nonnegative at both the first and second offer, we require:
(5.2) g(s) £ B(s) €1, for all s € [0,1].

Let ©(s) be the probability that s = a, conditional on the event s €
{a,c(a)}. For ©(e) to be consistent with the pairing function c(e) and the
distribution function Fl(o), it must be that for all a € [0,s*) where c(e)

is differentiable:
(5.3) e(a) = fz(a)/{fl(a) + fz(C(a))l(dc/da)(a)l}-

Finally, the buyer with valuation g8 should be indifferent between the first

offer and the expectation of second offers:

(5.4) g(a) - py(a) = é{p(a) - 6(a)g(a) - [1 - 6(a)]eg(c(a))},

for all a € [0,s*).

Note that (5.4) requires the buyer to discount future offers at the rate 4.
The reason for this departure from strict 0-1 mechanisms is the desire to
construct (in Section 7) equilibria in the seller-offer game with

discounting. The mechanism determined by the sextuplet

{po(')vﬁ(.)rg(') :C(‘)ye(‘),fg} is then:
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r r
/1 lpo(s), if B(s) < b <1
I I
(5.5) p(s,b) = |¢& x(s,b) = |é&g(s), if g(s) < b 2 B(s)
I I
o o, otherwise.
L L

We are now ready to define:

Definition 5.2: The sextuplet {po(-)_B(.),g(.),c(o),e(-),J} will be called

a differentiable two-price mechanism if:

-~

(i) c: [0,8*) - [s*,s) is an a.e. differentiable bijection;
(ii) (5.1), (5.2), (5.3) and (5.4) are satisfied; and
(iii) {p,x} determined by (5.5) is a balanced ICBM.

Conversely, suppose we are given a 0-1 mechanism with boundary g(e). We
will say that g(e) induces a differentiable two-price mechanism if there
exists s* € (0,s) and functions pO(o), B(+), c(s) and 6(e) such that

{po(o),a(o),g(-),c(o),e(o),l} satisfies (1), (ii) and (iii) above.

We can now state the following remarkable result on two-price

mechanisms:

Theorem 5.3: Let g(e¢) be strictly monotone on [0,s8) and suppose that g(s)
induces a differentiable two-price mechanism with pairing c(e). Then Bl(o)

is quasiconcave and:
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(5.6) dc/da = Bi(a)/Bi(c(a)), for almost every a € [0,s¥*).

Conversely, let g(e) be a strictly increasing continuous boundary associated
with a balanced 0-1 mechanism having a quasiconcave Bl(o) on [0.;]. Let
c(e) be any bijection from [0,s*) to [s*.;) satisfying (5.6). Then g(e)
induces a differentiable two-price mechanism with pairing c(e), provided the

implied B(e) satisfies (5.2).
Proof: Note from (5.5), for a 0-1 mechanism, that 51(3) =1 - Fa(g(s)) and
that il(s) = [1 - F,(B(s))]py(s) + [Fy(B(s)) - F,le(s))]lels) =

[1 - Fz(s(s))] [po(s) - g(s)] + g(s)ﬁl(s). Hence, using (4.1) we have for

almost every s:

(5.7)  [1 - F,(B(s))1py(s) - g(s)] = BI(s)/f (s).

Consequently, using (5.7) and (5.1):

(5.8) [po(a) - g(a)]/[po(a) - g(c(a))] =

= [Bi(a)/fl(a)]/[Bi(c(a))/fl(c(a))], a.e. a € [0,s*).

In order for (5.1) to be satisfied with § = 1, we must have po(a) = B8(a)g(a)

+ [1 - 8(a)]lg(c(a)), and hence:

(5.9) 1 - 1/6(a) = [po(a) - g(a)]/[po(a) - g(c(a))], a.e. a € [0,s%).

Combining (5.8) and (5.9), this implies:
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(5.10) 8(a) = -[Bj(c(a))/f (c(a))] / (Bj(a)/f (a) - B,(c(a))/f (c(a))],

a.e. a € [0,s¥*).

From Assumption 4.1, fl(s) # 0 on (0,1); (5.3) and (5.10) thus imply that
(5.4) holds a.e. Moreover, since g(a) < po(a) = po(c(a)) < g(c), (5.7) and
the second inequality in (5.2) imply that Bi(a) > 0 and Bi(c(a)) < 0 for all
a € [0,s*%), establishing quasiconcavity and proving the first part of the
theorem.

Suppose conversely that c(e) satisfies (5.6). Since g(e) is
continuous, Bl(') is differentiable everywhere. Evaluating (5.7) at a and
c(a), and subtracting the resulting expressions, yields a unique candidate

g(a) = g(c(a)):

(5.11) 1 - Fa(B) = [Bi(a)/fl(a) - Bi(C(a))/fl(C(a))] / [g(c(a)) - g(a)l].

By quasiconcavity of B,(+) and monotonicity of g(+), the right side of
(5.11) is nonnegative and hence any solution satisfies B8 £ 1. We will now
show that if B(s) 2 g(s), then we can define functions pO(.) and 6(+) such
that all the other requirements for a differentiable two-price mechanism are
established. First, if B(s) = 1, we can define 6(s) from (5.3) if c(e) is
differentiable at this point (otherwise, we arbitrarily set 6(s) = 1/2) and
then define po(s) from (5.4). 1If B(s) < 1, then (5.7) evaluated at a (or
equivalently, at c(a)), vields a solution satisfying g(a) < po(a) < g(c(a)).
8(a) is then defined from (5.9), implying that (5.4) holds at § = 1. From

(5.8) and (5.6), it then follows that at every a where c(e) is
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differentiable, (5.3) holds. (]

Several remarks concerning Theorem 5.3 are in order. First, if we
strengthen (5.2) and (5.3) to B(s) < 1 and ©(s) € (0,1) for all
s € (0,s*) U (s*,;), then the conclusion of the first part of the theorem
can be strengthened to "B1 is strictly quasiconcave." Second, if the
pairing function c(a) is monotone, (5.6) implies that it satisfies the

equation:

(5.12) Bl(a) + Bl(c(a)) = Bl(s*), for all a € [0,s¥*).

Third, an alternative way to write the implication of (5.7) and (5.8) is:

(5.13) B(a)[il(a) - g(a)ﬁl(a)]

+ [1 - 8(a)][x, (c(a)) - g(C(a))Bl(C(a))] = 0.

Equation (5.13) has the economic interpretation that revenues are conserved

between paired seller types. Since Bl(o) is qguasiconcave, ﬁl(a) - g(a)ﬁl(a)

is nonnegative while il(c(a)) - g(c(a))ﬁl(c(a)) is nonpositive. Observe
that g(a)ﬁl(a) represents the revenue that type a would earn if there were
no pooling stage--then, all sales would occur at a price of g(a)--while
il(a) equals the revenue type a actually receives. Hence, il(a) - g(a)ﬁl(a)
represents the "cross-subsidy" which seller types below s* receive, and
analogously, il(c(a)) - g(c(a))ﬁl(c(a)) represents the "cross-subsidy" which
seller types above s* pay. For each paired a and c(a), the transfer paid

must equal the transfer received--with the appropriate weight placed on each
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type. As equation (5.13) indicates, the proper weights are the
probabilities that s = a and s = c(a), respectively, conditioned on the
event s € {a,c(a)}. It is also worth noting that, for sellers in [s*,;),
pricing behavior is not monotone decreasing over time since po(s) < g(s) if
8(s) # 0. The reason for this price increase is that, after the initial

revelation, the seller is relieved of having to cross-subsidize the lower

types with which she was pooled.

6. Ex Ante Efficiency and Two-Price Mechanisms

Consider any 0-1 mechanism with strictly increasing continuous boundary

g(e), and strictly quasiconcave B From here on, we will (for the sake of

1
simplicity) assume that the pairing function is monotone. Theorem 5.3 then
implies that g(e) induces a two-price mechanism, and that the pairing
function satisfies (5.12), provided that the implied g8(e) satisfies:

(6.1) g(s) < Bg(s), for all s € [s*,;).

This constraint is somewhat troublesome, and is indeed not always satisfied.

In this section we present some results concerning (6.1).
Lemma 6.1: Constraint (6.1) is satisfied if and only if:
(6.2) il(s)/ﬁl(s) > po(s). for all s € [s*,s) s.t. ©6(s) # O.

Proof (informally): 1In a 0-1 mechanism, il(s)/ﬁl(s) represents the average

price paid to seller s. In a two-price mechanism, po(s) and g(s) are the
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only prices ever paid, and for s € [s*,s) s.t. 8(s) # 0, g(s) > pO(s).

Hence, (6.2) is satisfied if and only if sales are nonnegative at

g(s). []

In our proof of implementability of two-price mechanisms, we will
require that at least one of the two inequalities (6.1) and (6.2) is
satisfied with discrete slack. Observe that (6.1) cannot have slack at ;.
since g(;) = s(;) = 1. Nor can constraint (6.2) generally have slack at
s*.8 However, it is often possible for (6.1) to have slack at s*, and for

(6.2) to have slack at s:

Theorem 6.2: Suppose Fl(s)/fl(s) and [Fz(b) - 1]/f2(b) are strictly
increasing functions, and that limle fz(b) > 0. Then there exists
AS € (0,1) such that, for every X\ € (ks,1) there exists eA > 0 such that the

ex ante efficient mechanism with weight X\ on the seller induces a boundary

gk satisfying at least one of the constraints (6.1) and (6.2) with slack eA.
Proof: By Theorem 4.5 the boundary gA(-) associated with a seller weight
A < 1 induces a strictly quasiconcave B?(o). Let
ﬁA(°),pé(-),GA(°).ﬁ?(-).ﬁ?(-) and ;k be associated with gk(-). The proof
requires two observations:
a. As A 1t 1, the function aA(.) converges uniformly to 1. Hence, for
sufficiently small € > 0, there exists M(e€) > 0 such that
limelo Mn(e) = 0 and Bk(s) 2 gA(s) + ¢ for s € [0.;A - n(e)) and X

in a neighborhood of 1.

. A A
b. if limbT1 fz(b) > 0, it can be shown that limxrl 8”7 (s”) > 0.
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. PN . > W W W W
Consequently, 11m>‘11 po(s ) < 1, whereas hm)\11 xl(s )/pl(s ) = 1.
Again, for sufficiently small € > 0, i?(s)/ﬁ?(s) > pg(s) + ¢ for
s € [sA - n(e).sA]. and A in a neighborhood of 1.

The existence of As < 1 is now immediate. []

Theorem 6.2 establishes that, subject to some distributional
assumptions, ex ante efficient mechanisms induce two-price (seller)
mechanisms, for weights )\ € [As,l). Analogously, ex ante efficient
mechanisms with weights )\ € (O,Ab] induce two-price (buyer) mechanisms, for
some Ab € (0,1). The intervals [As,l) and (O,Ab] are potentially quite

large--in fact often As < ), so that two-price mechanisms span the entire

b

Pareto frontier.

Example 6.3: Consider the Chatterjee-Samuelson mechanism (3.2) associated
with equal weighting (A = 1/2) and uniform distributions. The pairing c(a)
is derived from (5.12), using Bl(s) = (s/6)(3/4 - s)z. It can be
demonstrated that dc/da is a strictly decreasing function on (0,1/4), with
range (1,»). In addition, g(a) = (1/2)[1 + a + c(a)] (see Figure 2).
Constraint (6.1) holds everywhere on [s*,;), but B(e) and g(e) are tangent
at ;, implying that both (6.1) and (6.2) hold with equality as s approaches
;. As we increase )\ from 1/2, constraint (6.2) is monotonically relaxed.

Meanwhile, (6.2) is violated at sA for every X\ < 1/2. A symmetric argument

establishes that Ab also equals 1/2.

(Insert Figure 2 about here)
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We conclude that, in the double-uniform case, two-price (seller)
mechanisms span the half of the efficiency frontier favoring the seller,

while two-price (buyer) mechanisms span the remaining half, which favors the

buyer.

Example 6.4: Let Fl(s) =% and Fz(b) =1 -[1 - b]y, for a,Y > 0. The set
of ex ante efficient boundaries is then parametrically defined by g(s) = p +
(1 - p)S/;, where ; = [a@+p(1 +7%)]/(1 +a) and p (0 S p £ 1/(ax + 7)) is a
parameter reflecting the relative weight to the seller. In particular, if p
= 0, we obtain the monopsony mechanism, if p = 1/(a + ¥) we obtain the
monopoly mechanism, and if p = (ax - Dl/z)/(a - ¥) with

D = ay[(1 + a)/(1 + ¥)] we obtain equal weighting. Some tedious algebra

1+ysa’ and that

establishes that B_(s) = [(1 - p)/s]V[1/(1 + ¥) - p/sl[s - s]
s* = [a/(1 + a + ¥)]s. Observe that F2(°) satisfies the hypotheses of
Theorem 6.2 if and only if ¥ £ 1, and analogously for the buyer mechanisms

Theorem 6.2 requires @ £ 1. Numerical computations indicate that (6.2) is

satisfied for the entire rectangle 0 < &, ¥ £ 1, xs <€ 1/2 and Ab > 1/2.

7. The Implementability of Efficient Mechanisms

At last, we have developed enough machinery to implement 0-1 mechanisms
which require nonconvex splitting. As above, we will cast our results in
terms of seller mechanisms and the seller-offer game; entirely analogous
results hold for buyer mechanisms and the buyer-offer game. First, let us

briefly define our notion of implementation (Ausubel and Deneckere, 1988b).

Definition 7.1: Let p(e,») be associated with an ICBM. We will say that p
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is implementable by sequential equilibria of the seller-offer game if there

n

exists a sequence {an,z }:= such that:

1

(i) z 10 and, for every n 2 1, a'n is a sequential equilibrium

of the seller-offer game where the time between offers is zn;

and

(1i) If m(e) denotes the F, x F2—measure on [0,1] x [0,1], and if

1
pn(-,-) denotes the probability of trade function induced by
o”, then for all € > 0: m{(s,b): |p"(s,b) - p(s,b)| > €} —

0, as n - o,

If, furthermore, every cn is stationary in the sense that history only
matters insofar as it is reflected in current beliefs, then we will say that

p is implementable by stationary sequential equilibria. In order to prove

implementability, we make the following assumptions:

Assumption 7.2: There exists € > 0 such that B(s) 2 g(s) + € or

il(s)/ﬁl(s) 2 py(s) + € for all s € [s*,;).

Assumption 7.3: For every s € [0,s*], g¥(s) > g(8). Furthermore,

g*(s) # g(s), except for at most finitely many s € (s*,s].
We may now state our main result, which is proven in the Appendix.

Theorem 7.4: Consider any 0-1 mechanism, p, with a boundary g(e) which is

strictly increasing and continuous. Suppose that the implied Bl(o) function

is strictly quasiconcave on [0,s] with Bl(s) = 0, and suppose Assumptions
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4.1, 7.2 and 7.3 are satisfied. Then p is implementable by stationary

sequential equilibria in the seller-offer game.

Corollary 7.5: Suppose Fl(s)/fl(s) and [Fz(b) - 1]/f2(b) are strictly

f.(s) > 0.

increasing functions, that lim f2(b) > 0, and that ljmsto 1

btl

Then there exists AS € (0,1) (MA_ € (0,1)) such that for every X\ € [As,l]

b

() € [O,Ab]), the ex ante efficient mechanism which places weight X\ on the

seller is implementable in the seller- (buyer-) offer game.

Proof: For every A\ € (As,l), the seller result follows directly from

Theorems 5.2 and 7.4. To implement the mechanism with weight As’ consider

k
any sequence {\ }k=1

c (As.l) converging to As. Each mechanism with weight
Ak is implementable; a diagonal argument then shows implementability for As

(and similarly for 1). The buyer result is proven analogously. []

It is perhaps worth remarking that Corollary 7.5 implies
implementability of the entire Pareto frontier for the parametric examples
of Section 6. Let us conclude this section by giving a brief description of

the sequential equilibria used in the proof of Theorem 7.4. Let s* = cN <

CN-1 < ... < 4 < Cy = 8 be a grid of (N + 1) seller types partitioning the

~

: * = = *
interval [s*,s], and let O ay < a4 <. <a<ay s* be the

corresponding grid of seller types in [0,s*] defined through (5.12). 1In
period zero, seller types belonging to the paired intervals [ak.ak_l) and
[ck'ck—l) pool (nonconvexly) by charging the same initial price po(ak).

This initial offer reveals to the buyer that s € [a ) U [c but

Kk’ k-1 k' k-1

not whether s € [a ) or s € [c ). In period one, seller types

K’ 2k-1 Kk’ %k-1
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further separate: a seller with s € [ak'ak—l) charges g(ak) and a seller

with s € [c ) charges g(ck). With the exception of seller types in the

k' k-1
lowest pool, the seller continues to charge the same price, g(ak) or g(ck),
in all future periods. However, a seller whose valuation belongs to

, -A(m-1)z
[aN,aN_l) charges a price of e

g(aN) in all periods m > 1 when this

price exceeds her valuation and makes nonserious offers thereafter.

Finally, seller types belonging to [;,1] always make nonserious offers.
The buyer forms expectations and optimizes, subject to this seller

behavior. After period zero, the buyer assigns probability 6 to

s € [a

) and (1 - 8) to s € [ck , where 8 = [Fl(ak_l) - Fl(ak)]/

k' k-1 ’Ck_l)

[Fl(ak—l) - Fl(ak) + Fl(ck—l) - Fl(ck)]. Thus, equation (5.4) requires any
buyer with valuation exceeding B(ak) to accept the seller's initial offer,
and any buyer with lower valuation to reject. Meanwhile, except for the
case 8 € [aN,aN_l), any buyer with valuation b exceeding g(ak) (or g(ck))
must accept the seller's offer in period one (since price will never drop
again) and any buyer with lower valuation rejects that and all subsequent
offers. Finally, for s € [aN,aN_l), the buyer selects a period in which to
purchase, taking account of both time impatience and the probability that
the seller will cease to make serious offers in subsequent periods.
Meanwhile, the seller is deterred from reducing her price, in an effort to
generate additional sales, by the prospect of adverse inferences and hence
expectations of still lower prices.

The mechanisms induced by these sequential equilibria differ from the
two-price mechanisms considered in Sections 5 and 6 in three major ways.
First, the mechanisms are discrete: pBg(e) and g(e) are step functions,
piecewise constant on the 2N intervals [a

) and [c ). Second, the

k' k-1 Kk’ %k-1
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mechanisms involve discounting, and hence generate probability of trade
functions taking on one of the three values: 0, &, and 1 (with the
exception of the bottom pool). Finally, sellers in the bottom pool charge a
sequence of prices descending towards zero (rather than just two prices).
This is necessitated by the fact that the lowest valuation seller cannot be
deterred from cutting her price by adverse inferences, and hence must expect

sales in all future periods.

8. Conclusion

In earlier work (Ausubel and Deneckere, 1986, 1988a), we established
two qualitative propositions concerning sequential bargaining with one-sided
incomplete information. First, two extensive forms (the seller-offer and
buyer-offer games) are sufficient to implement the entire (ex ante) Pareto
frontier. Second, the ability to make offers confers bargaining power.9

In the current article, we demonstrated similar results for two-sided
incomplete information. For fairly general distributions, one segment of
the efficient frontier is implementable in the seller-offer game and another
segment is implementable in the buyer-offer game. Often, the union of these
two segments equals the entire Pareto frontier (see, again, Figure 1). At
the same time, the segment we construct from seller-offer equilibria
necessarily includes those static mechanisms most favorable to the seller,
while usually excluding those mechanisms most favorable to the buyer (and,
analogously, for the buyer-offer game). This again draws a connection

between bargaining strength and the exclusive ability to make offers.

Indeed, the fact that a firm posts prices and refuses to accept

counteroffers from consumers may be viewed as a sign of strength: this
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institutional arrangement confines efficient sequential equilibria to those
relatively favorable to the firm.

In one-sided incomplete information, some equilibria of the seller-
offer and buyer-offer games can be "embedded" in extensive forms (e.g.,
alternating offer) which permit both parties to make offers (Fudenberg,
Levine and Tirole, 1985; Ausubel and Deneckere, 1988a). It may also be
possible to do this in the case of two-sided incomplete information. We

plan to pursue this issue in future work.
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Notes

This limiting property of the equilibria is somewhat reminiscent of
results by Gul, Sonnenschein and Wilson (1986) and Gul and Sonnenschein
(1988). These authors demonstrated that stationarity in bargaining
with one-sided incomplete information implies that all information is
revealed arbitrarily quickly and that trade occurs instantaneously.
This gives efficiency for every weight favoring the informed party.
Removing the stationarity assumption eliminates the predisposition
for instantaneous trade. At the same time, it permits efficiency for
weights favoring the uninformed party (Ausubel and Deneckere, 1986,

1988a).

In a previous paper (Ausubel and Deneckere, 1988b), we demonstrated the
existence of a large class of equilibria. Moreover, our no-trade
theorem (Theorem 2) there proves that equilibria with the Coase
Conjecture property converge to maximal inefficiency as the interval

between offers approaches zero.

In Theorem 3.3 below, we demonstrate that p(e,e) is not implementable
in any offer-counteroffer game if p(e,e) is not "balanced."
Furthermore, p4(-,o) in Ausubel and Deneckere (1988b) provides an
example of a balanced mechanism which is not implementable in the
seller-offer game. Counterexamples to general feasibility theorems
will be the subject of a future paper.

The absence of folk theorems in two-sided incomplete information
contrasts with our previous (1988a) results on one-sided incomplete
information. The seller-offer game there implements tﬁe entire set of

ex post individually rational ICBM's.

We specifically rule out extensive forms which permit simultaneous
moves since, even in the one-shot complete information case, these

permit any division of the surplus.
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The terminology here is from Cramton (1985). Note that we are assuming
the typical case in which randomization of outcomes over time does not

occur.

In fact, interim efficient mechanisms often have this characterization

as well (see, for example, Myerson, 1985).

The prose used in this paragraph does not purport to directly describe
either a game or an equilibrium. We have chosen it merely to
illuminate the successive splitting of two-price mechanisms. The
relationship between these mechanisms and equilibria of the seller-

offer game will be fully explored in Section 7.

For continuous boundaries g(e), note that limsls* Bi(S) = 0, since s*
is the peak of Bl' but generally limszo Bi(s) > 0. Hence,

; = X *) /p *) = *
11msls* o(s) 0, and so xl(s )/pl(s ) po(s ).

In one-sided incomplete information, if the seller's (buyer's)
valuation is commonly known, all ICBM's are implementable in the
seller- (buyer-) offer game. Modifying the extensive form, by
permitting the silent party to make offers, eliminates those ICBM's
most unfavorable to the silent party. These propositions are proven

v

for the case of "no gap," i.e., the uninformed party's valuation is

contained in the support of the informed party's valuation.



Appendix

Proof of Theorem 7.4

Part I: Construction of a discrete mechanism, p, approximating p for & = 1.

-~

For any N > 1, we set c0 = g, cy = s*, and arbitrarily select a
(decreasing) grid {ck}ﬂ;i of N - 1 seller types on the interval (s*,s), with

the property that the maximum distance between successive sellers on the

grid approaches zero as N —» ». For convenience, let us define:
(A.1) Cp = [(N - k)s* + ks]/N, k =0,...,N.

on the interval [0,s*] by:

, . N
, we define a second grid {ak)k=0

N
Given {Ck}k=0

(A.2) Bl(ak) + Bl(ck) = Bl(s*), k =0,...,N.

Observe that ao = cN = s* and aN = 0. We will now construct a discrete 0-1

mechanism 5, with associated §1(.), boundary E(o) and utility function

ﬁl(o), having the property that the utilities from the original mechanism

N ~ -
are preserved for seller typeﬁ(ck}k=0, i.e., Ul(ck) = Ul(ck) for
k =0,...,N. Since Ul(s) = I: [1 - Fz(g(vl))]dvl, this requires:
~ °k-1
(4:3) 1o FE(9)) = (1 T 1= Fy(e(v))]dv) (o, - o),
for s € [ck'ck-l) and k = 1,...,N,

and E(s) =1 for s € [s,1]. Observe, by (4.1), that §i(s)/f1(s) = §1(ck) -

[1 - Fz(g(ck))]g(ck), for all s € [Ck'ck—l)’ Consequently, Bl(c ) -

k-1



A-2

El(ck) = jck §i(s)ds is completely determined by (A.1) and (A.3), for k =
k-1
1, ,N.
We will now determine values for E(s). s € [0,s¥), so that
Bl(ak_l) - Bl(ak) = Bl(ck) - Bl(ck_l) for k = 1,...,N and so that g(e) is

constant on each [ak'ak-l)' Since Bl(s)/fl(s) = xl(ak) -

(1 - p2(§<ak>)]§<ak>, for all s € [a ), we need:

k' k-1
X, W o- - F,(g(a,))]g(a,)
(@) - Bi@)V/IF (a_ ) - F (a)]

(e y) - B(e)1/[F (a ) - F(a)] =d.

Incentive compatibility of a mechanism necessitates that dﬁl(s) = sdﬁl(s)
(see Myerson and Satterthwaite, 1983, and Ausubel and Deneckere, 1988a,

Theorem 1), implying:

(a.5) X (a) - X (a_,) = a_,[p (a) - P (a_,)]

= a {1 - Fy(g(a))] - [1 - Fy(ea,_;))]).

First-differencing (A.4) and substituting (A.5) into the resulting equation

yields:

(A.6) (E(a,) - a,_ 101 - Fy(g(ay))] - [g(a,_,) - a,_,1[1 - F,(E(a,_;))]

=d,_, - d. for k=1,....N.

Let m*(a) = maxpn(p,a) = ft(g¥(a),a). Choose small positive A. Observe that



for sufficiently large N,, |d - d

A <A for all N> N, and k = 1,...,N.

k-1 kI Ja

> A. Then, equation

; > g
Suppose that, also, 1nfk|n(g(ak_1),ak_1) T (ak—l)l

(A.6) has a solution, E(ak) € [0, g*(a for k = 1,...,N. However,

k)l

observe that as N - », the solution to the difference equation (A.6)

converges uniformly to the solution of the differential equation:

(A7) (d/ds)([E(s) - s][1 - F,(E(s))]) = (d/ds)(B}(s)/£,(s)},

for s € [0,s*].

Note that (A.7) is uniquely solved by §(°)

g(e) and that

- *x - !
1nfse[0's*]|n(g(s),s) n¥(s)| = A' > 0. Consequently, there exists

N > 0 such that, for all N> N and k = 1,...,N, the iterative

> Navya

solution to (A.6) satisfies infkln(E(ak - ¥ ( )| > &'/2. Thus,

_1) 3 y) -1

for all N 2 N, we have completely defined a discrete boundary, E(o), such
that the associated 0-1 mechanism approximates p(e). Since 51(0) = 0, we

have also assured ﬁl(a + ﬁl(ck) = El(s*) for all k = 0,...,N.

K
In order to argue that the mechanism with boundary E(-) has the

two-price interpretation, all that remains to be shown is that E(ck) < §(ck)
<1 for k =1,...,N. The second inequality holds strictly by Theorem 5.3,
since §1(°) was constructed to be strictly quasiconcave with peak at s*. We
will now establish a result somewhat stronger than the first inequality:
there exists N > N such that for every N 2 N and for every k = 1,...,N, at
least one of §(ck) > E(ck) + €¢/2 and zl(ck)/sl(ck) > Eo(ck) + €/2 holds. We
will demonstrate this fact using Assumption 7.2 and the uniform convergence
of B(+). g(+), X (+)/p,(+) and py(+) to B(+), g(+), x,(+)/p,(+) and p,(s).

Observe that E - g uniformly, as N - », because the grid width approaches



zero. Define 8(s) = (F (a,_,) - F(a)1/{[F (a ) - F,(a)] ~

[F (c,_;) - F (e )]} and py(s) = 8(ay)e(a,) + [1 - 8(c,)]elc,), for

k~1)

s € [a ) U [c Note that 6 — @ uniformly and so EO ~p

k' 2k-1 k' Ck-1)"
uniformly. Now ;l(ak) = [1 - Fz(g(ak))]so(ak) + [Fz(g(ak)) -

0

Fa(g(ak))]g(ak), and similarly for xl(ck). Recall that B(ak) = B(ck) and

subtracting yields:

. X (c,) - x,(a ) + gl(c )F, (g(c,)) - g(a )F, (g(a))
(4.8) Fy(B(e)) = XL K K2 K e
g(ck) - g(ak)

and an analogous expression for FZ(B(°))’ Since E - g uniformly and
g(c) - g(a) is bounded away from zero (for all paired a and c), (A.8) shows
that F2(§(o)) - Fz(B(o)) uniformly and hence E ~ g uniformly.

It remains to be demonstrated that ;1/51 - §1/§1 uniformly. This
convergence can be shown algebraically, but it is more informative to argue

" it graphically, via Figure 3. Begin with the original mechanism p(e).

w v

Since Ul(s) = f El(vl)dv1 for s € [0,8], and since by hypothesis g(e) is

continuous, it should be observed that Ul(o) is C1 and convex, with slope
-El(s) at s. Let TS denote the tangent line through s. Since

§1(s) = Ul(s) + sﬁl(s), it follows that §1(s) is the Ul—intercept of Ts’ and
hence il(s)/ﬁl(s) is the vl—intercept of Ts' Now consider the discrete

mechanism 5(.), By construction, ﬁl(ck) = Ul(ck) for k = 1,...,N. Let Lk

denote the line through (ck’Ul(ck)) and (ck_l,Ul( Analogous to the

C-1))

above, the slope of Lk equals —pl(ck) and xl(ck)/pl(ck) is the vl—lntercept

of Ly Since Lk is also the secant line of U1 at ¢, and Croq’ and since
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) i X 5 < x b < x D
Uj(¢) is convex, xl(ck)/pl(ck) s x, (e )/p (e ) = x (e 1)/p (e 1), as
illustrated in Figure 3. But 51(0) is continuous and monotone, and hence
il(o)/51(~) is continuous and monotone, implying that
maxk|x1(ck_1)/p1(ck_l) - xl(ck)/pl(ck)l - 0 as N - o, and hence establishing

uniform convergence.
(Insert Figure 3 about here)

Part II: Construction of an approximating mechanism, p, for § < 1.

Consider the following system of 8N equations in the 8N unknowns

-~

(x (@), x,(c), b (a), b (c,), glay). gle), Ble). pyle )N,

(A.9):
(a) x,(a ) - x,(a ) - a,_,[p,(a ) - p,(a )} =0

(b)  x,(c ) - x,(c, 1) - ¢ ;lp (e ) - pl(ck_l)] =0

(c) -p,(a) + 1 - Fy(Blay)) + &[F,(B(a,)) - F,(g(a,))] = 0

(d) -p,(c,) + 1 - Fy(Blc,)) + &[F,(B(c,)) - F,(g(c,))] = 0

(e) -x (a) + [1 - F,(Bla))Ip,(a,) + 8[F,(B(a,)) - Fy(e(a,))lg(a,) = 0

(£) -x () + [1 - F,(Ble,))Ipy(c,) + 8[F,(B(c,)) - Fy(glc,))]glc,) = 0

(6) B (a_ ) + B (a) + [F(a_) - F(a)](x (a) - &1 - F,(g(a,))]e(a,)
- (1 - &)1 - Fy(Bla))1B(a)} = 0

(h) -B,(c,_,) + B () + [F (e, ) - B (c)1{x,(c,) - &[1 - F,(g(c,))]elc,)

- (1 - 8)[1 - By(Ble,))1Ble)) = O,

for k = 1,..., N. As before, B(ak) = B(ck) and po(ak) = po(ck). Bl(ak) and

§1(ck) are constants determined in Part I. El(co) and il(co) are assigned



the boundary values of zero.
A solution to (A.9) has the two-price interpretation if, in addition,

g(Ck) < B(ck) <1 fork=1,...,N. In the initial period, sellers with

valuations in {[a ) U [c ) will be required to pool by offering the

k' 2k-1 k' k-1

price po(c In the following period (which is now discounted by 4),

k)'

sellers in [a ) will be required to offer g(ak) and sellers in

k' 2k-1
[ck,ck_l) will offer g(ck). The probability-of-trade calculations in
(A.9c-d) and the revenue calculations in (A.9e-f) will be justified provided
that a buyer with valuation B(ck) is indifferent between the initial and

second offers, i.e.,
(A.10)  Blc,) - pylc,) = &(B(c,) - Bla)g(a,) - [1 - B(c,))e(c,)).

However, substituting (A.9e) and (A.9f) into (A.9g) and (A.9h),
respectively, and adding the resulting two equations implies (A.10).

It should be recalled that, in Part I, we constructed a solution to
(A.9) for & = 1 and arbitrary grids. The implicit function theorem will
immediately Imply the existence of solutions to (A.9) for all & contained in
a nonempty interval (KN'IJ' provided that the Jacobian (with respect to the
8N unknowns) is nonzero. Voluminous calculations establish that this

determinant, evaluated at § = 1, equals a (nonzero) scalar multiple of

M, 11 - By (e, )1, (Blc,)) [E(c,) - E(a)]

- [1 - Fy(glay)) - £,(g(a))(g(a,) - a_,)]

« [1 - Fy((c,)) - £,(8(c ) ((ey) - ¢ )]



Since B(ck) < 1 for all k, we have 1 - Fz(ﬁ(ck)) > 0 and fz(s(ck)) > 0.
Observe that 1 - Fz(g(ck)) - fa(g(ck))(g(ck) - ck—l) = 0 if and only if
E(ck) = g*(ck~1) (and analogously for ak). Judicious choice of the grid

{CR}E=1 together with Assumption 7.3 assure that this is not the case for

any ck; meanwhile, Assumption 7.3 also assures that there exists N 2 N such

that this is not the case for any a,, whenever N > N.

k
SR = ~ ~ ~
Finally, recall that for N 2 N, s(ck) > g(ck) + €¢/2 or xl(ck)/pl(ck) >

-~

1,...,N. Since each of B(e), é(-). ;1(0)/;1(0)

DO(Ck) + ¢/2, for every k

and po(-) are continuous in &, there exists for each N a value JN € (zN,l)
such that B(ck) < 1, and s(ck) > g(ck) or xl(ck)/pl(ck) > po(ck). for all

d € (JN,I] and all k = 1,...,N.

Part III: Construction of an approximating mechanism for 8§ < 1 and X\ > 0.
Consider the artificial game in which the seller must select from a

menu of 2N price paths: po(ck) in the initial period, followed by g(ak) in

all subsequent periods; and po(ck) followed by g(ck) forever (k = 1,...,N).
- - - N

If {po(ck),g(ak),g(ck))k=1 solved (A.9), it is incentive compatible for

every seller in [a ) and [c ) to select her assigned price path.

k’%%-1 k’%k-1

We will now modify the menu by replacing the price paths assigned to

(a ) and {c Each seller in {c ) will offer p* in the

N'2N-1 N ON-1)" N’ °N-1 0

initial period, followed by a constant price path of g: in all subsequent
periods. Each seller in [aN'aN—l) will also offer ps in the initial period,
but will then follow an exponentially-descending price path in subsequent

periods. In particular, if s € [aN
e—A(m—l)z

’aN—l)’ the seller will charge

g; in all periods m 2 1 that this price exceeds s, and will charge



1 in all subsequent periods. Let us define W(g;,A,B*;S) to be the net
present value of utility to the seller of valuation s from charging an
initial price of g; and cutting price by a factor of e-Az in each subsequent
period (until price drops below s), if the initial buyer distribution is
F2(°) truncated at g* and if the buyer purchases optimally (under the

beliefs that the seller distribution is Fl(o) truncated at a ).

N-1

In order to preserve the incentive compatibility of the modified menu,

it is sufficient to guarantee that the following system of four equations:

* - % _ * _ 9 * _ -8 *) =
(A.11a) B py - &(8 8(ag)egy - [1 - 8(ay)]gk) = 0
- t 3 *x _ x) _ * x _
(A.11b)  [1 - F,(B*)][pg - ay] + S[F,(8*) - F,(g%)]lg* - a,]
- [xy(a)) - a,p,(a;)] =0
- * x _ x) * x _
(A.11c)  [1 -~ F,(B*)1(py - cy ;1 + S[F,(B*) - F,(g*)1le* - cy_,]
- Xy oy y) ey qpyley )l =0
- * L . 3 *
(A.11d)  [1 - F,(p*)]lpg - ay_;1 + W(g%.x.B*,ay )
“Ix (ay ) - ay ypy(ay )1 =0,
is solved and that the implied 51(-) function on [aN’aN-l) satisfies
lunSmN_1 pl(s) > pl(aN—l)' The latter inequality will hold for a rectangle

of pairs (X,d), since it holds strictly when A = 0 and § = 1 (i.e.,
El(aN) > El(aN_l)). Equation (A.l11a) requires the buyer to respond
optimally to pa. (A.11b) makes a, (= cN) indifferent between the price paths

for [al,ao) and [CN'CN—I)’ (Afllc) makes CN_1 indifferent between the paths



), and (A.11d) makes a indifferent between

for [c
[ N’CN—I) and [cN_1 N-1

'CN-2

the paths for [a ) and [aN ).

N'2N-1 -1'8-2

It should be observed that, in Part I, we constructed a solution to
(A.11) for (4,\) = (1,0) and for arbitrary grids. (Indeed, the solution was
(B*,pa,g;,gg) = (§(cN),EO(CN).E(aN),E(cN)).) Also, we established in Part
II that for each N there exists 3N < 1 such that, for every 4 € (;N'll’ the
six terms al(cN_l),;l(cN_l),al(al),;l(al),gl(aN_l) and ;l(aN—l) which appear
in (A.11) may all be parameterized with respect to §. Thus, the implicit
function theorem will immediately imply the existence of solutions to (A.11)
for all pairs (4,)\) contained in a nonempty rectangle (Jﬁ,l] X [0,A§), where
6§ 2> QN, provided that the system (A.11) is continuously differentiable in
the four unknowns (B*.pa,g;,g;) and that the Jacobian is nonzero.

It is more difficult than one might guess to establish continuous
differentiability, on account that it is not immediately obvious that
W(g;,A,B*;s) is even differentiable in its first coordinate. This fact is
demonstrated via the following lemma (whose proof is omitted here): for
every r >0, A>0, z>0, g¥ >0, s 2 0, and g; > 8, and under Assumption

-A(m-1)z

4.1(a), if the price path e g; induces a positive probability of

acceptance in the initial period (m = 1), then it also induces a positive

probability of acceptance in all subsequent periods that e—A(m—l)z

*
ga exceeds
s. It immediately follows from this lemma that the lowest buyer valuation,

V! to purchase in period m is given by indifference between consecutive

prices, with proper discounting. Thus, v - e—A(._l)zg; = 8{v_ - e_Ang;},
“AmZ o
when e gy Z ay_4- Meanwhile,
_  Aa(m-1)z . -\mz . “Am-1)z_, o mamz
Ve e gy = [JFl(e ga)/Fl(e ga)] {vm ga}. when

-A(m-1)z . -Amz -A(m-1)z_, D1
e ga Say o since Fl(e ga)/Fl(e ga) is the probability
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that the buyer will hear the offer e‘Ang; conditional on hearing

Finally, it should be observed that, under the conditions of

T(s)
i=1

gt - s], where T(s) = max{i: e_Alzg; > s}. By explicit

e—A(m-l)zg;‘
the lemma, W(gh,X.8%:s) - [F,(8%) - F,(v)]lg% - s] + L;3) &'(r,(v)) -

)][e—Aiz

]

FalVisg
calculation, W(g;,x,ﬁ*;s) is continuously differentiable in g;, and it is
then easy to conclude that the system (A.11) is continuously differentiable.

Direct calculation of the Jacobian at (&,)\) = (1,0) yields the value
~f,(g(cy))8(cy) [E(cy) - B(ay) 11 - B (g(ay)) - f,(e(ay))(e(ay) - ay )]. As
argued in Part II, Assumption 7.3 assures that this Jacobian is nonzero for
N 2 ﬁ. Consequently, for each N 2 &, there exists J; < 1 and A§ > 0 such
that the implicit function theorem is applicable on the rectangle (Jﬁ,l] X
[O.Ag).

Finally, recall that for N 2 ﬁ, E(cN) > E(cN) + /2 or §1(cN)/51(cN) >
EO(CN) + €/2 and also g(cN) < 1. Since each of g¥, ps, g;, and g; are
Jjointly continuous in 8 and A\, there exist for every N 2 ﬁ values
6&* € (6§,1) and Aﬁ* € (O,AE) such that gz < B¥ < 1 for all pairs
(§,)\) € (6&*,1] x [O,Aﬁ*). Thus, for every (4,)\) contained in this
rectangle, we have shown the existence of an approximating mechanism,
pﬁ,&,x' which has the two-price interpretation.

Part IV: Construction of the stationary sequential equilibrium.
Let us begin the construction of equilibria by assuring that our

initial choices for the grid {c had the property that the N implied

N
k}k=0
values 50(01)""’60(CN) were all different. (Observe that for generic

choices of the grid, the N values are different, but in the nongeneric case

where Eo(c ) = Bo(ck) for some j # k, it will be necessary to perturb the

J
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grid.) Also, if necessary, redefine §g* closer to 1 and M\¥* closer to 0. so
that for all pairs (4.)\) € (6;*,1] x [O,AE*). the N values
;0(01)....,;0(0N_1). ps are all different. This will enable the seller's
initial offer, in the equilibrium we construct below, to fully convey the
fact that s € [ak,ak_l) u [Ck'ck—l)'

For any 4 < 1, let GJ be a weak-Markov equilibrium in the seller-offer
game with discount factor & between periods, where the seller's valuation is
commonly known to equal zero and the buyer's valuation is distributed
according to Fa(-). Existence of weak-Markov equilibria is guaranteed by
theorems of Fudenberg, Levine and Tirole (1985, Proposition 2), or Ausubel
and Deneckere (1986, Theorem 4.2). Let cg denote the buyer's strategy in

GJ' We may now specify the equilibrium strategies:

Seller's strategy:

. If there has been no prior seller deviation, follow the price path
specified for seller type s in the artificial game of the first
paragraph of Part III. If s € [;,1], charge a price of 1 forever.

. If there has been an undetectable seller deviation (but no detectable
seller deviation), follow the price path which maximizes utility
subject to keeping the deviation undetectable. If that involves
pricing below cost, charge a price of 1 instead.

. If there has been a detectable seller deviation, optimize against a

buyer strategy of ab.

)

Buyer's strategy:

- If there has been no prior detectable seller deviation, optimize for
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buyer type b against the seller's chosen price path and the induced
beliefs about the seller's type.

. If there has been a detectable seller deviation, update beliefs to
s = 0 and maintain these beliefs forever after. Accept or reject using

the strategy a:

For sufficiently large N, we constructed in Part III a rectangle
(6;*,1] x [O,Aﬁ*) where the implicit function theorem was applicable.

Select any X\, € (O,Aﬁ*). Using the same argument as in Ausubel and

N
Deneckere (1988b, proof of Theorem 3, Part III), there exists

6;**(XN) € (6;*.1) such that, if JN satisfies 6;**(AN) < 6N < 1, the
weak-Markov strategy cg is sufficiently severe to deter all detectable
seller deviations. It is straightforward to verify that our mechanism
construction precludes undetectable deviations as well.

Selecting AN and JN so that AN i 0 and JN t 1, we see that the sequence
of mechanisms pﬁ’an'AN induced by our constructed sequential equilibria
converges in measure to our original p, as N =» . Thus, the mechanism p is
implementable by sequential equilibria in the seller-offer game.

Moreover, in the constructed sequential equilibria, in any period in
which the players' beliefs are the same as in the previous period, the
players' equilibrium actions are also the same as in the previous period
(and will continue to be henceforth). Players' updating rules are also

stationary, establishing that the equilibria utilized in showing

implementation are also stationary. []
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Graphical interpretation of il(s) and il(s)/ﬁl(s).



