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Abstract

Neyman has shown that bounded rationality can lead to cooperation in
the finitely repeated prisoner's dilemma game., if the game is conducted by
finite automata of fixed size. We obtain similar results utilizing finite
automata which can send messages back and forth over a given communication
channel. The communication protocol utilized does not involve the transfer
of any relevant information. Rather., it saturates the cbmputational
resources of the players thus preventing them from engaging in complex

strategies which could potentially undermine cooperation.



1. Introduction

The effect of bounded computational power on the behavior of players in
a competitive situation has been recently analyzed in a variety of settings,
e.g., Aumann (2], Rubinstein (9], Abreu and Rubinstein [3]. Ben Porath (51,
Kalai and Stanford [6], Megiddo and Wigderson (7}, etc. In particular.
Neyman [8] has shown that bounded rationality can lead to cooperation in the
finitely repeated prisoner's dilemma game where the play is conducted by
finite automata of fixed size. In this note we view Neyman's results from

the perspective of communication. Specifically. we demonstrate that the

ability to communicate, in the context of bounded rationality, enables
players to cooperate, i.e., to reach outcomes which are not attainable
otherwise.

We refer to the mode of communication which is utilized in our analysis
as "small talk." It is characterized by the fact that no relevant
information, whether true or misleading., is being exchanged. (The setup is
of complete information.) Similarly. messages are not used for coordination
of moves. Rather, communication is used to distract the players for the
purpose of preventing them from engaging in complex strategies which could
potentially undermine cooperation ("cheating"). To that end, meaningless
messages are sent back and forth according to a rigid protocol which is
designed in such a way that a player cannot "cheat" and send the right
message at the same time. For a rival, who is considering whether

cooperation is "safe." a successful execution of the protocol can serve as a
"guarantee"” that no "cheating" is being contemplated. The following example

demonstrates the general principle.

Consider a card game such as "Black Jack." It is well-known that



We begin by introducing the results of {8]. For a given n plaver game
G, let GN denote the N stage repeated version of G, with the average payoff
as evaluation criteria. Denote the set of actions available to player i at
each stage by Ai, to his opponents by A_i. and to the entire set of players

by A. A finite automaton for player i is a four-tuple FAl = <SS ,s ,f ,g">

3
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where S is a finite set, s .

€ Sl, F Sl - Al and gl: S” x A
words. S?! is the set of states of the automaton. sl is the initial state.

fl(s) is the action taken by player i when in state s, and g1 describes the

transition from state to state: if at state s the other plavers choose the

action tuple a_i. the automaton's next state is gi(s.a-i). The size of a
finite automaton is the number of states. For any N = 1,2.,... and positive
integers SpveeeS, . define the n person game GN(sl.sz,....sn) as follows:
the pure strategies of player i, i = 1,...,n. are all the finite automata of

size s,.
i

Neyman analyzes in particular the prisoner's dilemma game PD with the

action set A1 = (F.D) (friendly and deviating) and the payoff matrix:
D2 F2
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e Smax max{sl.sz} and Smin min{s,,s.}. It is well-known that the only
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2.9 s..s. <

A.4 For any integer k there is N_ such that if N > N and N1 = 8,.8,

0 0’
Nk. there is a mixed strategy equilibrium for PDN(S1.32) in which the

expected average payoff to each player is at least 3 - 1/k.

The equilibrium of A.4 works roughly as follows. The simple trigger
strategies utilized in A.1 are modified so that a player with more than N
states is expected to play according to a complex sequence of D and F moves
(rather than the simple sequence of F moves as in A.1). This sequence of
moves is designed so that its execution "wastes" an appropriate number of
simpler states, leaving a player following it correctly with less than N
free states. Thus. the arguments of A.1 can be made and the (complex) set
of trigger strategies is in equilibrium. The factor of -1/k present in the
payoff achieved in A.4 is due to need to utilize some undesirable D moves in
order to achieve the right amount of "complexity"” in the sequence. Below we
demonstrate how the same effect can be achieved in a simpler way by
utilizing finite automata which can communicate. Specifically, we now
depart from the previously mentioned models by allowing our finite automata
to communicate with each other: at each stage t player i chooses an action
ai and sends a message mi € M. where M is a finite set. To accommodate
messages, we redefine the transition and actions functions, g and f, as
follows. The domain of g' is enlarged so that g : st xatxmas! (1.,
a transition depends on i's state. and on -i's action and message.)

1 oAl x M. i.e.. at each

Similarly. the range of f is modified so that f': §
state, both an action and a message are chosen. We let GN(sl,...,s : M) be
the game where the pure strategies to player i are finite automata of size

Si' which can communicate over the message space M.



Q2 can be chosen in such a way that a player with a given number of states
cannot expect to be able to "count to N" and echo correctly at the same time
(although he can perform each one of the tasks separately). It follows that
the best response of each plaver is to cooperate throughout the game.

We now spell out the proof of the theorem in detail. For each message
q € M and subset Q € M consider the (pure) strategy for player i, Si(q.Q).

as follows:

Strategy Sz(q.Q):

1) At stage 1!:
la) Send the message q: mi = q
1b) Act friendly: ai = F
2) At stages 2 < t < N, if player -i is "conforming":
2a) Echo -i's original message: mi = m;i
2b) Act friendly: ai = F

3) At stage 2 £ t £ N. if player -i is "not conforming":
3a) Send the original message: m

3b) Deviate: a

t e ot
il
€2

Player -i is considered conforming as long as the following conditions

hold:

(i) At stage 1, player's -1 message is chosen from the right set

Q, i.e. m;l € Q.

(ii) At stage 2 £t £ N -1, player -i echoes correctly, i.e.,
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each player is 3. A player with unlimited computational power can do better
than that against an opponent playing T. However, the number of states

needed can be rather large:

Lemma 2: Let A be any automaton for player -i which achieves an expected
average payoff of more than 3 against Ti(R.Q). Then, for N 2 4, A must have
at least IRl + N - 2 states.

The proof of Lemma 2 is given in the next section.

We are now in a position to complete the proof of the theorem. Recall
that player i, i = 1,2, is restricted to strategies which can be implemented

by automata of size at most Si' Let Xgo i = 1,2, be an integer satisfying

Such numbers X; clearly exist, say X, = s, - N + 3. Let Qi € M be specified

subsets of messages which satisfy iQil = xi. i =1,2. Consider the pair of

strategies Tl(QZ.Q1) and T2(Q1.Q2). By Lemma 1, each strategy Tl(Q_i.Qi)

can be implemented by an automaton requiring X, + 2% si states. Also,

*

strategy T—l(Qi.Q is the best response to Ti(Q_i,Qi) since by Lemma 2,

)
-1

player -i requires at least X 5 * N-2> s_; states to improve. Thus, the

two strategies constitute an equilibrium for GN(SI'S M) as asserted.

2 '

3. Proofs of Lemmas 1 and 2

} and consider

Proof of Lemma 1: Lable the messages of Q as {ql.qz....,qu|

the following automaton FA(q,Q) with Q| + 2 states labeled O0,...,!Q| + 1,



11

states of A into the following disjoint subsets

S = {s} = starting state.
D = all states other than s in which the action is D.
Fq = All states other than s in which the action is F and the

message is q.

Let fa = !Fql. Note that if A is to achieve an average payoff of more
than 3 against T then ID! 2 1. Also, by definition, iS| = 1. Thus,

v f <% <p - 2.

ge€R "gq geM fq -
Let the message sent by A in stage 1 be denoted g¥ € M. Partition the

set of possible messages of player i, R, into the following four disjoint

(possibly empty) sets:

Xlz {q € R: fq >N - 2}

X2: {q € R: N-2> fq > 1}
X3: {q € R: fq = 0, q = g¥*)
Xy {d €R: fq =0, g # g*}

We note the following maximal (average) payoffs to playver -i when A plays

against FA(q,Q), j € R:

1. The maximal attainable payoff is 3 + 1/N. This is possible only
if g € Xl'

2. The maximal payoff is 3 if q € X2 U X3.

3. The maximal payoff is 1 + 5/N if q € X4.
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(1) 3+ (U/NIRI(X, - (2N - 5)x,).

Thus, we can prove the lemma by showing that the maximal value of
(x, - (2N - 5)x4) subject to (2)-(5) is zero. This can be done by

1

straightforward substitutions. (]



Discussion Paper No. 803

SMALL TALK AND COOPERATION:
A NOTE ON BOUNDED RATIONALITY

by
. *
Eitan Zemel

November 1988

* . . . .
Department of Managerial Economics and Decision Sciences,

J.L. Kellogg Graduate School of Management, Northwestern University,
Evanston, Illinois 60208.

Acknowledgment:

I wish to acknowledge Ehud Kalai, the two referees and
the associate editor for many helpful remarks and suggestions.






Abstract

Neyman has shown that bounded rationality can lead to cooperation in
the finitely repeated prisoner's dilemma game, if the game is conducted by
finite automata of fixed size. We obtain similar results utilizing finite
automata which can send messages back and forth over a given communication
channel. The communication protocol utilized does not involve the transfer
of any relevant information. Rather. it saturates the cbmputational
resources of the players thus preventing them from engaging in complex

strategies which could potentially undermine cooperation.






1. Introduction

The effect of bounded computational power on the behavior of players in
a competitive situation has been recently analyzed in a variety of settings,
e.g.. Aumann (2], Rubinstein {9]. Abreu and Rubinstein [3], Ben Porath [5],
Kalai and Stanford [6]. Megiddo and Wigderson [7], etc. In particular,
Neyman (8] has shown that bounded rationality can lead to cooperation in the
finitely repeated prisoner's dilemma game where the play is conducted by
finite automata of fixed size. In this note we view Neyman's results from

the perspective of communication. Specifically, we demonstrate that the

ability to communicate, in the context of bounded rationality, enables
players to cooperate, i.e.., to reach outcomes which are not attainable
otherwise.

We refer to the mode of communication which is utilized in our analysis
as "small talk." It is characterized by the fact that no relevant
information. whether true or misleading, is being exchanged. (The setup is
of complete information.) Similarly, messages are not used for coordination
of moves. Rather, communication is used to distract the players for the
purpose of preventing them from engaging in complex strategies which could
potentially undermine cooperation ("cheating”). To that end, meaningless
messages are sent back and forth according to a rigid protocol which is
designed in such a way that a player cannot "cheat" and send the right
message at the same time. For a rival, who is considering whether

1

cooperation is "safe." a successful execution of the protocol can serve as a
"guarantee" that no "cheating" is being contemplated. The following example
demonstrates the general principle.

Consider a card game such as "Black Jack." It is well-known that
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players who "count cards" in such games can achieve higher payoffs than
could be sustained in a long term equilibrium. One could prevent counting
by frequent reshuffling of the deck or by expelling apparent offenders. but
there is also another way. Specifically, one can require players to
perform, from time to time. some simple memory or arithmetic tasks such as
repeating long sequences of digits, adding or subtracting large integers.
etc. Such tasks. while easily done on their own, can be designed such that
they are excessively difficult if one is also concentrating on counting
cards. Thus, a successful performance of the task can serve as a proof that

a player is not counting. On the whole, the existence of such a proof can

benefit all parties involved.

We follow in this note the basic framework and notation of Neyman [8].
The only new feature we add here is equipping the players with a formal
channel of communication which allows them to send messages to each other,
concurrently with the actual moves of the game. As will be revealed
shortly, the ability to communicate offers several advantages. First, it
allows the players to achieve complete cooperation. avoiding the waste which
is inherent in the scheme of [{8]. Also. the approach utilizes a simple
communication protocol, which is independent of the game being plaved and
which can be used universally in situations in which it is desirable to
waste a certain fraction of one's opponent's computational power. Finally,
the analysis itself is quite simple and one can get exact (as opposed to
asymptotic) results.

An earlier version of this paper was circulated as [10], which also
addresses the case of a general n-person game (n # 3) and considers

communication protocols which utilize the message space more efficiently.
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We begin by introducing the results of {8]. For a given n plaver game
G. let G‘\T denote the N stage repeated version of G. with the average payoff
as evaluation criteria. Denote the set of actions available to player i at
each stage by Ai, to his opponents by A—i. and to the entire set of players

by A. A finite automaton for player i is a four-tuple Fal = <§~.s ,f7,g>

where S?! is a finite set,. sl € Sl, FI: Sl - A1 and gl: S1 x A_l - Sl. In
words. S' is the set of states of the automaton. s’ is the initial state,
fl(s) is the action taken by player i when in state s. and g1 describes the

transition from state to state: {f at state s the other players choose the

action tuple a_l, the automaton's next state is gl(s.a—l). The size of a

finite automaton is the number of states. For any N = 1,2,... and positive
integers S RRRRE: Sy define the n person game GN(sl.s2 ..... sn) as follows:
the pure strategies of player i, i = 1,...,n. are all the finite automata of
size ;-

Neyman analyzes in particular the prisoner's dilemma game PD with the

action set Al = (F.D) (friendly and deviating) and the payoff matrix:

Dz F2

I 4!

| l |

! ? _l

D, | 1.1 ! 4,0 !

I ! I

i | !

[ I !

F1 ! 0.4 | 3.3 |

! ! !

! ! !

L Y|

t - . X _

Le Spax max{sl.sz} and Shin mln{sl,sz}. It is well-known that the only
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S , N . , .
equilibrium strategy in PD" is to deviate continuously. However, for

N

PD"(s..s.), Neyman has shown:

1772

Al Ifs . 22, s < N - 1, then there are equilibrium strategies in
min max

PDN(sl,sz) which result in the play (F.F) at each stage.
However.

A.2 If Smax > N. there are no equilibrium strategies in PDN(sl.sa) which

result in the play (F.F) at each stage.

A.3 7] If smin > N then no fixed trajectory of moves, except for the
constant play of (D,D), can be achieved as a result of an equilibrium
of PDN(sl.sz).
It is easy to see how the equilibrium specified in A.1 is achieved

utilizing a pair of simple, identical trigger strategies. Each player acts

friendly as long as his opponent does, but reverts to the constant D play
upon the first deviation by the other player. The only improving response
to such a trigger strategy is to play friendly for the first N - 1 stages
and then deviate at stage N. However, such a response requires a finite
automaton with at least N states. A.2 and A.3 can be traced to similar
arguments. The main contribution of [8] concerns the case of machines with

more than N states. Its effect is, asymptotically. to mitigate A.2 and A.3

considerably using mixed strategies:
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such that if N 2 N., and Nl/k <s

A.4 For any integer k there is NO 0 <

Nk. there is a mixed strategy equilibrium for PDN(sl.sz) in which the

expected average payoff to each player is at least 3 - 1/k.

<
1°52 =

The equilibrium of A.4 works roughly as follows. The simple trigger
strategies utilized in A.1 are modified so that a player with more than N
states is expected to play according to a complex sequence of D and F moves
(rather than the simple sequence of F moves as in A.1). This sequence of
moves is designed so that its execution "wastes" an appropriate number of
simpler states, leaving a player following it correctly with less than N
free states. Thus, the arguments of A.1 can be made and the (complex) set
of trigger strategies is in equilibrium. The factor of -1/k present in the
payoff achieved in A.4 is due to need to utilize some undesirable D moves in
order to achieve the right amount of "complexity" in the sequence. Below we
demonstrate how the same effect can be achieved in a simpler way by
utilizing finite automata which can communicate. Specifically, we now
depart from the previously mentioned models by allowing our finite automata
to communicate with each other: at each stage t player i chooses an action

i

i -
at and sends a message mt € M. where M is a finite set. To accommodate

messages, we redefine the transition and actions functions., g and f, as

. i, i i -1 i,
follows. The domain of g~ is enlarged so that g°: S x A X M=S8" (i.e.,.
a transition depends on i's state, and on -i's action and message.)

Similarly. the range of f is modified so that fl: s!

- A1 x M, i.e., at each
state, both an action and a message are chosen. We let GN(sl,...,sn: M) be
the game where the pure strategies to player i are finite automata of size

si’ which can communicate over the message space M.



Theorem: Let s . 2 3, N 2 5. Then for '‘Mi 2 s ~ N + 3 there exists an
e min max

equilibrium of PDN(sl.szz M) in which the average payoff to each player is

3.

Note that the theorem implies that both plavers act cooperatively in

each stage. We devote the next section to the proof of the theorem.

2. Analysis

We start this section with an informal outline of the strategies which
supports the equilibrium of the theorem. Basically. the {(simple) trigger
strategies of A.l1 are modified in order to waste the excess states as in
A.4. However, in contrast to A.4. the modification involves the
communication protocol rather than the sequence of actions. Thus, as in
A.1, each player is expected to act F continuously. At the same time
playvers are expected to follow precisely a given communication protocol.
Failure to perform either one of these requirements causes the opponent to
trigger a constant D action. The communication protocol utilized is rather

Simple. First. each player i chooses randomly a message m1

1 from a given

. i
subset Ql of the message space M. Each player then uses an automaton. FA".

which sends the chosen message m; in stage 1. In subsequent stages, the
i

automaton echoes the opponent message. i.e., sends back the message m A

|

player i is considered nonconforming to the requirements of the protocol if
his original message is not chosen from the given message subset Ql. or if
in subsequent stages he echoes incorrectly the message mgi. The proof of

2
the theorem now reduces to a demonstration that that subsets Q1 and Q can



02 can be chosen in such a way that a player with a given number of states
cannot expect to be able to "count to N" and echo correctly at the same time
{although he can perform each one of the tasks separately). It follows that
the best response of each player is to cooperate throughout the game.

We now spell out the proof of the theorem in detail. For each message
q € M and subset Q € M consider the (pure) strategy for player i, Si(q.Q).

as follows:

Strategy Sz(q.Q):

1) At stage 1:

la} Send the message q: mi = q
1b) Act friendly: ai =F
2) At stages 2 <t £ N, if player -i is "conforming":
2a) Echo -i's original message: mi = mil
2b) Act friendly: ai = F

3) At stage 2 £ t £ N, if player -i is "not conforming":
3a) Send the original message: m

3b) Deviate: a

o+ e o -

Player -i is considered conforming as long as the following conditions
hold:
(i) At stage 1, player's -i message is chosen from the right set
Q. f.e. nj' eq.

(ii) At stage 2 £t <N -1, player -i echoes correctly, i.e.,.



-1

m© o= q.
(iii) At stage £ <t £ N - 1 player -i acts friendly, i.e..
a b F

If any of the conditions (i)-(iii) are violated by player -i, then he is

considered nonconforming for the rest of the game.

Recall that we have identified pure strategies with finite automata and
that the size of a finite automata is the number of states. Lemma 2

specifies the size of the automaton needed to implement S(q.Q):

Lemma 1: S(q.Q) can be implemented by a finite automaton of size QI + 2.

Lemma 1 is proved in Section 3. We denote the automaton used in this
Lemma by FA(q.Q). The equilibrium of Theorem 1 is achieved by automata of
this type where the initial messages g are chosen randomly from appropriate
sets. Specifically, for two nonempty message sets @ # R,Q € M consider the

randomized strategy TllR.Q) for player

Strategy Ti(R.Q):

1. Choose a message q from the set R according to the uniform
distribution.

2. Play with the automaton FA(q.Q), i.e., according to the pure

strategy Sl(q.Q).

Clearly, when two automata use strategies of the type T against each

other, the resulting action in each stage is F and the average payoff to
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each player is 3. A player with unlimited computational power can do better
than that against an opponent playing T. However. the number of states

needed can be rather large:

Lemma 2: Let A be any automaton for player -i which achieves an expected
average payoff of more than 3 against Ti(R.Q). Then, for N 2 4, A must have
at least |{RI + N - 2 states.

The proof of Lemma 2 is given in the next section.

We are now in a position to complete the proof of the theorem. Recall
that player i, i = 1,2, is restricted to strategies which can be implemented

by automata of size at most S5 Let X, i =1,2, be an integer satisfying

Such numbers xi clearly exist., say xi = si - N+ 3. Let Qi € M be specified

subsets of messages which satisfy lQil = xi. i =1,2. Consider the pair of

strategies TI(QZ,QI) and TZ(QI.QZ). By Lemma 1, each strategy Ti(Q_i.Qi)

can be implemented by an automaton requiring x, + 2 < si states. Also.

-

strategy T-l(Qi.Q_i) is the best response to TI(Q_i,Qi) since by Lemma 2,
player -i requires at least X4 N-2> s_; states to improve. Thus, the

two strategies constitute an equilibrium for G, (s.,.,s.; M) as asserted.

N*T1'72

3. Proofs of Lemmas 1 and 2

Proof of Lemma 1: Lable the messages of Q as {ql.qz... } and consider

g
the following automaton FA(qg,Q) with |Q| + 2 states labeled 0,...,/Ql + 1,



with the starting state being O:

1. Actions and Messages (the Function f):

Actions: In states 0,1,...,/Q!. the action is F.
In state Q! + 1, the action is D.
Messages: In states j = 1....,/Q!, the message is qj,

In states 0. Q! + 1, the message is q.

Transitions (the Function g):

Beginning State (0):

a. If al1 = D or mil € Q: move to state Q| + 1.

. i , .
b. Otherwise, m1 = qj for some i < r: move to state j.

Punishing State (!Q] + 1):

Stay in state Q| + 1.

Play state (1 < i < 1Q]):

a. 1f agl = D or mEl # g: move to state Q| + 1.

b. Otherwise: remain in state j.

It is a simple matter to verify that FA(q.Q) in fact implements

stq.Q). 1]

Proof of Lemma 2: Let p = |R| + N - 3 and assume, on the negative. the

existence of an automaton A with p states which achieves an expected average

value for player -i of more than 3 against Tl(R.Q). Partition the set of
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states of A into the following disjoint subsets

S = {s}) = starting state.
D = all states other than s in which the action is D.
Fq = All states other than s in which the action is F and the

message is (.

Let fq = quI. Note that if A is to achieve an average payoff of more
than 3 against T then IDI 2 1. Also, by definition, IS| = 1. Thus,

X f <

< -
ge€R "q qeM fq =P 2.

Let the message sent by A in stage 1 be denoted gq* € M. Partition the
set of possible messages of player i, R, into the following four disjoint

(possibly empty) sets:

Xlz {q € R: fq >N -2}

X2: {q € R: N—2>fq21}
X3: {q € R: fq =0, g = q*)}
X4: {q € R: fq =0, q # g*}

We note the following maximal (average) payoffs to player -i when A plays

against FA(q.Q), j € R:

1. The maximal attainable payoff is 3 + 1/N. This is possible only
if q € Xl'
2, The maximal payoff is 3 if q € X2 U X3.

3. The maximal payoff is 1 + 5/N if q € X4.
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3. is due to the fact that FAi(q,Q) expects A to echo the message g and
play F in stages 2...., N. However. A does not have any state with this
action-message combination. since fq = 0 and g* # gq. Consequently, FA
declares A as nonconforming at the latest in stage 2, and therefore will
play D against A in stages 3...., N. Thus, the maximum average payoff to A
is (1/N)(7 + N - 2) where 7 represents the maximal amount A can achieve in

stages 1 and 2 (play F first. then D).

Denote the cardinalities of Xi by X i=1,....4. Then the expected

average payoff to player -i is bounded from above by

(1) (1/NIRI)I[ (3N + l)x1 + 3Nx2 + 3Nx3 + (N + 5)x4]

where the xi must satisfy

- = |
(2) X, X, + Xy * X, Ri
(3) (N - 2)x1 * X, <p-2=1IR| +N-5
<
(4) Xq S 1
S .
(5) Xy, x2. x3. x4 > 0, integers.

(2) is due to the fact that the Xi induce a partition of IR|. (83)
reflects the fact that for each message q € X1 we need at least N - 2 states
of A and for each q € X2 we need at least one state. On the other hand., the
total of available states is qu < p- 2. Finally, (4) is due to the fact
that there can be at most one g such that q = q*¥. Note that (1) can be

written in the form:
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{(1') 3+ (l/NlRl)(X1 - (2N - 5)x4).

Thus. we can prove the lemma by showing that the maximal value of

(x1 - (2N - 5)x4) subject to (2}-(5) is zero. This can be done by

straightforward substitutions. (]
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