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ABSTRACT

An algorithm is presented for the special integer linear program
known as the set partitioning problem. This problem has a binary coef-
ficient matrix, binary variables, and unit resources. Furthermore, all
of its constraints are equations. 1In spite of its very special form, the
set partitioning problem has many practical interpretations. The algori-
thm is of the implicit enumeration type. A special class of finite map-
pings is enumerated rather than the customary set of binary solution
vectors. Linear programming is used to obtain bounds on the minimal
costs of the subproblems that airse. Computational results are reported

for several large problems.



1. Introduction

The integer linear program of the special form:

(PP) minimize Z)jf c.y

S
n
subject to 2, . a,.y.=1 for i=1,...,m
] j=1 %137
y.=0 or 1 for j=1,...,n

where aij= 0 or 1 for all i, j and Cj > 0 for all j,

is known as the set partitioning problem. It is a special case of the

well-known set covering problem which has inequality (3) rather than
equality constraints. The name 'set partitioning problem'" comes from
the following interpretation. Think of each column of A = (aij) as a
subset Aj of the index set T = {1,...,i,...,m} where ieAj if and only
if aij= 1. The problem is then to select a set of columns which gives a
minimal cost partition of TI.
1.1 Applications

Covering and partitioning problems have been studied widely because
of their many practical applications and because of their intriguing
binary structure. Applications for the partitioning problem which have
appeared in the literature include airline crew scheduling [1,23,38,407,
airline fleet scheduling [26], truck routing [4,6,10,24,30], political
districting [16,43], information retrieval [12], symbolic logic [8],
switching theory [3,7,29,34], stock cutting [31], line balancing [35],
capacity balancing [39], PERT-CPM [8], capital investment [42], coloring
problems [5], location of offshore drilling platforms [9], and facilities

location [33].



Many of these references are discussed in the recent survey by Gar-
finkel [14]. The airline crew scheduling problem will be described here,
since this application was the main impetus to the development of the
present algorithm and the source for the numerical data used to test it.

Several major airlines employ a model of the crew scheduling process
that first appeared in [38]. This model can be described as follows.
Given the airline's timetable, a set of possible crew rotations can be
generated. Each crew rotation is a sequence of scheduled flight segments
constituting a round trip - that is, a sequence departing from and return-
ing to one of the airline's crew bases. 1In order to be flyable, a rota-
tion must comply with all of the relevant federal, company, and union
regulations; e.g., the crew must return to its base within three days.
Since these regulations can be specified exactly, many thousands of fly-
able rotations can be generated rapidly by computer. A cost is calculated
for each rotation, in accordance with the airline's contract with the
pilot's union. Once a complete set J of flyable rotations has been gener-
ated, the problem is to select out an optimal subset. A subset J1 is
feasible if every flight segment belongs to exactly one of the rotations

1
in J°. An optimal subset is a feasible subset with minimal cost.

Formally, let I = {1,...,m} index the flight segments and J =
{1,...,n} index the given set of flyable crew rotations. Define an in-
cidence matrix A = (a,,) by

1]
a = 1 4if flight segment i is on rotation j
ij .
0 otherwise

and let ¢, denote the cost of rotation j. Then (PP) is a mathematical
]
statement of the problem just described, provided we make the obvious

interpretation:



1 1if rotation j is selected for Jl
] 0 otherwise

Unfortunately, even the plethora of federal, company, and union
regulations still allows a very large number of flyable rotations. Thus
each of the airlines that contributed problems to this study also incor-
porated heuristic rules in its rotation generator. These rules were
derived by the manual schedulers and reflect their conception of what a
"good" rotation ought to look like. Under these heuristics J becomes a
set of "acceptable" rotations.

The set partitioning problem was deemed worthy of intensive study
because of its many applications and because its special structure
promises that useful results can be obtained for very large problems.

The goal of this study was to devise an algorithm for partitioning prob-
lems that are large enough to be of practical utility. This meant on the
order a few hundred constraints in (PP) and several thousand binary vari-
ables. Problems of this magnitude have been beyond the scope of most
special purpose algorithms previously developed, and far beyond the scope
of general purpose integer programming algorithms. Furthermore, the
special purpose algorithms have often been unsuccessful when any general
linear constraints are appended to (PP). Such side conditions are very
common in applications. 1In the airline case, for example, there are crew
base constraints. These are of the form:
(CB) 2 hjy, S M for s=1,...,q

jeD
where hj is the number of flying hours, per month, associated with rota-
tion j, MS is the maximum number of flying hours available, per month, at
crew base s, and DS is the set of rotations flown out of crew base (or

domicile) s.



The goal of this research, then, was to devise a special algorithm
for problem (PP) which would be able to solve large problems in a reason-
able amount of time, even in the presence of a limited number of side

conditions.

1.2 Other Approaches

Several other algorithms for set covering and partitioning problems
have appeared recently. Those which have had significant computational
success will be mentioned here. Note that all of them begin by relaxing
the binary condition on y (i.e. allowing O < vy £ 1) and solving the result-
ing linear program. This is true of the present algorithm as well. The
differences lie in the method of getting from the continuous optimum to
the discrete optimum. The three alternatives that have been tried are
cutting planes, group theory, and enumeration. While all three have been
successful, enumeration has a clear advantage when there are side condi-
tions. Both the cutting plane and the group theory approaches work best
when the determinant of the optimal LP basis is small. This is usually
the case for pure covering and partitioning problems. Appending general
linear constraints, however, often causes this determinant to become very
large.

Fortunately, the same test problem has been solved by one algorithm
from each class: cutting plane, group theoretic, and enumerative. This
problem, to be called UAl, was generated by United Airlines. It is a par-
titioning problem (i.e. equality constraints) with 117 rows and 4,845 binary
variables. There are no crew base constraints. The present author's enu-
merative algorithm (to be presented in Section 3) solved problem UAL in 8
minutes on an IBM 360/91. (For this type of program the Model 91 is about

twice as fast as a Model 65.)



Glenn Martin of Control Data Corporation has solved a great many
covering and partitioning problems with a proprietary cutting plane algor-
ithm. He reports [28] that a typical moderate-sized airline crew schedul-
ing problem of about 100 inequality constraints and 4,000 binary variables
takes on the order of 10 minutes to solve on a CDC 3600. A typical larger
problem of 150 rows and 7,000 binary variables can often be solved with a
few cuts in the order of 40 minutes of CDC 3600 time. ©Note that these
figures are for covering problems. Problem UAl, with equality constraints,
took 55 minutes on the CDC 3600. This suggests that partitioning problems
may be considerably harder to solve than covering problems, at least for a
cutting plane algorithm. We shall return to this point later. Attempts to
solve problems with crew base constraints have apparently been unsuccessful.

Thiriez [40] has developed a group theoretic algorithm based on the
ideas in [36,37]. His computational experience is somewhat difficult to
interpret since for large problems he uses a '"'semi automatic inspection"
procedure in which part of the problem is '"'solved by visual inspection
rather than by a program." This presumably involves recognition of simple
group structures. He has solved several covering and partitioning prob-
lems, again of the airline crew scheduling type. Problem UAl was solved
in 22 minutes of IBM 360/65 time, plus an unspecified amount of "visual
inspection'" time. No results are reported for problems with crew base
constraints.

A purely enumerative algorithm for the partitioning problem was
developed by Pierce [30]. Without any help from linear programming,
problems with up to a dozen equality constraints and several hundred
binary variables were solved in a few seconds. More recently [32], linear

programming has been incorporated so that larger problems could be handled.



For example, the new algorithm solved a truck routing problem with 60
equality constraints and 3,316 binary variables in about 11 minutes on
an IBM 360/67.

Another enumerative algorithm for both covering and partitioning
problems which uses linear programming has been proposed by Lemke, Salkin,
and Spielberg, [25]. Their results include a partitioning problem with 50
equality constraints and 905 binary variables that was solved in 11 minutes
on an IBM 360/50. The test problems used were of diverse origins, many
being simply randomly generated.

The algorithm to be developed here differs from the other enumerative
algorithms mentioned above in that it does not proceed in terms of deci-
sions about individual variables. That is, the basic choice involved is
not whether a certain variable should be used or not used (i.e., which
specific variable should cover a particular row). Instead, the variables
are grouped together in classes and the basic choice involved is which
class should be responsible for covering a particular row. The status of
individual variables is then determined automatically. The very large
number of variables present in any realistic partitioning problem makes
this approach quite attractive. Since essential use will be made of the
equality constraints, however, the resulting algorithm will be confined to
the partitioning problem and will not be able to solve the slightly more
general covering problem. This specialization was regarded as worthwhile
for two reasons. First, the partitioning problem is of great interest in
its own right. The variety of applications mentioned in Section 1.1 above
makes this clear. 1In some instances the partitioning and covering models
both apply and represent slight variations in the underlying problem.

This is the case for airline crew scheduling. 1In other applications only



the partitioning model is relevant.

each census tract must belong to exactly ome voting district.

For example, in political districting

Second, it

was believed that much larger partitioning than covering problems could be

solved -- this

because of the severity of the equality constraints.

The

validity of this conjecture will be discussed in Section 6.

1.3 Reformulation

In most of the remainder of this
discuss problem (PP) in terms of sets
straints and variables.

Let us begin

of the problem. Let I = {1,...,m} be

be the column index set. Then

(1.1) 1)

A = {iel | a, =
J { l 1]

is the subset of I containing exactly

A subset Jl

(1.2) U A, =1

. 1

jed J
Any covering of 1 is a partition of I
ly disjoint:

(1.3)

paper it will be more convenient to
and partitions than in terms of con-

by giving the set theoretic statement

{1,...,n}

the row index set and J =

for j£J

those rows covered by column j.

c J is called a covering of I if

if the corresponding sets are mutual-

o . L .
jokeJ and j # k implies Aj na = ]

Let F denote all those partitions of I that can be obtained from the col-

umns of the matrix A,

(1.4)
Then problem (PP) can be stated as:

(PP)

1 .,
Choose J ¢F so as to minimize 2 , ©

F = {Jlg J | 3! satisfies (1.2) and (1.3)3.

jed

The algorithm developed below will perform an implicit enumeration of the

set F.



2. The Enumerative Scheme

The task in this section is to derive an efficient scheme for exhaus-
tively enumerating the set F of feasible solutions to problem (PP). This
scheme will serve as the framework for the implicit enumeration to be
introduced in Section 3. The approach will be to show that F is in one-
to-one correspondence with another set, E, for which there is a very

natural procedure,.

2.1 Derivation of G

The key idea to be exploited here is that the sets Aj can be grouped
into classes in such a way that no two sets from the same class can appear
together in any member of ¥F. If B is any subset of J, then we shall call

B an interference class if

j,keB d j impli 0 .
j,keB and j # k implies Ajﬂ Ak #

If B is an interference class and JleF, then the set Jln B must either be
1
a singleton or else be empty. For suppose that j,kgJ N B with j # k.
Then by the above definition we see that
AjnAkaé(b
and hence that {Ajlje\ﬂ} cannot be a partition of I. A sufficient condi-

tion for B ¢ J to be an interference class is:

(2.1) n A, # 9
jeB
The next step is to partition J into interference classes. This can

be done in a variety of ways, any of which will suffice. For example,

define



(2.2) ej = min{iellai,= 1}
(2.3) E, = {jeJ]ej= t} .
Then

m
(2.4) J = Ueop Et

where each non-empty Et is an interference class, since

(2.5) N oA 2{t})#0
JeE, J
and hence Et satisfies the sufficient condition (2.1). It can therefore

be assumed that a partition

(2.6) J=y Bt
teT
is given, where T = [1,...,p} and each Bt is non-empty and an interference

class. The Bt will be referred to as blocks. As demonstrated by the ex-
ample above, we can assume that p < m. By the argument given above it
follows that if JleF , then for each t¢T the set Jln Bt is either a
singleton or empty.

Now consider the class of functions g which map the set I into the

set T. Denote this class by G,

(2.7) G = {g:I » T} .
An element of G assigns each row to a specific block (interference class).

Each function g also induces a partition of I, since

(2.8) I= y g ()
te T

for any ge¢ G, where
(2.9) gl (6) = {ieI] 8(i) = ¢

i.e. g-l(t) is the set of rows which are assigned to block t by g. The
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fact that each function g induces a partition of I suggests a relationship
between the elements of G and those of F.

A one-to-one correspondence between the set of feasible solutions F
and a subset of G can be established in the following manner. Let ge¢G.
For each tgT 1look at the rows which have been assigned to Bt by g; this
is g-l(t). If there is at least one such row (i.e. if gnl(t) # P), check
to see if Bt contains a column j for which Aj= g-l(t). If such a column

can be found for every teT with g-l(t) # §, then the collection of these

columns is a partition of I. To formalize this, define

(2.10) B.(8)

-1
(JeB.| A= 8 ()

for each g¢ G and teT. Notice that this set is either a singleton or
empty. For column j to belong, Aj must exactly match g 1(t). (It can be
assumed without loss of generality that all columns are unique.)

Definition (2.10) permits characterization of the subset of G which

is in one-to-one correspondence with F, namely
(2.11) G = {geG | B.(g) # @ for all t with g'l(t) 9} .

The one-to-one correspondence is easily demonstrated:
i) Given gea-, let
1

J’= u B.(8)
teT

Since ge G we know that Bt(g) is a singleton, {jt}, for each
teTl, where

= el g0 £ 03 .
Therefore

e ] eeth)

A, =g "(t) for tg T1
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It follows that

-1
I= y g (v)
teT

-1
= U ;8 (t)
te T

= U A,
teT Jt

= U1 A,
jeJ J
The disjointness of the sets Aj for je.ll follows from that of

- 1
the sets g 1(t) for teTl. Thus J eF .

ii) Let Jlg F so that

U A=T1

jed
. . . .1
Define g on I by defining it on each Aj. For each jeJ , let g
map all of the rows in Aj onto the block which contains column j.
1f g-l(t) # 0, then
-1(t) = A where {’*} = Jln B

g j* ] t
so that

B.(8) = {i*} # 90 .

Therefore ge G.

In terms of the g-functions, problem (PP) can be restated as:

(PP) minimize cost (g) subject to geG ,
where cost (g) = 2 1 s
jeJ

1
and J = | Bt(g)
teT
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2.2 Enumeration of G

The first purpose of this section has now been accomplished. The set
G has been defined and shown to be in one-to-one correspondence with the
set F. Enumerating the functions in G is therefore equivalent to enumerat-
ing the partitions in F. The specification of a function ge¢G can be viewed
as an m-stage decision process: at stage i,g(i) is chosen from among the
elements of T. An enumeration of these functions can be confined to G by
suitably restricting the range of choice at each stage. That is, if g(l),
...,8(r) have already been determined, then g(r+l) will be chosen from a
certain set T*g T rather than from the entire set T. As a result, every
complete mapping g(1l),...,g{(m) enumerated will belong to G. The method of
determining the set T* is the next order of business.

The definitions introduced above will now be generalized in a very

straightforward way. Let 1 < r < m so that

{1,...,r} cl
and define
(2.12) G = g :i{l,...,t} + T}
(2.13) A§ =A, N {1,...,1) for all jeJ .

Each greGr is called an r-partial function since it maps only the first r

rows of I into T. Definitions (2.10) and (2.11) are generalized to

r . -1
(2.14) B, (g) = {jeB | A§ =g (D)}

(2.15) ¢t

m

{greGr| Bi(gr) # @ for all t with g;l(t) # 0).

r . -1
The set Bt(gr) contains all those columnslof Bt that match g r(t), up to
row r. Note that when r = m, Bz(gr) must either be a singleton or empty.

T
When r < m, however, Bt(gr) may contain several columns. Clearly

(2.16) G=C"and G = G
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The problem of enumerating only those complete (m-partial) mappings
which belong to G will now be reduced to a simpler problem. Let us make
the convention that GO= {#}. Given an arbitrary greéqu where 0 € r < m,
it now suffices to know which (r+l)-partial extensions of 8. belong to

G P+1. To see how this may be determined, let h be an extension of g :

h({i) = gr(i) for i=1,...,r
(2.17)
h(r+l) = t*
What conditions on the choice of t* will ensure that hg Er+1? From (2.17)

it follows that
-1 -1
(2.18) h “(t*%x) = gr (t*) y {r+1}

(2.19) h-l(t) = g;l(t) for t # t*

We must consider the sets Bi:l(h) and Bz+1(h) for t # t*x .

r+1 r+1

Bt* (h) = {jeBt*, Aj = h'l(t*)}

. r+1
B A,
{ie ’ i

-1
- =g, (t%) U {r+l}]

r -1
= 3 = *
(3B ] &7 = & (£9) and r+led, ].

Therefore Bzil(h) contains all of the columns of Bz*(gr) which also cover

row (r+l).

r+1 r 1
(2.20) By, (h) =B (8 NR_,,

where, for each iel,

1§

1 . _
(2.21) R, = fie J| 2 5= 13}.

Thus Rr+1 is just the set of all columns which cover row (r+l). Now

consider any te T, t # t*, for which g;l(t) #0 .
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r+l . r+l

-1 i)

. r+1 -1
(3eB, | A7 = 8. ()]

. r -1
{JeBtl Aj = 8. (t) and r+1 § Aj}.

BE+1(h) contains all of the columns of Bz(gr) which do not cover row (r+l).

Defining, for iel,

0 ) _ N 1
(2.22) R, = {J€J| aij- 0} =J - R,
gives us

r+l r 0
(2.23) B, “(h) =B (g)N Ro11

for t # t*. The conditions that must be imposed on t* follow immediately

from (2.20) and (2.23):

r 1
(c1) BL (8 )N R, #0
(c2) BE(g_)n R2+1¢ @ for all t # t*

with g;l(t) # 0.

These conditions ensure that BE+1(h) # @ for all t with h-l(t) 4 @ and
hence that hg Er+1.

. . =T
To summarize this result: let 8¢ G where O £ r < m and let h be an

(r+1)-partial extension of g, as in (2.17). Then hg Er+1 if and only if

(2.24) h(r+l)e T(gr)
where
(2.25) T(gr) = {t*e Tl t* satisfies (Cl) and (C2)}.

A compact enumerative scheme for G, and hence for F, can now be con-

structed. See, for example, the finite map enumerator of Graves and Whin-

ston [191.
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3. Implicit Enumeration

A means of shortcutting the complete enumeration of the previous
section is essential if problems of any practical size are to be solved.
The derivation of permissible shortcuts is therefore the task of the pre-
sent section. The development will draw heavily upon the discussion of

relaxation and fathoming by Geoffrion and Marsten f17].

3.1 Candidate Problems

Suppose that some part (or none) of the enumeration has already been
performed and that g* is the best (i.e. cheapest) element of G that has
been found so far. The function g* will be called the incumbent and we
set V = cost(g*). If there is no incumbent as yet, then V = . V is
referred to as the ceiling, since it is an upper bound on the optimal
value of (PP). Suppose that some r-partial map greff, where 0 < r € m,
has just been constructed by the enumerative procedure. Let this 8, be
fixed throughout the remainder of the discussion in this section.

The map hse G® is a feasible extension of 8, if s >r and

(3.1) hs(i) = gr(i) for i=1,...,r.

When s = m we have the feasible completions of B> denoted C(gr).

(3.2) c(s,) {geG | 8(i) = g, (i) for i=l,..,r]

The candidate problem associated with B, must now be introduced. If

hs is any feasible extension of B> then

(3.3) h;l(t) 2 g;l(t) for all t ¢ T

which implies that
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(3.4) Bi(hs) c Bi(gr) for all t ¢ T

As a special case of (3.4) we have

T
(3.5) Bt(g) c Bt(gr) for all t ¢ T

for every feasible completion g of 8> B C(gr). Recall that for any ge¢ G

the corresponding element of F is given by

(3.6) gt = U B,(8)
teT

It follows from (3.5) and (3.6) that

1
(3.7) J'e UB(eg)
teT

Therefore column j will not be selected by any completion of g, unless it

belongs to the set Ja(gr), where:

(3 8) J (8)) = uBi(g)
a r teTt r

The set Ja(gr) contains all of the available columns, given the partial
map 8- Problem (PP) reduces to the following residual problem which will

be called the candidate problem for 8.

g
(PP r) minimize cost(g) subject to gg C(gr).

As an integer linear program this is:

g

(PP Ty minimize . 2 ijj
JeJa(gr)
subject to 2 aijyj= 1 for iel
jeJ_(8.)
a’r

y,= 0 or 1 for je J_(8))



-17-

This is the same as (PP) except that ”jsJa(gr)” has replaced "jgJ'.
By dropping the integrality conditions (PPgr) is relaxed to the
ordinary linear program:
g

(LP ')  minimize 2.
JeJa(gr)

c.y.
JyJ

subject to 2 a_.y. =1 for iel
jed (g) '
a r
0] 1 f ] .
<y, s or JeJa(gr)

This linear program provides sufficient conditions under which 8.
does not have to be extended. Using F(-) and v(-) to denote feasible

region and optimal value, respectively, these conditions are:

g
1) If F(LP ') = @, then c(g) =0 .
g .
2y 1f v(LP r) >V, then cost(g) > V for all ge C(gr).
g
3) 1f an optimal solution of (LP r) is naturally integer, then

an optimal completion of 8. is known.

The enumerative scheme of Section 2 is easily modified to incorpor-
ate these fathoming tests based on linear programming. These modifications

will be made after some additional improvements are introduced.

3.2 Penalties
Suppose that none of the conditions derived above are satisfied, so
that g, must be extended. 1In Section 2 the set T(gr) of those blocks

eligible to receive row (r+1) was derived. A branch in the enumeration
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tree is created for each tg T(gr). There is still the question of which
branch to explore first. This question will now be addressed with the
aid of the penalty concept.

For a discussion of the use of penalties in integer programming, the
reader should consult Driebeek [13], Davis, Kendrick and Weitzman [11],
Tomlin [41], or Geoffrion and Marsten [17].

The aim is to select a path through the tree that leads to an optimal
solution as quickly as possible. This enables the ceiling V to be lowered
and thus speeds up the remainder of the enumeration. Among the branches
descending from any node, the one that seems most likely to lead to an
optimal solution should be explored first. Penalties provide a quanti-
tative basis for such choices and enable us to follow a "path of least
resistance' through the tree.

Let te T(gr) and let h be the (r+l)-partdal extension of 8. for
which h(r+l) = t. There is a penalty associated with the creation of h,
to be denoted PEN(h), which will now be derived. If (LPgr) were infeas-
ible, then 8. would not be extended. (LPgr) cannot have an unbounded

solution, since its objective function is bounded below by zero. Hence

g
it can be assumed that an optimal solution y(g ) of (LP r) is at hand.
P r .

Define
(3.9) Jb(gr) = the set of columns which are basic in y(gr).
(3.10) an(gr) = the set of columns which are non-basic in y(gr).

The partial map -g_ therefore induces two different partitions of the

set J. First,

(3.11) J=J.() uJ (&)

separates J into those columns which are still available, Ja(gr), and the

remainder which are not available, Jna(gr). Second,
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(3.12) J = Jb(gr) U an(gr)

divides the columns according to whether they are basic or non-basic in

y(gr). From the definition of (LPgr) it is clear that

(3.13) 5,8 €I ().

i.e. only available columns can be made basic.
Now consider the extension h. Any column available under h must

have been available under g
(3.14) I8 €I (2).

This follows from (3.4) and (3.8) with s=r+l. There are two cases to

consider. 1If

(3.15) Ja(m) 273, ()

then it follows that y(gr) is an optimal solution of (LPh) and hence

g
(3.16) v@p™ = vap b

In this case define PEN(h) = 0. If, on the other hand, condition (3.15)

is not satisfied, then
(3.17) Jaa®n I = {3;,..,3,1 79

that is, some of the columns that were basic under g, are not available

under h. A lower bound on the cost of adding the constraint

y. + ... +y, =20
(3.18) iy Iy

g
to problem (LP r) is given by the amount that the objective function would
increase in one dual point. It is this amount that is denoted PEN(h) when

(3.15) does not hold. 1In either of the above cases

g
(3.19) v(LP™) 3 v(LP"T) + PEN(h)
holds. Since

(3.20) v(PPh) > v(LPh) ,
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a lower bound on the optimal value of the candidate problem for h has
been obtained:

h Er
(3.21) v(PP) > v(LP ) + PEN(h)

These lower bounds play an important role in the algorithm. Define

(3.22) BOUND(h) = v(LP°T) + PEN(h)

- =r+l
for each extension hg G +

of gre e

The extensions of 8. can now be considered in order according to
their bounds, the one with the lowest bound being selected first. Sche-
matically, the branches descending from the node for 8, will be drawn
with the value of BOUND increasing from left to right. The branches will
then be explored in that order.

The bounds derived above not only serve to guide the search, they
also provide new opportunities for fathoming. No extension need ever be
pursued unless its bound is below the current ceiling V. For if
(3.23) BOUND(h) = V
then it is clear from (3.21) and (3.22) that h need not be considered.

This mechanism for fathoming h without solving (LPh) turns out to be

extremely effective computationally,

3.3 The Algorithm

The final form of the algorithm for the pure set partitioning problem
can now be given. A logical flowchart is displayed in Figure 1. 1In the
statement of the algorithm, g refers to the current partial map: g(l),

g(2),...,8(1).
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The Algorithm

Set i=0, g = @, BOUND(P) = O, Toy=

0andV=cn.

1f (LPg) is infeasible, go to Step 10.

If v(LP®) >V, go to Step 10.

If the optimal solution obtained

integer, go to Step 9.
If i=m, go to Step 9.
Set i=i+1

If T(g) = @, go to Step 13.

for (LPg) is naturally

Compute BOUND(h) for each he T(g) and sort T(g).

Set Ti= T(g), go to Step 1l1.

Record the solution. Set V = min[V,v(LPg)}.

1f Ti= @, go to Step 13,

Let t* = the first element in Ti'
Ti= Ti- {t*}.

I1f BOUND(g) > V, go to Step 10.
If i=0, stop.

Set i=i-1, go to Step 10,

Let g(i) = t* and

Otherwise go to Step 1.



Figure 1. ZLogical flow chart
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4. Computational Experience

All of the computational results to be reported in this section are
for pure set partitioning problems. Results obtained with the modified
algorithm for partitioning problems with side constraints will be pre-

sented in the following section.

4.1 Implementation

Space does not permit a detailed account of the implementation of the
algorithm. The interference classes were defined as in (2.2) and (2.3).
This is the '"staircase form" used by Pierce [30]. The key problem is keep-
ing track of the membership of Ja(gr). Although awkward to express mathe-
matically, this can be programmed very efficiently. It is also important
to note that once the initial linear program (LPw) has been solved, all of
the subsequent LP solutions are obtained by quick reoptimizations. The
interested reader can consult [27]. It is possible to demonstrate by
purely logical arguments that certain columns cannot appear in any feasible
solution. When these columns are discarded, some of the rows may become
identical and hence redundant. An algorithm for performing this logical
reduction is given in [27]. The problem sizes quoted below are after

logical reduction.

4.2 Results

The algorithm has performed very well on all of the problems solved
to date. At first, small test problems were constructed by generating
the zeros and ones of the constraint matrix (aij) as independent Bernoulli

trials. All of the larger problems generated in this manner, however,
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turned out to be infeasible. This made it necessary, as well as desirable,
to experiment with real problems. The test problems to be reported here
are all of the airline crew scheduling type and were provided by Air Can-
ada (AC), American Airlines (AA), and United Airlines (UA). One conse-
quence of using real data was that problem size was not under our control.
Each problem solved was significantly larger than the preceeding one.
While the enumerative procedure has remained the same, the linear program-
ming code has undergone a major revision at each step. At the present
time it is again the difficulty of solving the initial linear program that
prevents us from moving up to still larger problems. An unsuccessful
attempt to solve a 400-row problem will be discussed below.

The results for pure set partitioning problems are presented in

Table 1. The following symbols are used for the column headings.

ID - problem identifier: airline initials and sequence number.
m - the number of rows (partitioning constraints).

n - the number of columns (binary variables).

t(lp) - the time, in seconds, required to solve the initial

linear program.

piv(lp) - the number of (dual) pivots required to solve the

initial linear program.
cost(lp) - the optimal cost for the initial linear program.

t(e) - the additional time, in seconds, required to perform the
enumeration. That is, to find and verify the optimal

integer solution.

piv(e) - the number of (dual) pivots required for reoptimization

during the enumeration phase.
cost(e) - the cost of the optimal integer solution.

rmax - the maximum depth of the search, i.e. the maximum number

of rows assigned at any one time.



24~

nsol - the number of integer solutions found.
d - the density of the coefficient matrix.
Time spent on basis reinversions is included in t(lp) and t(e). The

pivots performed during these reinversions are not counted in piv(lp) or

piv(e). All of the times quoted in Table 1 are for the UCLA IBM 360/91.

Logical reduction was quite effective on problem ACl, reducing it
in size from (142 x 544) to (90 x 303). Effectiveness appeared to dimi-
nish, however, with increasing size. The reduction for problem UAl was
only from (117 x 4,845) to (111 x 4,826).

Problem AA4 is a subset of problem AA3. A selection of about half
of the rows of AA 3 was made. With half of the rows missing, many of the
columns were no longer unique. Duplicates were screened out and the
problem was then run with a set of unique columns. A 200 row problem was
of special interest since it lies midway between the easy 100 row UAl and
the unsolved 400 row AA3. Problem AA4, unfortunately for our purposes,
had a natural integer solution.

The linear programming code used in this study was a dual version of
the primal algorithm developed by Graves [18]. A dual algorithm was used
so as to avoid the massive primal degeneracy encountered in linear programs
derived from covering and partitioning problems. Although the dual algor-
ithm must scan every column at each iteration, it still ran much faster
than the primal algorithm. This superiority can be attributed to the
fact that the dual starts out feasible and makes a positive gain in its
objective function at virtually every iteration. By contrast, the primal

algorithm does not start out feasible and typically requires several
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(often a great many) iterations to make a move toward feasibility or to
achieve a reduction in its objective function.

Fortunately, the entire A matrix could be kept in main memory since
only the locations of the relatively rare unit entries had to be stored.
This eliminated the input/output operations that ordinarily make dual LP
owdes so slow for large problems.

Our attempt to solve the initial linear program for AA3 was termina-
ted, very reluctantly, after a total of about three hours of CPU time on
the Model 91. An earlier attempt, with IBM's latest mathematical program-
ming system (MPSX), also failed. The MPSX-PRIMAL algorithm encountered
the severe degeneracy characteristic of this problem type and got trapped.
That is, it reached a point from which it could not depart within several
hundred iterations. Even when a primal feasible starting basis was pro-
vided, the MPSX-PRIMAL algorithm had not escaped from this starting solu-
tion after 1000 iterations! Perturbations were tried, but to no avail.

Recall from Section 1 that all of the algorithms that have solved
large partitioning problems begin by solving the associated linear pro-
gram. It is clear that the relative difficulty of this class of linear

programs represents a serious common bottleneck.

4.3 Example

In order to illustrate the behavior of the algorithm the entire
enumeration tree for problem UAl is displayed in Figure 2. Each node
contains a row number. The branches descending from a model represent
the blocks (interference classes) to which that row can be assigned.
The branches are labelled accordingly, with block numbers. Each node is

labelled with the corresponding value of BOUND. Numbers in parentheses
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represent values which are obtained by a complete, or partial, reoptimi-
zation of the LP tableau. Since reoptimization is performed by dual
pivots it can be terminated as soon as the objective function exceeds the
current ceiling V. An underlined number in parentheses indicates a nat-
ural integer solution. The numbers with double underlines are numbers

of dual pivots.

4.4 Observations

The reasons for the excellent performance of the algorithm are fairly
clear. Partitioning problems frequently have natural integer solutions -
for example AA4. Since all of the candidate problems are partitioning
problems in their own right, it is not surprising that the LP reoptimizations
often lead to integer solutions. Of the four complete reoptimizations per-
formed for problem UAl, three ended with integer solutions. For problem AAl
integer solutions were obtained two out of seven times, and for problem AC1
it was one out of one.

A second reason can be seen by comparing cost(lp) and cost(e) in
Table 1: the continuous and integer minima are very nearly equal. 1In all
cases they differ by less than %% in value. This makes the penalties re-
markably effective. Very few of the branches that are left for later
consideration ever have to be explored. By the time we return to them,
their lower bounds exceed the value of an integer solution already found.
This is particularly true since the "path of least resistance'" has in all
cases led straight to an optimal, or very near optimal, solution.

The algorithm can be expected to work best on sparse matrices and to
suffer from a proliferation of branches if the constraint matrix is very

dense (say 507%). Table 2 shows the relationship between problem density
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and the average number of branches created when one of the partial

mappings was extended.

Table 2. Average Number of
Descending Branches (b).

Problem Density b
UAl 5% 1.6
ACl 7% 1.5
AAl 11% 2.4

Very large problems, at least of the crew scheduling or truck delivery
type, are always super-sparse (1-3%). The enumeration phase of the pre-
sent algorithm should therefore work very well on such problems. 1In

some applications, however, dense matrices may be the rule. In this
event, the algorithm of Pierce and Lasky [32] would be preferable. Their
algorithm works best on very dense matrices and has difficulties with
sparse ones. The closely related algorithm of Garfinkel and Nemhauser
[15] behaves in the same way.

If a collection of near optimal integer solutions is desired, these
may be obtained by méans of selective exploration of the enumeration tree
after the optimal solution has been found. Reoptimizations usually re-
quire only a few dual pivots and can be counted on to produce integer
solutions in a large proportion of cases. Such a set of near optimal
solutions may be very valuable if other criteria in addition to cost are

used to evaluate the feasible solutions.
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5. Side Conditions

Side conditions of one form or another occur in many practical
applications of the set partitioning model. For this reason the algor-

ithm has been modified to handle side conditions on (PP).

5.1 Method

The side conditions are employed as filters. When an integer solu-
tion is found at Step 3 it is checked against the side conditions. If it
satisfies them we proceed to Step 9 as usual. Otherwise, the current
partial mapping must be extended. Note that side conditions can only hurt,
that is, force more of the tree to be searched.

It has been assumed so far that each column of the constraint matrix
A is unique. 1In the presence of side conditions this would involve a
loss of generality since two columns of A might be identical and yet differ
with respect to the side conditions. To allow for this, the following
method is employed. One representative is chosen from each class of iden-
tical columns of A, namely the one with the lowest cost. The problem is
solved as above with one exception. 1If an integer solution is found that
does not satisfy the side conditions, then an attempt is made to exchange
some of the representative columns for their duplicates in such a way as
to satisfy the side conditions. This approach has the advantage that only
unique columns appear in the linear program. This is important if there
is extensive duplication, as in the problems discussed below. The full

details of the method are contained in [27].
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5.2 Results
Problems ACl and AAl were solved with crew base constraints of the
form (CB) (see Section 1). The results are presented in Table 3. The

column headings are as follows:

m - number of rows.

n' - the total number of columns of A.

n - the number of unique columns of A.

q - the number of crew base constraints.

t'(e) - time (in seconds) for the enumeration phase,
without crew base constraints.

t(e) - time (in seconds) for the enumeration phase,

with crew base constraints.

Times reported are for the IBM 360/91. The initial linear program is the

same in both cases, i.e. with or without the crew base constraints.
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Table 3. Results for problems with crew base constraints (360/91)

1D m n' n q t'(e) t(e)

ACII 90‘[ 394 ‘ 303 5 34,32 32.11

AAl L 65l 2,191 Ll,6h1 L 162.43 8L .26
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6. Conclusion

The computational results with pure set partitioning problems are
certainly very encouraging. The solution times compare very favorably
with those of other investigators. The main difficulty appears to lie in
solving the initial linear program. As noted earlier, this difficulty is
shared by all of the other serious computational approaches that have been
tried so far.

Dramatic improvements might result if the special structure of the
problem could be exploited during the linear programming computations.
Balas and Padberg [2] have recently provided some clues in this direction.
In particular, special properties of the LP bases might permit a fast re-
inversion procedure. The time currently being spent on basis reinversions
is a very substantial part of the total computing time. These reinver-
sions are being done by performing the required pivots in arbitrary order.
Pre-selection of the pivoting sequence, as described by Kalan [22], could
greatly reduce this burdensome overhead. Another promising idea would be
to select a set of rows of the A matrix that do not overlap and treat
them as generalized upper bounds [21]. This would allow the initial
linear program to be solved faster and with a smaller inverse.

The success of the algorithm in the presence of side conditions is
less clearcut. More experimentation will have to be done in this area.
For linear side conditions, the most promising way to improve performance
would be to include the side conditions in some of the linear programs
and/or use them to compute additional penalties.

At the beginning of this study it was the author's opinion that

partitioning problems should be much easier to solve than covering prob-
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lems. While this is certainly true for purely enumerative algorithms
(see, for example, [30] or [15]), it may not be true for.LP-based
algorithms. The severity of the partitioning constraints, which is the
key to an efficient enumeration, is also the bane of the linear program-
ming computations. Covering problems yield easier linear programs and
also have an important advantage during the enumeration phase: fractional
LP solutions can be rounded up to feasible integer solutions of a covering
problem. This is done by Lemke, Salkin, and Spielberg [25]. Unfortun-
ately, this convenient source of potential incumbents is not available

for partitioning problems.

This study has demonstrated that in designing an implicit enumera-
tion algorithm there are advantages to be reaped by making a judicious
choice of what to enumerate. In the present case a special class of
finite mappings was chosen, rather than the customary set of binary n-
vectors. A similar approach has recently led to a very successful algor-

ithm for the quadratic assignment problem [20]
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