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ABSTRACT

In this study we derive the order of convergence of some line
search techniques based on fitting polynomials, using function
values only. It is shown that the rate of convergence increases
with the degree of the polynomial. 1f viewed as a sequence, the
rates approach the Golden Section Ratio when the degree of the

polynomial tends to infinity.



LINE SEARCH TECHNIQUES BASED ON INTERPOLATING POLYNOMIALS

USING FUNCTION VALUES ONLY

Introduction

Most c¢fficient methods for unconstrained minimization utilize a one-~dimen-
sional scarch along directions generated by the method. If P i{is the function to
be minimized, X the current vector of decision variables, and S the search
direction, then the one-dimensional search problems is to choose o > 0 yielding
the first lecal minimum of P(X +2S). A significant portion of the total com-
putational effort is expended in this search. The problem can be particularly
difficult when P is an interior or exterior penalty function. This is a
situation of great practical importance because penalty functions are widely
used.

The most popular one-dimensional search procedures for use in unconstrained
minimization utilize quadratic [2,7] or 2 point cubic [1,5,7] interpolation of
P. When applied to penalty functions these interpolation approaches have
serious deticicencies. Quadratic interpolation has the drawback that its order
of convergence is approximately 1.3, significantly less than that of 2 point
cubic intevpolation, which is 2 [8]. The 2-point cubic, however, requires the
computation of VP, This is usually time consuming and is often difficult to
code. In some cases VP may not be available analytically.

A one-dimensional search based on quadratic and cubic interpolations using
functions values only, is studied in [ 3]. The performance of this procedure on
several test problems involving penalty functions has been significantly better
than that of competing methods. The algorithm in [ 37 has motivated this
study on order of convergence of related search techniques based on fitting

polynomials, using functions values only.

“This research was partially supported by the Oftice of Naval Research under

Contract No. N0O0014-67-A-0404-0010.



The alporithm studied in this paper is as follows.

Let x be a scalar variable, and f(x) the function to be minimized,
assumed differentiable. An isolated minimum of f is assumed to occur at a,
where

f'@) =0 (1)

Let n be a fixed integer greater than 1. If X5 X,

s X, are n+l
i-1’° >“i-n

approximations to a, and Pn(x) is the unique polynomial of degree less than
or equal to n which satisfies

P (x., .) = f(xi Y, j=0,1,...,n (2)

-]

then the new approximation to a, x is chosen to satisfy

i+1’
! —
Pn(xi+1) =0 . (3)
The procedure is repeated, fitting the next polynomial to xi+1’xi""’xi-(n-1)'

This algorithm is henceforth referred to as the Sequential Polynomial Fitting
Algorithm (SPFA).

We note that the SPFA is different from the algorithm discussed in
[3 7] , in that the points through which the polynomial passes need not
bracket a minimum of f. However, the bracketing algorithms do not lend them-
selves to the difference equation approach used in most convergence rate
derivations. Further, the two procedures are closely related. Other authors
f43, [8 1 give intuitive arguments that the rate of convergence of sequential
and bracketing algorithms are the same, then proceed to analyze the convergence
rate of the SPFA for the special case n = 2. We know of no proof that the

convergence rates are the same, although the conjecture seems reasonable.

Convergence and Convergence Rates

In this work speed of convergence of line search methods is measured in



terms of the following concepts. (See [8], [ 9 1).
Definition
Let the sequence {ek} converge to 0. The rate of
convergence of {ek] is defined as the supremum of the

nonnegative numbers p satisfying

ey
0< lim TS5 < o
ko 1k

(The case o/o is regarded as finite). The average order

of convergence is the infinum of the numbers p > 1 such

that
l/pk

T e,

k0
The order is infinity if the equality holds for no p > 1.

Let

J=1{x| |x -al <1}

throughout this section, f is assumed to satisfy the following conditions.

(1)

. .th . .
notation f (x) denotes the i  derivative of f).

Assumption 1.

1. f(z)(x) # 0 for all x € J. Note that this is equivalent to
f(z)(x) > 0 for all x € J, since f(z)(a) # 0 implies f(z)(a) > 0.

2. ") # 0.

3. f(n+2) is continuous on J.

4. 1f we define constants M., M., and M, such that, for all x € J

0’ 1 2

e 0] ER £ ) /iy < My, | (0 o /@it ] < u

2

then the interval width L in (4) is small enough to satisfy

(4)

(The

(5)
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1/(n-1) <1

2
r = L[ig (ML + (n+1) Ml)] (6)

and

L= Mg, 2™+ (e ™) < 172 7

We note that if the constants MO, M., and M, are defined as the sharpest possible

1 2
hounds for a given L, then M1 and M2 are nonincreasing in L and MO is non-
decreasing in L. Since I and Tl are decreasing functions of L ,
approaching zero as L approaches zero, an L satisfying (6 - 7) can always be
found.

We also require the assumption that the convergence rate of the sequence

{ei} is at least of order 1, where

ey = X, T (8)
Assumption 2%
e
+
lim Z L -y (9)
k4o k

where 8 is finite and is not a root of the polynomial

n n .
ATy + oy KT 1o odton

1 k=1 j=1
j#k

Y(x) = xJ+1

3

=9

It is easy to verify that B = 0, i.e. superlinear convergence satisfies
Assumption 2.

The main result of this section is
Theorem 1. Under assumptions 1 and 2, the order of convergence of the SPFA, using

polynomials of degree n, is equal to the unique positive root, O of the poly-

nomial

(*) The stronger version of this assumption, i.e., superlinear convergence, is

also made for the case n = 2 in [8, p. 143].



+ n
Cn(x) = x" L ¥ x . (10)

The sequence of roots, {on} is increasing, approaching the Golden Section Ratio
T = (1L +,/5)/2 =1.618 as n approaches infinity.

A table of positive roots of Cn(x) is given below

n root, o cn/T
2 1.324 .81
3 1.465 .90
4 1.534 .94
5 1.570 .97
6 1.590 .98

Cubic polynomials (n=3) yield 90% of the maximum attainable covergence rate,
and the ratio On/T increases slowly for n > 3. Given the added complexity of
dealing with polynomials of degree greater than 3, there is little reason for
considering such polynomials in practical interpolation schemes.

In the remainder of this section, we give a number of results leading to
a proof of Theorem 1. The following two theorems, proved in appendix A, insure

that the sequence {xi} is well defined, and converges to the minimal point .

Theorem 2. Define J = {xl Ix«l\ S_L} and suppose that & is the unique minimum

of f in J. Let XgaX, go-eeaX, in J define the polynomial Pn(x) of degree

< n satisfying

Pn(xi_j) = f(xi_j) j=0,1,2,...,n

If f and J satisfy Assumption 1 then P;(x) has a real root in J.
in J

Theorem 3. Suppose that the conditions of Theorem 2 hold and let X4

be a real root of the derivative of the interpolatory polynomial Pn(x) deter-



e

mined by Xis Xy _goeeenXy oo Then the sequence {xk} converges to a and

r(n,k)

|Xk - al <KT (11)

for some constant K. I < 1 (defined in (6)), and

k/(n+1)

rin,k) =n . (12)

Heneo the coquence h-ki converpes Lo zero with average order ol convergence

1/(ntl)
n .

preater than or equal to

We now derive results on the (stepwise) order of convergence of the SPFA.

In Appendix A, it is shown that

37k

Suppose that e 0, 3=0,1,...,n.

(n+1) n (n+2) n
. _ f (M(x))
P'(x) = £'(x) - G 5 1 (en. ) - T (x-x, .) 13)
Ry L ,
n G 5=0 i-j (nt2)! 5=0 i-]
j#k
where £(x) and TM(x) are in the interval determined by K Ko oo Xy X
Substituting x = x, 4 into (13), and using the relations
t = - = -
Palxin) =0 Gy Xi—j) (eiy ei—j)
and
: - (2)
B'(xiq) ey f (8(x41))
where 8(xi+1) is in the interval [xi+1,a], yield
£ (0+1) non (*2) (x, o
P e ) = Con)) 3 0, e o+ D)) m e i-j
i+l i+1 (nt1)! k=0 j=0 = *7J (n+2)! j=0



(n+1)
f Ex,,))| n e,
(2) 0 { i+l i+l
e ,.f (B8(x, ) = [l e m ( - D
i+l i+l j=1 i-j (n+1)! i=1 i-3
(n+2)
Ci+l i nCi £ (Mx;41))
+ K l(e. K e, k) .Hl(e. . D (n+2)! (ei+1 - ey)
= 1- 1- J= 1-]
j?k
n e,
noEoo (1)
. e, .
j=1 "i-]

By Assumption 2 (i.e. ei+1/ei -+ B), the ratios ei+1/ei—j in (14) approach

j+1 . . .
BJ as 1 -+ @, yhile (ei+1-ei) approaches zero. If we define Ai+1 by
n
e T A oegy (13)
j=1
and let 1 + =
(n+1) (2)

Ay Y(g) £ @)/ (m+1)! £ (@) = A . (16)

i+
By Assumption 1 (conditions 1, 2) and Assumption 2, A # 0, so by (15), for i
sufficiently large, - 40, j=0,1,...,n implies €L # 0 for all k > i. For

i sufficiently large and € > 0, (15) yields

n n
(lal-e) jgllei_j|s le. | < (Ja] +) JEllei_jl (17)
or, defining
1 -1 1/(n-1
b, = le,lclal + )/ @Dy~ e [(la] - M7
n n (18)
6., < I &6, ., v, L
i+l - jzl i-j Yivl Z-jzl Yl-J

Since e # 0 for i sufficiently large, we may take logs of the inequalities

(18) yielding the difference inequalities

n n
d < £d, ., c > ¥ ¢, . (19)
where

d, =4n &, , ¢, =4n vy, . (20)



We apply the following theorem, due to Ostrowski [ 10, P. 98], to (19) .

Lemma 1.

Consider the equation

0 n-1
x - X P, xd =0
j=0
with pj >0, j =0,...,n-1, having positive root ¢, and the infinite sequence

fuii satisfying the difference inequality

n-1
u, - X p,u,,.>0, i=1,2,... (21)
+ —
i+n =0 i it]
where Ups..esl are positive. Then we have
uizyol i=1,2,..
where
u,
Y = min —% > 0
1<j<n o

By following Ostrowski's proof, it is easy to verify that, if the reverse

inequality holds in (21) then

u,
R
I<j<n o
Since \ei] #+ 0 we can assume without loss of generality that dl""’dn+1 and

Cps-ee»Cpyy are negative. Then, applying lemma 1 to the sequences i-cil,
i—dil yields
-d, > vy ot , ¢, < 9§ Ol
i= i-
where
-d, -c.
Y = min —1 , & = max —1 s
1<j<ntl o3 1<j<n$l o7

and ~ is the unique positive root of the polynomial Cn(x) in (10) as shown in

appendix B. Thus, using (20) and (18)

(lal-2)

-1/(n-1)

exp(-801) < le,| < (Jal+o)

-1/(n-1)

exp (-yo 1)

(22)



Hence

le. .| .
—itl . 8 explo’ (8tva)} g <= (23)

eyt~

In appendix B we show that o > 1. Hence the right hand side of (23) is finite

for all 1 if (dt-yo) <0, i.e., if t < yg/6. Again using (22) we obtain

sy |
e 1"

which approaches infinity as i + @ if vt - 80 > 0, i.e., if t > b0/y

> g, explo’(vt-t0)} , g, >0

Hence the order of convergence of the SPFA is less than or equal to 6c/y and

greater than or equal to vyo/§.

To show that the order of convergence is exactly o, we use the following

lemma (10, P. 927.

Lemma 2.

Consider the linear difference equation

n
u, =k, .+ ¥ a,u, ., i = n,ntl,...

where the aj are constants and {ki} is a specified sequence. The associated

characteristic polynomial is

+ n
Q(x) = " L. 2 oa, x

> > |

Jz s

lr n+1l

Let r be the roots of Q(x), with \rl‘

1Y

ERRRELIT]
Assume that lrl\ > 1> \rz\ and, for some s, 0 < s < \r11
_ i
k, = 0(s™)
which means \ki‘/s1 * ¢ for some constant ¢ as i * ». Then there exists

al such that, as i * «
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In addition, if s > \rz\

u; = alri + O(Si)
[t s = \rz‘ and m is the maximum multiplicity of all zeros of Q(x) with modulus
\r2| then
u; = alri + O(imlrzli)

A careful examination of the proof in [10] shows that Lemma 2 is true even if

the condition \rl\ > 1> ‘r2l is replaced by the weaker condition

lrll > 1:lr1l > lr2|

Taking absolute values and logs of (15), and defining

di = ln\eil, B, = Zn‘Ail

we obtain

n
= + : =
di+1 Bi+1 .§ di-j s i n,nt+l,..
j=1
Further deflining
d, B,
u = T k = 1
i LalpaT+s i In[aT+s
where S = -1 if |A] < 1 and S = 1 otherwise, yields
n
= + i = “en
i+l ki+1 jzl ui-j s i n,n+l1, (24)

where, for i sufficiently large

k., | <1 . (25)

i+l

The characteristic polynomial of (24) is Cn(x) in (10). Consider first the
case where n+l is odd. It is shown in appendix B that, in this case, the roots
of Cn(x) satisfy \rll > 1> \r2|. By (25), we can apply Lemma 2 with s =1

to obtain

- i
ui alrl + 0(1)
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implying

i
leil = expi-ﬁlrl + 0}

where Bl > 0 since leil + 0. This implies that

le 4! '
itl' o Loe-
— expiBlrl(t rl) + 01(1) + t02(1)}
Lo,
i
which implles that the order of convergence of the sequence iei% is ry- Suppose
now that o+l is cven. Then, from appendix B, £, > 1 and r, = -1. The comment
following Lemma 2 justifies its use in this circumstance and, using
s = 1r2l = 1 we obtain
i .m i
= +
u; Tayry t0d ‘rzl)
As shown in appendix B, m = 1, so
ug = Ty + 0(i)
which implies
le,| = exply x; + 0()] (26)
i 171 ’ -

Since \eil -+ 0, Yy < 0. If v, < 0 then leil = expfO(i)i , which contradicts
(11). Hence Y1 < 0. 1It is then easily verified that (26) implies that the

order of convergence of the sequence ieil is again r Theorem 1 follows from

1
the preceding discussion and Appendix B.

A concluding remark is in order. The above discussion depends substantially

on the assumption that f(Z)Qx) # 0. 1In fact we can weaken this assumption as
(r) - - (k)

follows. Suppose that £ “(a) =0, r =1,...,k-1, and f° (@) # 0, where

ntl > k > 2. The minimality of a implies that k is even and f(k)Ql) > 0.

It is easy to verify that Theorem 2 is still valid if M, is the minimum of

0
(k) .
f (@) on J and (7) is replaced by
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L
2

1 n+l

[(k-l)!/MOLk' 1 (M2(2L) + Ml(n+1)(2L)n) <

Theorem 1 is also valid if T, is replaced by Sn where Sn > 1 and is the unique

positive root of the polynomial

(k-l)xr1+1 - xn-1 - xn_2 - ... =1

The sequence of roots ien} is increasing and converges to 8 = >

We also note that, T, the bound on the convergence rates of interpolating
polynomials using function values only, is easily exceeded when derivative
values arc incorporated to define the polynomial. For example, the quadratic
obtained using the False Position method converges with rate equal to the
Golden Section Ratio T, (see [8 1). This method utilizes values of the function
and its first derivative only. Newton's method uses second derivatives and

has rate equal to 2.
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Appendix A

Existence Theorem of a Zero of the

Derivative of the Interpolation Polynomial

In this appendix we prove Theorems 2 and 3, assuring that the sequence
of roots {xil, generated by the algorithm, is well defined in the neighborhood

of o, and coverges to Q.

+
Proof of Theorem 2. Since f(n 1)(x) is continuous it is well known (e.g. [12,
P. 61]) that
(n+1) n
(E(x))
= + -
f(x) Pn(x) i I (x xi~j) (A.1)
j=0
where €(x) lies in the interval determined by XXy 1oeeeaXy aX. To derive an

expression for P;(x) we apply a result due to Ralston (117, which states that

ot a TPEw = meyr (TP oo .2)

where 7(x) is again a mean value in the interval of interpolation. Differ-

entiating (A.l) and using (A.2) yield

(n+1,. n n (n+2) n
f X f (M{x))
P'(x) = £'(x) - £ __Ge)) Lo (x-x,_.) - " I (x-x,_.) (A.3)
n (n+1)! k=0 j=0 i-j (n+2)! 3=0 i-j
j#k
We now show that under the assumptions of the theorem P;(x) has a zero in

(2)

J. Note first that £

(@

(x) >0 ¥V x €J since o is a minimum point and hence
(n) > 0. The theorem follows when we prove that PAQI-L) < 0 and
P401+L) > 0. f'@) =0 implies

) = £ (x) - @) = (x=) £

(v (x))

where v(x) is in J.

Substituting x =a - L in (A.3) yields
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(n+1) n n
. _ 2 N
P @) = L 2 )(Y«I—L)) = (n+1§§61 LY I @-L-x, _
' k=0 j=0 L
j#k
(n+2) n
4 (M(a-L))
(n+2)! jio(a_L-xi'j)
P!(1-L) is negative if
1
s —oy A ifg.@'”) R daid TCE A DI
L (v(a-L)) ! k=0 j#k i-j (n+2)! §=0
M n+l M n
But T i lT‘ S_ 14_2 iZL—)L___ + M_l (n+1) (ZII:) <1

0

(@}

(a-L-xi_j)] <1

Similar arguments lead to the conclusion that PA(G+L) > 0, and hence the

theorem follows .

Proof of Theorem 3. Substituting x = X4l in (A.3) we obtain
+1 +
f'(x,,,) = f(n )(9 ) 2 3 (x - x ) + f(n > 92) H
3 ' s . . - . '
i+l (n+1)! 4=0 =0 i+l i-j (n+2)! =0
jt L
where

:E =
B) = S(xyp) 5 8, = Mxy )

Defining e = X, T a, k =1,2,... and noting that
: (2) = .
Frlegyg) Zegyy £770@ 0 By = vl ))
yield
l n n-1, n
< - [
Mo\ei+1, <M § [lei+1|L (27-1) + 1 Iei_jl] +

2=0 j:4

n
+ M [|L 1Ln(2n+1—1) + il [e. l]
i+l =0 i-]

(xi+



-A3..

Hence,
M +
e | <13 ew® @ M ™t M at1) n
¢! SiM. T L ML legnl + i Max ey 10+
0 0 0 0<j<n ]
M
+
+ ﬁg Max \ei_.ln !
0 0<j<n ]
By Assumption 1
+
" et @iy M oen™
MO L MO L 2
Thus,
le.+ll C Max |e._.‘n
" 0<j<n 7Y
wlhere
M M
+
¢ = 2¢L (@D 4 ﬁg-L)
0 0
Define d = e, | /(-1 Then (A.5) yield
di gy L+ en (A.5) vyields
d M dn
. < ax .-
l+1 O_<_j§n i-]
We show that if k = t(ntl) + £ , t > 1, £ =0,1,...,n then (A.6) implies that

t
q, < T =

K where

Let t = 1,

Let k = t(ntl) + £

If g = 0, then

L Cl/(n-l).

£ = 0 and consider d

n n
d 4 < Maxtdo,dl,...,d

and suppose that the result holds for indices smaller than k.

< Max (d
0 &

de T 9y nt1)

then

n+l’

(t-1) (nt1)+L

The proof is by induction on k.

n nt_ln nt
] <T =T

(4.5

(A.6)
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Let £ > 1, then

n

d, = < Max{ Max [d 1, Max

k- Y (ne1)+L

t t+l t

oci<s HFDTET ae i

[d

0,1,...,n, so

n
(t=-1) (n+1)+j

< Max{l™ , 7"} <1"
l’lt
Hence d <I" where k = t(ntl) + £ , £t > 1, 4
e | = 4 ISVICE NS C-l/(n-l)Fnt
®k k =
k - . .
t = T nil and ' < 1, (Assumption 1), imply that

le, ] < ¢

and the theorem follows.

-1/(n-1) Fr(n,k)

1
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Appendix B

The Roots of the Indicial Equation

In this appendix we study the properties and roots of the polynomial

kK k-2 k-3
Ck—l(z) =z z z - ... -1, (B.1)

We will show that Ck—l(z)’ k > 3, has a unique simple positive root,

, with modulus > 1, and that all other roots are also simple with moduli

J

k-1
less than or equal to 1. 1In fact, it will be proved that if k is odd 9 -1

is the only real root and that the other k-1 roots are inside the unit disc.
If k is even z = -1 and 0,1 are the only real roots and the other k-2 roots

have moduli less than 1. It is also shown that the sequence {Ok%, k = 2,3,...

L ) . . . 2
is increasing and tends to the Golden Section ratio, T, (i.e., T -T-1=0, 7>1).

Lemma B.l.

Let Ck-l(z)’ k > 3, be defined by (B.l). Ck-l(z) has a unique simple

positive roet, Sy s and 1 < S < 7, where 7 is the Golden Section ratio.
If & is odd o1 is the only real root, and if k is even z = -1 is the only other
real root of Ck_l(z) and is simple.

k-1

Proof. k z -1 1 k-1, 6 2 1
—— M = - ——————— = -——{ -ty - + —
Lk-l(z) z z -1 z-1-% (z -z-1)] z-1

Let 1 be the Golden Section ratio, i.e., TZ -7 -1=0, 7> 1.

C (1) = Tk—l( 2. -1) + S >0 It i t ify that for k> 3
k-1 o T -7 ) 1 . is easy to verify a > 3,
Ck_l(l) < 0, and hence there exists a positive root 1 < Or-1 < T. To see that

g is simple and also the unique positive root observe first that



~ k-1 k-2 k-3
Ck-l(z) = (z - Gk_l)(z + a,2 + a4z + + az )
a3 T 91
a. =~ (a. +1) k> i> 3
i Ok—l i+l -
a, = 1
k dk_l

Thus a, » 0, i = 2,3,...,k and the result follows. Suppose that k is even,

i
- -7 -
then C (z) = (zt+l) (zk L zk - zk 4 - 1). Hence z = -1 is a simple

k-1

root. It is easily verified that C —l(t) is negative for -1 < t < 0 and

k

positive for t < -1. Hence z = -1 is the unique nonpositive real root. Suppose
now that k > 3 is odd.

Ck—l(z) = zk - (z-f'l)(zkn3 + zk-l + ...+ 1)

k-1
z 2 1
—— + ——
z-1 (z7-z-1) z-1

From the first expression we sec¢ that Ck_l(t) < 0 for -1 <t < 0. Now let
t < -1. Clearly t2 -t -1>0 and Ck—l(t) < 0. Hence Ck-l(t) < 0 for all

nonpositive t and o is the unique real root.

k-1
Lemma B.2.

All the roots of C (z) are simple.

k-1

Proof. Define D, () = (z-1) ¢, (2) = 2(z-1) - 27" + 1.

k-1 k-1

If z # 1 is a multiple root of C _1(2) it is also a multiple root of

k

k-1(8) =0

Dk-l(z) and D

_ -9
D)z -k 250 - k-1 25T =0
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z = 0 is not a root and we have

(k+1) 22 - kz - (k-1) = 0

which implies that z is real. The preceding lemma assures that real roots are
simple and the lemma follows.

The following lemma shows that the sequence ?Ok‘ is an increasing one.

Lemma B.3.

ki’ k = 2,3,... is an increasing sequence and lim Ok =T,
k

Proof. To show the monotonicity property we prove that Ck(gk—l) < 0. Lemma

B.1 then assures that o, > o

k k-1"
k+1 k
_z (z=1) ~z + 1 _ 1 1
= = - —_— + —
¢, (=) z - 1 2C @) - g3 ) Yo
1 1
c, (o, ) =a (0 - — ) + = -1
kk-1 k-1 Opq - 1 opog - L

The sequence !Ok}t;a bounded increasing sequence and hence lim Oy = B exists.
k
k-1 9

~ - - = o < <
Ok—l Cjk—l o1 1) 1, 1 o} T

)
=PB" -B -1=0 and B = 17, the Golden Section root.

(z) that differ from o have moduli

To prove that the (k-1) roots of C k-1

k-1

< 1, we introduce the following two results.

Theorem B.l1. (Traub, [12, p. 517)

k-1 k-2
z Z

+ + ... +1), ka > 1 and k > 2. Then fk(z) has

Let [ (z) = X - a(
k
one positive simple root, Yy and max(l,a) < Yy < 1l4+a. All other roots are also

simple with moduli less than 1.
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Lemma B.4.

(Ostrowski, L10, p. 2227).

Let B be a closed region in the z-plane, the boundary of which consists of
a finite number of regular arcs, and let f(z) and h(z) be regular on B. Assume
that for no value of the real parameter t, running through the interval
a < t <b, the function f(z) + th(z) becomes zero on the boundary of B. Then
the number N(t) of the zerves of f(z) + th(z) inside B is independent of t for
a<t<b.

We are now ready to prove the main result.

Cp-1(%)
Theorem B.2. If k is odd the k-1 roots of P have moduli < 1. TIf k
z k-1
°-12)
(z*3k_1)(z+1)

is even the k-2 roots of have moduli < 1.

Proof. Let € > 0 be arbitrary small and k > 3 and consider the polynomial

C (z) - tz for t € [e,1] where

k-1
Ck_l(z) = zk - zk_z - zk“3 - ... =1
k-1 . _ .
We show that Ck-l(z) -tz # 0 for all z in izl lzl = 1}. Since
_ r A .. k-1
Ck_l(l) -t <0 V t ¢le,l] it is sufficient to show that (z-l)iCk_l(z) -tz }# 0

for all z # 1 and \zl = 1, Suppose (z—l){Ck_l(z) -t zk-li = 0 for some z ¥ 1
and \z\ = 1. Then
izk-l[zz - z(t+l) - (1-t)] + 1} =0
L0228 - 2oy - (-] = ] - 1] = 122 - 2(e+1) - A-0)] =1 .

If z = cos 9 + i sin 8, then
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[cos28 - (t+l) cos B - (1-t)]2 + [sin 268 - (t+l) sin 8]2 =1,

which yields

-2(1-t) cos2 B - (£ + t2) cos B + (1+t2) + (1-t) =0

Let y = cos 8 then it is clear that y = 1 is one root of the quadratic
2 2 2
2(l-t)y" + (t+t7)y - (t7-t+2) =0 . (B.2)
For t = 1, y = 1 is the only root and we obtain cos 8 = 1 which contradicts

the assumption z # 1. Let t € [e,1), then the second root of (B.2), is

y(t) = —ZEi:E;Z , y(r) < %%T%E% = -1. Thus we have the contradiction

cos B8 < -1. Observing that for t = 1, Ck—l(z) - l:zk-1 yields the polynomial
fk(z) with a = 1, discussed in Theorem B.l, we apply Lemma (B.4) to conclude
that for aﬁy positive t arbitrarily close to zero the polynomial Ck-l(z) - tzk-1
has k-1 roots inside the disc iz\ \z\ < 1}. Continuity arguments (see for
example [ 12, Appx. A]) lead to the conclusion that Ck-l(z) has k-1 roots in

iz\ lz\ < 1}. By substituting t = 0 in (B.2) we easily verify that the only
possible root of Ck—l(z) on the boundary of the disc is z = -1 which is a root

if and only if k is even. Hence the theorem is proved.



