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Abstract

In this paper we investigate the impact of information on
individuals’ time of use of a congestable facility subject to stochastic
fluctuations in demand and capacity. We solve for the continuous time
equilibrium rate of use and for optimal (no-toll) design capacity for
three information regimes: Full information (in which users know both
demand and capacity when deciding whether and when to use the facility),
zero information (in which users know only the joint probability
distribution of demand and capacity), and partial information.

When capacity alone is stochastic, optimal design capacity is
unambiguously greater with zero than with full information, and expected
welfare is lower. However, when demand alone is stochastic, the rankings
are parameter-dependent. For partial information we show via an example
that, even with capacity alone stochastic, a marginal improvement in
information may lower expected'welfare, despite the fact that complete
information is preferable to zero information. The results suggest that
dissemination of information (e.g. radio traffic reports on weather and
accidents) may be counterproductive for management of congestable

facilities.






1. Introduction

In the standard peak-load pricing model of a congestable facility
(Steiner [1957], Williamson [1966] inter alios) the timing and intensity
of peak and off-peak demands are assumed to be predictable and knowm.
Predictable fluctuations of a seasonal, weekly or daily frequency often
do account for much of the total fluctuation in demand. But
unpredictable variations may also be important.l

Beginning with Brown and Johnson {1969], the peak-load model has
been extended to allow for stochastic demand fluctuations. Attention has
been focussed on the optimal pricing and capacity of a public utility, as
well as the profit-maximizing policy of a monopolist. This work has
enriched the peak-load model and improved its practical applicability.
However, the model remains incomplete in two respects.

First, while fluctuations in demand have been widely considered,
fluctuations in capacity have hot.2 In reality, most serfices
(electricity, water, gas, telephone, computer, transport etc.) are
subject to periodic interruptions. 1In the case of road traffic,
disruptions due to inclement weather, accidents, breakdowns and road
repairs are quite frequent. Such disruptions can have an appreciable

effect on system performance, and on user welfare.

1For example, Ju et al. [1987, p.520] report that random events
account for 57% of total traffic congestion on Los Angeles freeways.
Stochastic variations in air travel demand are a principal determinant of
airline booking policies and fleet capacity (e.g, Douglas and Miller
[1974]). And significant nonsystematic load variations are observed in
computer systems (e.g, Gale and Koenker [1984]).

2Naor [1969] and DeVany [1976] have developed queuing models in
which the service time of individuals is random. However, they assume
that both the long-run average service rate and average demand do not
vary over time, thereby abstracting from the peak-load problem.






A second problem with the conventional peak-load model is a failure
to treat properly users’ time-of-use decisions. Periods of peak and off-
peak demand are usually specified exogenously, with constant or even zero
cross-price demand elasticities. The limitations of this approach can be
illustrated with rush-hour traffic. Because of common work schedules and
preferred hours for non-work activities, commuters travel to and from
work at similar times. Those who travel at the peak of the rush hour in
order to arrive ’‘on time’ experience congestion and prolonged trips.
Those who travel on the tails of the rush hour to avoid the worst
congestion enjoy shorter trips, but suffer schedule delay: the psychic or
monetary penalty from arriving either early or late. In equilibrium,
the ;ggregate departure rate must be such that no commuter can reduce his
travel costs by altering his departure time. Similar tradeoffs between
convenience and congestion govern time-of-use decisions of air travel,
computers and other facilities; The point of this example is that the
time-of-use decisions of individuals are endogenous. If the pricing
policy or capacity of a facility is changed, the time pattern of
consumption throughout the demand cycle will be affected. Reduced-form
demand functions with parametric cross-price elasticities cannot
adequately capture such adjust:ments.3

The first systematic treatment of individual time-of-use decisions
in the peak-load context was undertaken by Vickrey [1969] to describe the

departure time of morning commuters. While Vickrey'’s work has been

3This issue is discussed in greater detail in Arnott et al. [1987b].




extended by a number of othersa, attention has been focussed largely on
deterministic models which ignore fluctuations in demand or capacity.

The purpose of this paper is to extend the peak-load model to allow
fluctuations in both demand and capacity and to study the impact of
information on the time-of-use decisions of consumers.6 To fix ideas, we
cast the problem in terms of traffic congestion during the morning rush
hour. Although the nature of congestion differs with the type of
facility, the analysis should provide a guide to understanding the impact
of information on usage of other congestable facilities such as airlines,
telephones and computers.

A number of experimental studies have been conducted on the impact
of information on congestion and accidents in dense trangport systems.
Among these can be mentioned the Comprehensive Automobile Traffic Control
(CACS) study carried out by MITI in Japan, the ALI-SCOUT Destination
Guidance System in West Germany, the European PROMETHEUS project and the
U.S. ETAK system introduced in the San Francisco and Los Angeles areas

(see Boyce [1988]). Information made available to users can be static,

4Henderson [1977, 1981], Hendrickson and Kocur [1981], Hurdle
[1981], Fargier [1983], Mahmassani and Herman [1984], de Palma [1986],
Newell [1987], de Palma and Arnott [1987], Braid [1987a,b], Arnott et al.
[1987a, 1987b].

5Some work has been done developing probabilistic choice models of
departure time (e,g. Alfa and Minh [1979], de Palma et al. [1983, 1987]).
Multinomial logit demand specifications have been estimated by Cosslett
[1977], Abkovitz [198la,b], Small [1982], Hendrickson and Plank [1984]
and Moore, Jovanis and Koppelman [1984]. However, these models deal only
with stochasticity at the level of the individual, rather than in the
aggregate. Aggregate demand fluctuations have been considered by DeVany
and Saving [1980], but in a steady-state framework which abstracts from
the peak-load problem.

6Preliminary research on this question has been conducted by Ben-
Akiva et al. [1986] using a simulation model.



i.e. independent of current road conditions, or dynamic, i.e. updated on

a daily or more frequent basis. Given the difficulties of analyzing the

effect of information in a network, we limit attention in this paper to a
single route. Demand and capacity are assumed to be remain constant

over the course of a day, but to vary from day to day.

The analysis consists of three parts. In the first part,
fluctuations in demand and capacity are assumed to be fully predictable.
Each day the departure rate over the course of the rush hour adjusts so
that no individual can reduce his travel cost.by departing at a different
time. The optimal design capacity of the road is determined by the
condition that the expe;ted marginal benefit from capacity expansion
equals the marginal cost. While the derivation of this condition is
conceptually straightforward it has important implications for cost-
benefit analysis. For example, traffic engineers have employed rules of
thumb in designing highway cap#city, such as to limit congestion to a
particular level in say the fiftieth busiest hour of the year on the
assumption that road conditions are ideal.7

Such rules of thumb are questionable when actual highway capacity
falls below its design level for a significant portion of the year,
either because of accidents or ice and snow. We show that the
appropriate rule for determining optimal capacity is characterized by a

certainty-equivalent rush-hour flow that allows for fluctuations in both

7Analogous rules have been used to choose reserve levels for
storable outputs. For example, British Gas holds sufficient gas reserves
to meet demand in a cold winter occurring once in 50 years (Cannon
[{1987]). Similarly, water utilities may construct’sufficient reservoir
capacity to meet a once-in-50-years drought (Crew and Kleindorfer [1986,
p.260]).



demand and capacity. We also show that if the elasticity of travel
demand is less than unity (as it is in most commuting contexts) then
optimal capacity is an increasing function of the variability of both
demand and capacity and a decreasing function of the correlation between
them.

In the second part of the analysis, users are assumed to know the
joint probability distribution of demand and capacity, but not their
realizations on aigiven day. The time pattern of departures must then be
the same each day (in a sense made precise below), and such that
individuals cannot reduce their expected costs by altering their
departure time. Whether aggregate costs are higher or lower with zero
information than full information is not clear a_priori because there is
an uninternalized congestion externality. It is possible that with zero
information, users may spread out their departures sufficiently to reduce
congestion and improve efficiehcy. We show that, if capacity alone is
stochastic, travel costs are unambiguously greater with zero than full
information, and that if the elasticity of demand is less than unity
optimal capacity is greater. However, if demand alone is stochastic, the
rankings of capacity and expected travel costs in the two information
regimes are parameter-dependent. Public information about demand may
thus have the perverse effect of decreasing welfare.

The two extremes of zero and full information are straightforward to
model. The intermediate case of partial information is conceptually
more difficult. Individuals will decide whether to travel, and if so
vhen, on the basis of the perceived joint probability density of demand

and capacity, conditional on the information they have. What this



information is, and how it is acquired, will depend on the context. We
consider a simple example in which caﬁacity alone fluctuates between a
high and a low level. We show that a marginal improvement in
information can lower welfare, despite the fact that with fluctuations
in capacity alone, full information is preferable to zero information.
Limited information can thus have perverse effects in situations where
full information is welfare-improving.

While we hesitate, given the simplicity of the model and the
example, to draw policy implications from our results, they do raise
some doubt about the benefits of information services such as morning
radio reports on weather and traffic.8

In Section 2 we review the deterministic peak-load model on which
our paper builds. Sections 3 and 4 concern respectively the polar cases
of full information and zero information about demand and capacity
fluctuations. Efficiency and 6ptima1 capacity in the two information
regimes are compared in Section 5. Section 6 considers partial

information by way of an example. A summary and directions for future

research are provided in Section 7.

2. Review of the Deterministic Model

The analysis is based on a model of queueing congestion introduced
by Vickrey [1969] and extended by Hendrickson and Kocur [1981], Fargier

[1983] and Arnott et al. [1987a]. N identical commuters travel each

morning from home in the suburbs to work downtown. There is a single

8Whether traffic reports which influence commuters’ choice of route
could also be welfare-reducing is a subject for a separate investigation.



road along which each individual commutes in his own car. Travel is
uncongested except at a single bottleneck (a bridge, tunnel, intersection
etc.) which at most s cars can traverse per unit of time. If the arrival

rate at the bottleneck exceeds s, a queue develops. Travel time is
- v
T(t) =T + T (t), (1)

where T is travel time in the absence of a queue, Tv(t) is waiting time
at the bottleneck and t is departure time from home. Without loss of
generality we set T = 0, so that an individual reaches the bottleneck as
soon as he leaves home, and arrives at work upon exiting the bottleneck.
The length of the queue, D(t), is:

t A
D(t) = [ r(r)dr - s(t-t), (2)

t

A

where t denotes the time at wh?ch the queue was last zero and r the
departure rate. Waiting time at the bottleneck for an individual who
departs at time t is simply:

TV(t) = D(t)/s. (3)

Individuals are assumed to have a preferred arrival time, t*, which
can be thought of as their official starting time at work. Individual
variable travel costs are given by the linear function

C(t) = aTv(t) + B(time early) + y(time late), 4)
where for individuals who arrive early (before t*), time late = 0, and
for those who arrive late (after t*), time early = 0. The parameter «
measures the cost or disutility of time spent in transit. J measures the
cost of arriving an extra minute early at work and vy the cost of arriving

an extra minute late.



Finally, t, is defined to be the departure time for which an
individual arrives on time, defined implicitly by the condition:

£+ Tv(tn) - . (5)
Henceforth, we take 'depart early’ to mean depart so as to arrive early
and use the term ‘depart late’ accordingly.
Equilibrium

In choosing when to leave home, individuals face a trade-off between
travel time and schedule delay. Individuals are assumed to have full
information about the departure time distribution. In equilibrium no
one can reduce his costs by altering his departure time. With identical
individuals this means that travel costs are constant over the rush hour.

Equilibrium is depicted in Figure 1.9 Queue length is measured by
the vertical distance between the cumulative departures and cumulative
arrivals schedules. Travel time is measured by the horizontal distance.
From the beginning of the rush hour at tq until t the queue builds up at
a constant rate. Once past tn the queue dissipates, again at a constant
rate, reéching zero at the end of the rush hour at tq'.

Over the interval [tq,tn] the equal cost condition implies from (4)
that:

C(t) = aT'(t) + B(t -t-TV (1)) (6)
is constant. Differentiating (6) and using (2) and (3) the departure

rate for individuals departing early is found to be
—as
r(e) = 25, te (e ,t). 7

By similar reasoning, the late departure rate is:

It is assumed that o>B. The case a<f is discussed in Armott et al.
[1985]}.



FIGURE 1
Cumulative Arrivals and Departures, Queue Length, Total Travel Time,

Total Time Early and Total Time Late in User Equilibrium
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r(t) = ;ff , t e (tn,tq'). (8)

Equating the costs of the first and the last individuals to depart:
B -t ) = y(t_'-th) 9
o T T
Since the bottleneck operates at capacity throughout the rush hour:
Tt - ty * Ns. (10)

q
Combining (9) and (10) and defining é§ = Sy/(B+y), one obtains:

* &N * &N
t =t - = , E =t + T, 11la,11b
q B s q B s (11a )
Finally, using (5) and (7) one has:
* 6N
tE =t -.5- (12)

Total travel time and total schedule delay are identified in Figure
1. Aggregate Travel Time Costs, TTC, Schedule Delay Costs, SDC, and
Travel Costs, TC, are:

2

TTC = SDC = , (13)

N jon
(7 -1

Nz
TC = TTC + SDC = § < - (14)

It is noteworthy that neither the timing of departures nor aggregate

costs depend on the unit cost of travel time, a.

Optimal Capacity

In this section we determine the equilibrium number of users of the

road. Following Arnott et al. [1987b] demand for trips is assumed to be:

N = np ¢, (15)
where n is a parameter characterizing the intensity of demand, p is the

‘price’ (variable travel cost defined in (4)) of a trip and ¢ is the



11
elasticity of demand with respect to p. The elasticity of demand
depends amongst other factors on the availability of substitutes (in the
commuting context, alternative transport modes in the city); assuming it

to be constant simplifies the analysis. From (14)

p = - . (16)

oz
0 o

Solving (16) and (15) for N and p yields

1 €
N(n,s) = n1+€ {?} L+e , and (17a)
1
p(n,s) = p(s/n) = {§§}1+‘. (17b)
Consumers’ surplus is
CS(n,s) = [ N(p)dp. (18)

p(s/n)
From (15), (17b) and (18), the increase in consumers’ surplus from a

marginal capacity expansion, which we term marginal consumers’ surplus,

is
2  l-e
MCS(n,s) = §2% - = {?} Lte g Ite | (19)
If capacity costs are 1inearlo, with marginal cost k, then optimal
capacity is given by
s* = argmax [CS(n,s) - ks]. ' (20)

Using the first-order condition MCS(n,s) = k and (19) one obtains
l-¢ lte
2 2
sk = § ° [(l+e)k] n. (21)

1oKraus {1981] has argued that there is a substantial fixed cost to
highway construction, implying that costs are affine rather than linear.



3. Time-of-Use Decisions with Full Information

In this section we assume that users learn the precise values of
capacity (s) and demand (n) sufficiently early in the day that they can
adjust their departure times accordingly. If demand is elastic, some
individuals may decide to use an alternative mode of transit rather than
travel by car.

Under full information, equations (7), (8), (1lla,b), (12), (13),
(14), (17a,b) and (18) continue to apply for the realized values of n and
s. Let § denote the design capacity of the bottleneck and o = s/§ <1
the ratio of aétual to design capacity. Design capacity may be thought
of as the maximum feasible traffic flow under ideal conditions. Given

(15) and (18), consumers’ surplus with a given n and o is:

cS(n,80) = [ np “dp. (18")
p(So/n)

We assume that the joint probability density of n and o is f(n,a)ll,
which is independent of design capacity.12 Expected consumers’ surplus
(expected values are hereafter denoted by a bar) is thus:

— lw
ety - [ IS np"dp} £(n,o)dn do, (22)
00 (8o/n)

and marginal expected consumers’ surplus
l-¢ 2

—F l= 1 (5 1+e x 1+e
MCS™ (§8) = { { Tie {a} {E} f(n,o)dn do, (23)

11n and o may be correlated because, for example, traffic accidents

are more likely on busy days.

l2This can only be approximately true if capacity comes in discrete
units (e.g. traffic lanes) and if each unit is working either fully or
not at all. This problem is bypassed here by the assumption that
capacity is a continuous variable.

12



where the superscript F denotes the full information regime. Optimal

design capacity is

§* = argmax [EEF(é) - k8],

which, given (23), is
l-¢ Lie
§% = § 2 [(1+)k] 2 v, (24a)
where
] o €1 2 Lte
y = {gf o1 al*€ £(n,0)dn da} z (24b)
0
It is easily verified that if demand and capacity are certain, (24a)
reduces to (21).

Equation (24a) provides a prescription for computing optimal design
capacity. To use it the demand parameters f, vy and ¢ must be known (but
not @), as well as the joint probability density function f(n,o). The
latter could’be estimated by recording s and N over a large number of
days, computing n from (17a) and o = s/s, and constructing the
corresponding frequency distribution.

Besides the assumption that demand and capacity are known each day,
(24a) was derived on the assumption that demand is served on a singie
bottleneck. At least with urban commuting, however, individuals
generally have a choice of more than one route. The analysis of a single
bottleneck cannot legitimately be applied to a link on a road network,
because with unpriced congestion the expansion of one link affects the
deadweight loss from congestion elsewhere on the network. Prior to
practical application it will be necessary to éxtend the theory to a

network with multiple routes (and perhaps multiple origins and

13
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destinations).

While the analysis is clearly simplified it is still conceptually
superior to earlier methodology which assumed uniform tfaffic flow and
ignored schedule delay costs. Equation (24a) also improves on other
formulas for computing optimal design capacity by capturing the effect of
variability in both demand and capacity. For example, according to the
Highway Research Board [1985], traffic engineers have employed rules of
thumb in designing highway capacity, such as to achieve a target level of
congestion on the 50th busiest hour of the year assuming that road
conditions are ideal. Besides omitting economic variables such a rule
neglects capacity variations.

Since expression (24a) is the same as (21) for the nonstochastic
case, but with » in place of n, v may be interpreted as a certainty-
equivalent intensity of demand (i.e., the constant demand intensity for
which under ideal conditions design capacity is §*). This suggests an
improved rule of thumb for constructing optimal capacity: Equate the
marginal cost of capacity expansion with the expected marginal benefit,
taking demand at its certainty-equivalent value and capacity at its
design value. Using equation (17a) the certainty-equivalent level of

demand can be written

—€

- 1 aay 146
l+e [s*

N =y {E‘} .

(25a)
Mean demand, meanwhile, is
£
 le Lo T T4
N=[[Nnof(no)dnde =/ [n {T} f(n,o)dn do. (25b)
00 00



Let y = N/N be the ratio of certainty-equivalent demand to mean demand.
Then combining (25a) and (25b) one obtains

1 1 €

f nl+€ 01+€ f(n,o)dn do}.
0

The effect of demand and capacity fluctuations on optimal design
capacity is summarized in the following proposition (for a precise

statement and proof see Appendix 1):

Proposition 1

If ¢ < 1 then, for any mean demand intensity, optimal design
capacity is greater with random than with certain capacity.
Furthermore, optimal design capacity is the larger: a) the
greater the variability in demand, b) the greater the
variability in capacity, c) the lower the ratio of mean
capacity to design capacity, and d) the lower the correlation
between demand and capacity. The opposite is true of all the

above when ¢ > 1.

Proposition 1 establishes that if demand for trips is relatively
inelastic (which is likely the case in most commuting contextsl3) greater
investment in capacity is warranted if loss of capacity can occur. There
are two opposing forces at work. On the one hand, since only a fraction
of design capacity is sometimes available, the marginal cost of

constructing working capacity is greater in the stochastic case. On the

13Work by McFadden [1974], Pucher and Rothenberg [1976] and Small [1983]
suggests that the elasticity is about 0.2.



other hand, the expected marginal benefit from actual capacity is also
greater as long as demand for trips is price-sensitive. If ¢ < 1 the
second factor dominates, and optimal design capacity is greater in the
stochastic case.

Proposition 1 also states that, if ¢ < 1, optimal design capacity is
increased by a (mean-preserving) spread in the distribution of demand
intensity. This fesult may be compared with that of Brown and Johnson
[1969], who considered a public utility which sets price before the
intensity of demand is known. In their model, output can be adjusted to
meet demand at the set price, but only up to the capacity limit. If
demand exceeds capacity, rationing necessarily occurs since the period
over which consumption takes place is fixed. On the assumption of a
linear demand curve, aﬁd that supply is rationed to users with the
highest willingness to pay, Brown and Johnson showed that optimal
capacity is unambiguously increased by demand uncertainty.la

While our findings are similar to Brown and Johnson'’'s, our model
differs from theirs in two respects. First, since all users are served
in our model there is no rationing, but the cost of the service varies
with the amount of queueing. Second, the quality of the service
deteriorates when demand is high and users are forced to consume at

. 15
inconvenient times.

1z“Visscher [1973] later showed that the Brown-Johnson result is

sensitive to the method of rationing. With random rationing, or
rationing on the basis of lowest willingness to pay, optimal capacity may
be lower than in the nonstochastic case.

15Our results may also be compared with those of Kraus [1982], who
considered a situation in which travel demand is constant from day to day
but known only imperfectly by the planner. Kraus assumed travel time
depends on the total number of trips, but ignored time-of-use

16
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4, Time-of-Use Decisions with Zero Information

In Section 3 it is assumed that users know the precise levels of
demand and capacity each day. In this section we suppose contrarily that
users have no current information on either one, so that they must base
their travel mode and departure time decisions on experience. For
simplicity we assume that users know the true joint probability
distribution of demand and capacity. This we shall refer to as the zero
information regime.

With demand and capacity unknown on a given day, individual travel
costs will in general not be constant over the rush hour. We shall
define equilibrium by a normalized departure rate, p(t), where p(t)dt is
the fraction of users who depart between t and t+dt, such that expected
travel costs are independent of t. 1If there are N users on a given day
the departure rate at time t is Np(t). The assumption that p(t) is
inhvariant from day to day can be justified by the law of large numbers if

there are many identical users acting independently, none of whom has

information about N.16

To describe the equilibrium some additional notation is necessary.
Let R(t) be the cumulative distribution of departures, and tq and t. the

time of first and last departures respectively, so that R(tq) = 0 and

preferences. On the assumption of a unitary demand elasticity he showed
that optimal road capacity is unambiguously increased by the planner’s
uncertainty about demand.

61n reality, some individuals may be intermittent users lacking
strong preferences as to when to travel (e.g. those who occasionally shop
downtown). Such users are likely to avoid peak congestion. If they tend
to travel on the same days, the departure rate in the tails of the rush
hour will be relatively high when demand intensity is high, contrary to
assumption.



R(tr) = 1. Let ¢=N/s be the ratio of demand to capacity on a given day.
¢ is assumed to have an upper-hemicontinuous c.d.f. J(¢), and a finite

maximum value, ¢ Let ¢(t) be the largest ¢ such that there is no queue

M-
at time t. An individual departing at t thus experiences a queue if and
only if ¢ > ¢(t). Let ¢*(t) be the value of ¢ such that a user departing
at t arrives at t*., (4(t) and ¢*(t) may or may not be elements of the
support of J(¢).) Finally, let tn be the latest departure time at which
users never arrive late.

The qualitative characteristics of equilibrium are shown in Figure
2. There are 4 regions, defined by whether users arrive early or late
and by whether or not they have to queue. In regions I and II users
arrive early, in regions III and IV they are late. In regions I and III
users experience no queue, in regions II and IV they do. If there is no
queue a user arrives early if t < t* and late if t > t*. The boundary
between regions I and III thu§ occurs at t = t*.17 The boundary between
regions II and IV in which queuing occurs is defined by the locus ¢*(t).
Regions I and III are separated from II and IV by the locus ¢(t).18 $(t)
< ¢M for all t e(tq,tr), since otherwise expected travel costs would
depend on departure time. Moreover, ¢*(t) > ¢(t) for t < t¥* and ¢*(t) <
¢M for t > tn.

Let D(t,4) denote the length of the queue at time t when N/s = ¢.

Travel costs in each regime can then be written:

17In Figure 2 it is assumed that t. > t*, although we shall show

that tr = t* is also possible.
181n footnote 19 we show that this locus is horizontal for t e
(tq,tn). We also show that ¢(t) is upward-sloping for t >tn and that

¢*(t) is downward-sloping for t e (tn, t*).

18
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clie,¢) = plex-v), (26a)
cIT(c,4) = Bler - € - D(t,4)/s) + aD(t,4)/s, (26b)
e, ) = v(e-om), (26¢)
cV(t,4) = v(t + D(t,8)/s - t*) + aD(t,d)/s. (26d)

As seen in Figure 2 there are three departure time intervals to
consider:

a) [tq,;n) in which users always arrive early,

b) (tn,t*] in which, depending on ¢, users may arrive early or late,
c) (t*,tr] in which users always arrive late.

In equilibrium, expected travel costs must be independent of departure
time. To derive the equilibrium we consider each interval in turn.

a) [tq,tn)

To see that this interval is non-empty note that the first
individual to depart must do so before t*, since otherwise he could
depart at t* and experience both zero schedule delay and zero travel
time, which is inconsistent with equilibrium. Since he faces zero travel
time, he always arrives strictly early. By continuity of R(t) there is a
time interval over which arrival is never late.

Given (26a), (26b) and Figure 2, expected travel costs are (using

the Lebesque-Stieltjes integral)

é(t) é
Ce) =B ([ (% - ©)dI(g) + [T (t* - t - D(t,8)/5)dT($))
0 $(t)

+
QR
h-‘-&

D(t,¢)/s dI(¢)
)

o

(t

p
- B(t*-t) + (a-B) [T D(t.4)/s dI(4). (27)
(t)



The time derivative of C(t) is
¢M
C(E) = =B + (a-p) [ D(t,8)/s dI(4). (28)
#(t)

Setting C(t) = 0 and using the relationships D(t,¢(t)) = O and

b(t,¢) - Np(t) - s for ¢ > ¢(t), we have

é(t) = -B(1+Z2(t)) + aZ(t) = 0, (29)
where
é
z(t) = [T (4p(t)-1)dI(4). (30)
$(t)

Z(t} is the rate of increase in expected travel time from marginally
postponing departure. Thus, when an individual departs dt later, he
arrives on average (1+Z(t))dt later, and increases his expected travel
time by Z(t)dt. Since arriva; is always early for t ¢ [tq,tn), leaving
df later decreases expected schedule delay costs by B(l+Z(t))dt, which is
the first term on the RHS of (29). We show in Appendix 2 that (29)
defines a constant value of p(t). The departure rate is thus constant
over the interval [tq,tn), as was true of the deterministic model (viz.
Figure 1).

b) t e (tn,t*]

In this departure interval the individual is sometimes early andb
sometimes late. Given (26a), (26b), (26d) and Figure 2, expected travel

costs are

¢(t) $*(t)
c(e)y =84 [ (% -1)dl(¢) + [ (t*-t-D(t,¢)/s)AI($) }
0 $(t)

21
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p by
vy N (e +D(E,4)/s - tRYAI(H) +a [T D(E.$)/s AI(4). (31)

$*(t) é(t)
é(t) - -ﬂze(t) + 121(t) + aZ(t) =0, (32)
where
. $*(t)
Z(t) = [ (¢p(£)-1)dI(4) + J(g*(t)) (33)
$(t)

is the rate of decrease in expected early arrival time from delaying
departure,
1 ¢
zhe) = M Go()-1as) + 1 - J(ex(e)) (34)
¢*(t)
is the rate of increase in expected late arrival time from delaying
departure, and Z(t) is as defined in (30). Equation (32) has an
interpretation analogous to (29). We show in Appendix 2 that p(t) is

monotonically weakly decreasing for t e (tn,t*].

c) t e (t*,tr] (if t:r = t* this interval is degenerate)
In this departure interval the individual is always late. Given
(26c), (26d) and Figure 2, expected travel costs are
¢(t)

é
C(t) = y4 J (t-tk)dI($) + IM (t + D(t,4)/s - t*)dI(4) }
0 é(t)

é
+a M D(t,)/s dI(e)
#(t)

é
- y(t-t¥) + (atr) [T D(t,é)/s dI(4). (35)
$(t)

C(t) = 7(1+Z(t)) + azZ(t) = O. (36)

(36) has an interpretation amalogous to (29) and (32). Again we show in
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Appendix 2 that p(t) is monotonically weakly decreasing.
Conditions (29), (32) and (36) ensure that expected travel costs
are constant in each departure interval. Since ¢*(tn) - ¢M, and ¢(t*x) =
¢*x(t*), expected travel costs are also continuous at tn and t*, and hence

constant over the whole interval [tq'tr]' It is now possible to state:

Proposition 2

The normalized departure rate p(t) is monotonically weakly
decreasing over the departure time interval, and the cumulative

departure distribution R(t) is concave.

Proposition 2 follows immediately from the fact that, as stated earlier,
p(t) is constant on the interval (tq,tn) and monotonically decreasing
thereafter. To see why, note that the later one departs after €, the
more likely one is to be 1ate,'and hence the more likely to experience
an increase rather than decrease in schedule delay costs from marginally
postponing departure. To compensate, expected travel time costs must
increase at a decreasing rate and eventually decline, which requires that
the departure rate decrease over time.

Given the concavity of R(t) it follows that if queuing occurs on a
given day it is over a continuous time interval beginning at tq.
Queuing time is

D(t,¢)/s = Max [O, tq + ¢R(t) - t]. (37)
€, is defined implicitly by the condition

€t $R(E ) = t*,

while



é(t) = (t-tq)/R(t), (38)
19
$*(t) = (t*-tq)/R(t)- (39)
The departure rate function is shown in Figure 3, where as in Figure 2 it
. 20
is assumed that tr > t*.)
With regard to the timing of the departure interval it turns out

that there are two possibilities, tr > t* and tr = t*, To establish

which of the two cases applies we first define the mean value of ¢:

s
4 - g”qscu(qs).

the fractile:
4 1{e] -
fes (2]

and the mean of ¢ for values greater than this fractile:

lglt is now possible to establish that the slopes of ¢é(t) and ¢*(t)

are as shown in Figure 2. From (38) we have along ¢(t)
dé(t)/dt = [1-4(t)p(t)]/R(t) = O for t > €

since the departure rate is less than capacity when a queue disappears.
The second derivative may be positive or negative. For t ¢ (t ,t_) the
boundary between regimes I and II is horizontal since p(t) and

¢(t) are both constant,

From equation (39) we have along ¢*(t)
dg*(t)/dt = -¢*(£)p(t)/R(E) < O.

The second derivative is

dPex(r)/at? = [2o%(t) - R(E)dp(t)/ae]/RE(E) = o,

since dp(t)/dt < 0.

2OIf the distribution function J(¢) is everywhere continuous then so
is p(t), and R(t) is smooth. If J(¢) is discontinuous at some ¢ (i.e.
there is a probability mass at ¢) then R(t) is kinked downward. The
departure distribution in Figure 1 is a special case with J(¢) = H(¢-
N/s), where H is the Heaviside function. Here, R(t) has a single kink at

t .
n

24



Fraction of Individuals to Depart, R(t)
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FIGURE 3

Equilibrium Departure Rate Schedule
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¢ ¢
¢ = [Poase) /(1-3(8)) = T [Moau(e).
¢ ¢

The case tr > t* is described in Lemma 1 (for the proof, see Appendix 3):

Lemma 1
L. aty 4
If¢>ﬂ+7¢ (40)

then the first departure occurs at

. 41
tq e ﬂ+7¢ (41)

and the last departure at

t,omt 4> E (42)

Expected travel costs equal those of the first user to depart:

A

C = ﬂ(t*-tq) - é. (42')

B+
The case t. > t* is similar to the full information regime in that
departures occur both before and after t*. However, since ; > ¢ it
follows from (lla) and (41) that the first departure occurs earlier in

the zero information regime than in the full information regime with ¢ =

;. Moreover, it follows from (1l4) and (42’) that individual expected
travel costs are greater (in the same sense) in the zero than the full
information regime.

The case .- t* is described in Lemma 2 (for the proof see Appendix
4):
Lemma 2

- A

aty
If ¢ < By é (43)

then the first departure occurs at tq’ defined implicitly by the

26
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equation
¢
(t*-t ){B + (a+y)[l-J(t*-t )]) - (0:+7)J.M ¢di(¢) = O, (44)
q q k-t
q
and the last departure occurs at
t, =tk (447)
Expected travel costs are
C = C(t - tx-t ). 45
( q) B( q) (45)

Since conditions (40) and (43) in Lemmas 1 and 2 are complementary,
the cases tr > t* and tr = t* are exhaustive. There are no equilibria
with tr < t*, at least in the absence of a mass of departures at tr.21
To see why, suppose tr < t* and consider an individual departing at t =
tr+e < t*. If ¢ < ¢(t), the individual is better off departing at t
than c. since he arrives less early and incurs no travel time costs. If
é > ¢(tr) the individual is alﬁo better off, since he arrives at the same
time as when departing at tr’ but spends less time queueing. Departure
after tr would thus be preferable to departure at tr’ which would be

inconsistent with equilibrium. Combining this result with Lemmas 1 and 2

yields

Proposition 3

In the zero information regime the last user to depart does so

either at t* or after t*.

21An equilibrium with a mass of departures is shown in Arnott et al.
[1985] to exist in the nonstochastic case with a<f.
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Whether t > t* or t.o= t* turns out to be a determ;ning factor of the
welfare effects of information, as will be shown in Section 6.
In the next section we compare the efficiency and optimal capacity
of the full information and zero information regimes. To do so we
require expected consumefs' surplus in the zero information regime.

Since individuals are by assumption risk-neutral, they decide whether or

not to travel on the basis of the expected price p (= average travel

cost C). For a given realization of demand intensity the demand for

trips is thus given by

= -€
N = n(p) .
Total benefits for given n equal the area under the inverse demand curve:

«©

8%(n) = [ n(p) dp + n(@)!¢, (46)

P
where the superscript 0 denotes the zero information regime. Total

expected benefits are obtained by integrating (46) over n and o:

_ ] o ©
mo-ff{fm*®+n6ﬂ* F@JMH@
00\~
P
] = ® - -1
-1 J { [ np “dp }f(n,a)dn do +n (p) €. (47)
00
P

Now, total expected costs are

TC-8p=2(@Le. (48)

Subtracting (48) from (47) one obtains expected consumers’ surplus:

a

(8) -

Ot—

1) {mf np ¢ dp} £(n,o)dn do, (49)
LRYEY! |



with §(§) given by (42') or (45). The following additional relationships

are derived in Appendix 5:

MCS (§) = -N a5 (50)
do 8§ _ 1L
ds p l+e’ (51)
O A A
dMCS (s s . 2 (52)
ds mo(g) l+e

S. Comparison of the Full Information and Zero Information Regimes

In this section we compare the efficiency and optimal capacities of
the two polar information regimes. One regime will be said to be more
efficient than the other if, for all levels of design capacity, expected
consumers’ surplus is higher. To rank the efficiency of the two regimes

we shall make use of the following proposition (proved in Appendix 6):

Proposition 4

If € < 1 the more efficient regime has the lower marginal
consumers’ surplus for any level of design capacity. The opposite

is true when ¢ > 1.

Since a lower marginal consumers’ surplus implies a lower optimal
design capacity, with e<l (resp. €>1) the more efficient regime has the
lower (resp. higher) design capacity. Both the efficiency and optimal
capacities of the two regimes can thus be ranked by comparing the
respective marginal consumers’ surpluses from capaéity expansion. For

the full information regime (using equations (23) and (24b))



l-¢ 2 2

EEEF(g) - I%: 81+e 8 l+e¢ vl+e, (53)

where v is given by (24b). For the zero information regime (using
equations (50) and (51))
— A l-¢€

Mcs(4) - Qg%{f%;—~ (54)

with p(8) given by (42°) or (45).
It turns out that a definitive comparison of the two regimes can be

obtained when fluctuations occur only in capacity:

THEOREM 1
If fluctuations occur in capacity, but not in demand, then the
full information regime is more efficient than the zero
information regime. Furthermore, if ¢ < 1 (resp. ¢ > 1) then

optimal design capacity is larger (resp. smaller) in the zero

information regime.

Theorem 1 is proved in Appendix 7. Some intuition for the proposition
can be gleaned from Figure 4.22 Suppose that there are two equiprobable
capacity levels, Sy and s, < s;. Consider first the case of full

information about capacity. From (16) the ’'supply’ curve for trips as a
. . F 1/€
function of N with s = s; is py- 8N/si, and the demand curve p = (n/N) ™.

Equilibrium occurs at the intersection, Eg, of the supply and demand

curves. The marginal social cost of an extra trip is given by the

2This figure is adapted from Arnott et _al. [1987b].
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FIGURE 4

Comparison of the Full Information and Zero Information
Regimes with Fluctuations only in Capacity
Example with Two Possible Capacities
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schedules labelled MSC?. Because there is a queuing externality, too
many trips are taken when €>0. The efficiency loss is shown by the
heavily bordered triangular areas.

There are two essential differences between the full information and
zero information regimes. First, in the full information regime supply
equals demand for each capacity level. In the zero information regime,
drivers choose the number of trips on the basis of the average price, so
that the number of trips is independent of the capacity on a given day.
Second, the '’supply’ curves are different for the two regimes at each
capacity level since the departure rates differ.

These differences can be decomposed diagramatically. First, imagine
holding the supply curves fixed at their position in the full information
regime, but imposing the constraint that the number of trips, N, be the
same for the two capacity levels, and such that ’‘average’ supply equals
démand. This first effect genérates a change in the efficiency loss
indicated by the shaded areas. When s=s, the efficiency loss is

2

increased because of greater demand. When s=Sy, however, the efficiency
loss due to queuing is reduced (although if demand falls sufficiently, it
may end up below its efficient level). |

The second effect comes about from shifts in the supply curves. How
they shift, and what effect the shifts have on efficiency loss, is
difficult to determine. In both regimes travel is inefficient because of
queuing, and it is unclear a priori which is more efficient. Theorem 1
reveals, however, that with fluctuations in capacity alone the sum of the

two effects results in the full information regime being more efficient.

Suppose now that capacity is fixed, but that demand is stochastic.
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Here, the results are less definitive:

THEOREM 2
_If fluctuations occur in demand, but not in capacity, then
whether the full information regime or the zero information
regime is the more efficient, and which has greater optimal

capacity, depends on parameter values.

Theorem 2 is proved in Appendix 8. As in the stochastic capacity case,
the difference between the full and zero information regimes can be
decomposed. First there is an 'average price effect’ that, in the zero
information regime, the number of trips is taken on the basis of the
average price, while in the full information regime demand is determined
by the day-specific price. The effect on efficiency is shown in Figure 5
by the shaded areas. There is a reduction in the efficiency loss due to
excessive trips on days with low demand, but an increase in loss on days
with high demand.

Second, there is a ’'departure rate effect’: for a given number of
drivers the departure schedule differs bet&een the regimés and so
therefore do the supply curves. As true of stochastic capacity the net
result of the two effects is difficult to determine. Theorem 2 reveals

that the relative efficiency of the two regimes is parameter-dependent.

Example
Additional insight can be obtained by considering an example in

which ¢ = 0 and demand intensity has a two-point distribution:
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Comparison of the Full Information and Zero Information
Regimes with Fixed Capacity and Two Possible Demand Intensities
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ny with probability 1-=«
n = { (55)

n, > n, with probability' x

2 1

This example can be thought of as illustrating a situation where there is
an occasional unanticipated surge in demand.23 The relationship between
marginal consumers' surplus from capacity expansion in the two regimes is
shown in Figure 6. (Derivations are found in Appendix 8.) For x <

v/ (a+y) the downward-sloping locus divides the parameter space into a
lower region where tr > t* and an upper region where tr = t*, (For n.>
v/ (at+y) tr > t* always.) The upward-sloping locus defines a lower region
where consumers' surplus is higher in the full information regime and an
upper region in which the reverse is true. Figure 6 shows that the zero
information regime is more efficient when there is a small probability of
a relatively large demand shock.

Because the elasticity of demand is zero in this example the
'average price effect’' is absent and only the ’‘departure rate effect’
plays a role. A tentative explanation for why the zero information
regime is more efficient in thz upper left region in Figure 6 is as
follows. On days of low demand, individuals in the zero information
regime spread out their departures more than in the full information
regime because of their perception that it may be a high demand day.
Because demand is much greater on high demand days (nz/n1 is large) the

effect on the low demand day departure schedule is appreciable. This

23The example is not appropriate for a situation in which a

particular group of individuals consistently travels only during peak
demand periods, since they will presumably employ a different time-of-use
decision rule than regular users.
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Comparison of Consumers' Surplus in the Full Information and
Zero Information Regimes with Fixed Capacity
and Two Possible Demand Intensities
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reduces the amount of time spent queuing, and hence improves efficiency
relative to the full information regime on low demand days. The opposite
is true on high demand days. But because the probability of high demand
is relatively low (x is small) the efficieﬁcy gain on low demand days
outweighs the efficiency loss on high demand days, resulting in the zero

information regime being overall more efficient.

6. Partial Information

In the two preceding sections we considered two polar information
regimes: one of full information, in which users know demand and capacity
precisely each day, and one of zero information, in which users know only
the unconditional joint probability distribution of capacity and demand.
Whereas these extremes serve as useful benchmarks, situations in which
users have some, but imperfect current information are likely to be more
common.

Since a general analysis of partial information would be
conceptually and analytically difficult we focus here on a simplified
situation in which demand is fixed and capacity fluctuates between two
levels. 1In the commuting context one can imagine road capacity varying
between a normal value in good weather and a lower value under adverse
weather conditions such as rain and snow. Each day, weather forecasts
provide commuters with updated probability estimates as to whether
capacity wil be normal or reduced. Using this example we show that an
incremental gain in information can actually be welfare-reducing, despite
the fact that when capacity alone is stochastic full information yields

higher welfare than zero information. The example suggests that whether



positive benefits accrue from more information has to be tested case by

case.

Example
For the example in question we assume ¢ = 0 and take the
unconditional probability distribution of capacity to be:
S1 with probability 1-=x
s = { (56)

with probability =«

The parameter = can be interpreted as the probability of an event such as
bad‘weather or an accident that reduces capacity below its design level,
Sy The expected price of a trip is derived as a function of the
probability x in Appendix 9. Figure 7 shows one of the possibilities in
which the expected price is a concave function over most of its range
except at a critical probability - ﬂ(sz/sl)/[(a+ﬁ1)(1-sz/sl)]. |

Now, in the zero information regime the probability of s, is n every

2
day. In the full information regime it is either 0 or 1. From Figure 7
it is clear that with full information (whereby the probability of
capacity reduction is O a proportion l-x of the time and 1 a proportion «
of the time) the average price of a trip, and hence expected travel

. . 24
costs, are lower than with zero information.

With partial information, however, the probability of reduced

2l‘For x > v/(a+y) the expected cost of a trip is the same as if

capacity were s, with certainty. Within this interval neither reducing
the probability of a capacity loss nor increasing design capacity (51)
yields an expected gain in welfare.

38



Expected Cost of Trip

FIGURE 7

Expected Trip Cost as a Function
of the Probability of Capacity Reduction
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capacity on a given day fluctuates around n. If = is close to Lo and
if the variation in probability about =x is relatively small, then the
25

expected price of a trip is greater than with zero information.

Imperfect information can thus be welfare-reducing.

7. Concluding Remarks

In this paper we have investigated the impact of information on
individuals’ time of use of a congestable facility which is subject to
stochastic fluctuations in demand and capacity. We showed in the case of
full information that, with a demand elasticity less than unity, optimal
design capacity is greater: a) the lower is mean capacity relative to
design capacity, b) the greater the variability in demand and capacity
for given mean values and c¢) the more negatively correlated are demand
and capacity.

We showed that when capacity alone is stochastic, expected welfare
is lower with zero information than full information, while with a demand
elasticity less than unity optimal capacity is greater. But if demand
alone is stochastic, capacity and welfare rankings are parameter-
dependent. Moreover, a marginal improvement in information can be
welfare-reducing even if capacity alone is stochastic. These results
raise doubts about the benefits of providing public information, at least
absent tolls or other means of regulation.

There are several directions in which the analysis could be

extended. Perhaps the most important next step in the analysis is to

25This is true whether capacity is positively or negatively serially

correlated.



derive the socially optimal time-of-use schedule and to see whether it is
decentralizable with tolls or other regulatory instruments. In the
special case of nonstochastic and price-insensitive demand and a two-
point capacity distribution it can be shown that the optimal departure
rate is a convex function of time, in contrast to the equilibrium rate
which is concave. The optimum can be decentralized by a time-varying and
capacity-independent toll paid at the head of the queue. Whether these
results hold true for other distribution functions, or for demand
fluctuations, remains to be determined. There is also the question how
to combine information dissemination with tolls to design the most
efficient scheme for relieving congestion.

We have assumed no balking once the decision to make a trip has been
made. In practice, road users may decide to cancel a trip or choose an
alternate route if traffic turns out to be particularly heavy. With other
congestable facilities such a§ the telephone, the cost of initiating
usage may be quite low, so that users can abort an attempt and try again
later.

We have assumed that the probability distribution of capacity (and
demand) is independent of design capacity. 1In practice, there may exist
a tradeoff between the capacity at which a facility is operated and the
probability or magnitude of loss of capacity. For example, if highway
shoulders are used as travel lanes during peak hours they will be
unavailable for stalled vehicles or traffic enforcement (Ju et al.
[1987]). A proper definition of capacity would thus include a

reliability coefficient which would play a role in determining optimal

41



design capacity, as well as maintenance and repair policy.26

As discussed earlier 3 the analysis of a single bottleneck in
isolation is unsatisfactory if it is part of a system because, with
unpriced congestion, policies adopted on one link will affect the
efficiency loss due to congestion elsewhere on the network. For
practical applications the model needs to be extended to multiple
bottlenecks and multiple origins and destinations. On a network,
information will affect users’ choice of route as well as their decisions
whether and when to depart. Route choice may also be affected by

information received after the user is in the system. The welfare

effects of such information are another possible subject for
investigation.

Finally, we have asumed that all users have the same information. A
useful extension of the analysis would be to situations in which some
users are better informed thaﬁ others. Given that more information is
not necessarily welfare-improving a policy issue is raised as to the

- ] 2
optimal fraction of users to inform. /

261n the case of roads the effects of damage are generally

recognized but have not yet been widely incorporated into traffic
congestion models.

7For example, electronic road guidance systems are currently being
developed. The question arises whether, costs aside, it is more
efficient for all vehicles to be equipped or only a portion.
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Notational Glossary

(in alphabetic order)

Greek Characters

S QO X m oY ™R

$(t)
¢*(t)

Unit cost of travel time

Unit cost of arriving early

Unit cost of arriving late

B/ (B+7)

Elasticity of demand

Certainty-equivalent intensity of demand

Density function of departure times

Ratio of actual to design capacity of bottleneck
N/s

Largest ¢ such that no queue occurs at time t

¢ such that user departing at time t arrives on time

Arabic Characters

c(t)
CS
D(t)
D(t,¢)
f(n,o)
F

g(n)
G(n)
h(o)
H(o)
J(¢)
k

MCS

b 223

J |

r(t)
R(t)

SDC

t*

Travel cost when departing at time t

Consumers’ surplus

Length of queue at time t

Length of queue at time t with N/s = ¢

Joint p.d.f. of n and o

(superscript) denotes the full information regime
probability density function of n

Cumulative density function of n

probability density function of ¢

Cumulative density function of o

Cumulative density function of ¢

Unit cost of capacity expansion

Marginal consumers’ surplus from expanding design capacity
Intensity of demand

Number of commuters

Price (= cost) of trip

Expected price of trip

Departure rate

Cumulative distribution function of p(t)
Capacity of bottleneck

Design capacity of bottleneck

Aggregate Schedule Delay Costs

Departure time

Desired arrival time at work

Departure time for which commuter arrives at t*
(full information regime)
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t Latest departure time for which commuter never arrives late

n X . .
(zero information regime)

tq Earliest departure time

t! Latest arrival time

tg "Latest departure time

T(t) Travel time when departing at time t

T Travel time in absence of queue

\4 . . . . .

T (t) Time spent queuing if departing at time t

B Total Benefits from travel

TC Aggregate Travel Costs

TTC Aggregate Travel Time Costs

0 (superscript) denotes the zero information regime

y Certainty-equivalent number of commuters as a percentage of mean
number for determining optimal capacity.

z o/n

Z(t) Rate of increase in expected travel time from delaying departure

e . . . .

Z () Rate of decrease in expected early arrival time from delaying
departure

1
Z°(t) Rate of increase in expected late arrival time from delaying departure
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Appendix 1

Proof of Proposition 1

Proposition 1 concerns the ratio of optimal design capacity with anticipated

48

fluctuations in demand and capacity to optimal design capacity in the absence

of fluctuations, with demand intensity fixed at its mean value. Using
equations (21), (24a) and (24b) in the text this

ratio can be written:

§*%/s* = y/n,

where n is mean demand intensity in the stochastic case. To establish that,

under given conditions, the ratio of optimal capacities is increased (or

decreased) by stochasticity it suffices to establish it for wv/n.

Lemma 1

14

AY AV

- <
n as = 1.
€3 1

Proof By Holder’s inequality

al-a < —ya,~1l-a ¢ (0,1)
T2y Tixy) dxdy $ 0)7() asa{- 0, 1
<Q0Qor >1,
where f(x,y) is an arbitrary nondegenerate joint p.d.f. Replacing x with

o, ¥y with n, a with (e-1)/(e+l) and f(x,y) with £(n,o) yields

e-1
> =~ 2 = > = <
vz (o) n zn as € 3 1. QED.

The relative magnitude of v and n depends on the concavity or convexity
of marginal consumers’ surplus as a function of n and ¢. If € > 1,

marginal consumers’ surplus is concave, whereas if ¢ < 1 it is convex.
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Lemma 2

Let H(c) be the c¢.d.f. of o and G(nlo) be the c.d.f. of n conditional

on o. Then if ¢ < 1, v/n will increase with a mean-preserving spread to
G(n|o) for any set of o of positive probability measure. The opposite is true

if ¢ > 1.
Proof From equation (24b) in the text we have:

1
u-{ga

Let il and i2 be indéxes. Assume that, for all values of o, G(n|o,il) either

l+e
1 2

e- —
+€m(a)dH(a)} , Where m(o) = f nl+€dG(n|a)dn.
0]

coincides with G(n]a,iz) or can be obtained by a mean-preserving spread, with
the latter true for a subset of o of positive measure.

2

If ¢ < 1 then n1+€ is a convex function of n, so that by Rothschild and
Stigliez [1970], m(a,il) > m(a,iz) for all o and hence u(il) > u(i2).

The proof is completed by noting that the construction holds n fixed. QED.

Lemma 3

Let G(n) be the c.d.f. of n and H(o|n) the c.d.f. of o conditional on n.

Then if ¢ < 1, v/n will increase with a mean-preserving spread to H(o|n) for

any set of n of positive probability measure. The opposite is true if ¢ > 1.

Proof The proof is analogous to that of Lemma 2, since with ¢ < 1

o is a convex function of o. QED.
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To establish the two remaining lemmas some preliminaries are required.
Let x and y be two arbitrary variates. Let f(x,y) be the joint p.d.f. of x and

y and hx(x) and hy(y) be their respective marginal distributions. Define

1
M_(x) = { S xahx(x)dx}a :

al-a

M (x,y) = [ [ xy “f(x,y)dxdy,
and
@ l-a
P (x,y) = (M (x,y)/[M NTM ()71 - 1, (AL.1)

Ma(x) and Ma(x,y) are generalized means and pa(x,y) is a generalized

correlation coefficient. If x and y are independent then:
l-a a l-a
M (x,y) = Jy7% b Dy oax] = e e )77,

so that pa(x,y) = 0. From equation (24b) in the text and (Al.1l)

1

v = M ()M + p_(a,m)] 7%, (a1.2)
where

a = %i% < 1.

We can now proceed to lemmas 4 and 5.

Lemma 4

Holding M (n), n and pa(a,n) fixed, V/E is larger the larger is (Ma(o))a, and

l-a
hence with ¢ < (resp. >) 1 and a < (resp. >) O the smaller (resp. larger) is

Ma(o). QED.

It is in this sense that, with € < 1, V/E is larger the smaller the mean value



of o.

Lemma 5

Holding Ma(a), Ml_a(n) and n fixed, (Al.2) reveals that V/E is larger the

larger is pa(a,n). With ¢ < (resp. >) 1, a < (resp. >) 0, and hence u/E is

larger the smaller the correlation coefficient between ¢ and n. QED.
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Appendix 2

In this appendix we show that p(t) is constant for t ¢ (tq,tn) and
monotonically weakly decreasing for t ¢ (tn'tr)'
a) t e (tq,tn)

Condition (29) in the text stipulates that Z(t) defined in (30) is
constant. Differentiating (30) we find

¢M
p(t) [ ¢ dI(4) = (¢(t)p(r)-1)dT(4(t))/dd 4(t). (A2.1)
4D

(A2.1) has a solution R = p(t-tq) characterized by a constant departure rate.

QED.
b) t e (tn,t*]
Differentiating (32) and cancelling terms one obtains
¢*(t) . ¢
((a-B) [ ¢ aI($) + (a+m) [ a3 (4)) h(t) =
¢(t) ¢*(t)
(a-ﬂ)[¢(t)p(t)-1]¥(t) dI(4(t))/dé (A2.2)

+ (ﬂ+7)¢*(t)p(t)$*(t) dI(¢*(t))/dé.
The term in braces on the LHS of (A2.2) is strictly positive. The term
[¢(t)p(t)-1];(t) can be shown graphically to be negative, so that the first
RHS term of (A2.2) is negative if dJ(¢(t)) > 0. Since &*(t) < 0 (this follows
immediately from the definition of ¢*(t)) the second RHS term is negative if

dJ(¢*(t))/d¢é > 0.
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This proves that p(t) < 0, with strict inequality if either #(t) or é*(t).
has positive probability density. This result may be explained as follows.
If a user delays departure and dJ(¢é(t))/d¢ > O he is more likely to escape
queuing. Instead of decreasing travel time costs he may end up decreasing his
early arrival cost instead. Since a > 8 the benefit from delaying departure is
reduced. Hence to maintain constant expected travel costs p(t) must fall over
time.

Similarly, if a user delays departure and dJ(¢*(t))/dé > 0 he is more
likely to arrive late. Instead of reducing his early arrival cost he may end
up increasing his late arrival cost. Departing later is again less attractive;

hence p(t) must fall over time.

c) t e (t*,tr)
Differentiating (36) one obtains:
) . .
(ﬁ(‘¢<)1J(¢>)p(t) - [4(0)p(t)-1]4 dI(4(r))/d4. (a2.3)
é(t
Since the LHS term in braces of (A2.3) in braces is positive and the RHS term

is nonpositive,

p(t) < 0. QED.

Since by departing after t* a user is guaranteed to arrive late, the late
arrival effect operating through changes in ¢*(t) which applies in the
departure interval (t*,tr} is absent, leaving only the queuing effect operating

through changes in ¢(t).
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Appendix 3

Proof of Lemma 1

Using (35) and (37) in the text, and the fact that with t > t. R(t) = 1 and

hence ¢(t) = t - t_, expected travel costs for departure after t_ are

q
t-t -]
C(t) = v { J T (t-tr)ar(g) + f" (tq + ¢ - th)dI(¢) } (A3.1)
0 t-t
¢M
+a (cq + ¢ - £)dI($).
t-tq

If t. is indeed the last departure time then expected travel costs must
increase after tr. Since expected travel costs are a continuous function of
departure time it suffices to examine the behaviour of é(t) after tr' From
(36) and (30), the left-hand derivative (which is zero by construction) is:

Lim é(t) = y(1+ Lim Z(t)) + a Lim Z(t)

ttt ttt ttt
r r r
¢
= v -~ (a+y)(1-Lim J(t-t )) + (at+y) Lim IH ¢ p(t)dI(¢) = O. (A3.2)
tte_ ! et t-t,

From (A3.1), the right-hand derivative is:

Lim'é(t) =9 - (a+y)(1-J(t_-t )). (A3.3)
the_ r q

Comparison of (A3.2) and (A3.3) reveals that (A3.3) is negative, and thus
inconsistent with equilibrium, unless the last term involving an integral in
(A3.2) is nonpositive. Since this last term is nonnegative, a necessary
condition for equilibrium with t > tx is that the integral term be zero. In

that case (A3.3) is zero, so that

J(tr-tq) = a/(at+y), or
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£ =t +J°1% {41-}, (A3.4)
r q aty

which is equation (42) in the text.
Since Lim C(t) = Lim C(t) = 0, to prove that expected travel costs are
ttt tit
T b
higher after t. than before we must show
Lim C(t) = 0.
tit
r
But from (A3.3)
Lim C(t) = (a+y) Lim dJ(t-t )/d¢ = O.
tit tit 4
r r
. A solution for tq and tr now follows directly. From (27)
C(t ) = B(t*x-t ), A3.S
( q) B( q) ( )
while from (35) and (37)

¢
C(E,) = (e -t%) + <a+7){“_t<cq +4 - A
r

¢
= (et - (et (e e ) (L3 (e )) (a+1){M_th(¢)
r q

¢ |
= - y(eRee ) + (@[T o\ $4T(8) (using (A3.4)).
q - Ye
&
Setting C(tq) - C(tr) = C yields
= ?M ' A3.6
- *- - .
aty

which is equation (42') in Lemma 1. Equation (A3.6) can be solved for tq’ and
the result substituted into (A3.4) to yield tr.

The initial premise that tr > t* is satisfied provided:



é
-1 @ at+y
tr-tq>t*-tq°J {—aﬂ > By !:-(l a} $dJ(4),
aty

which yields condition (40) and completes the proof of Lemma 1.
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Appendix 4

Proof of Lemma 2

With tr = t* we have
¢(tr) - p(tk) = ¢*(tr) = gk (tk) = t*-tq, and R(t*) = 1. (A4.1)
Equation (35) in the text specifies expected travel costs for departures after
t*. Equation (36) specifies the derivative. If tr = t* a necessary condition
for equilibrium is that costs be nondecreasing after t*:
Lim C(t) = v - (a+y)(1-J(t_-t )) = 0, or
r q
tit
r
J(t*-tq) > a/(aty). (A4.2)
Condition (A4.2) is also sufficient since
Lim C(t) = (a+y)dI(t-t ) = 0.
tit q
r
Using (A4.1) and (31) one also has
¢
C(t,) = C(e%) = (aty) [T (£ _ré-t)di(p). (a4.3)
q
t*-t
q
As before, C(tq) - ﬂ(t*-tq), which is equation (45) in the text. Equating
C(tq) and C(t*) yields an implicit equation for tq:
¢ «
(-t ) (B + (a+) [L-J(t*-t )]} - (a3 $4I(4) = O, (A4.4)
1 q t*-t .
q
which is equation (44) in the text. Now the LHS of (A4.4) is strictly
increasing in t*-tq. Since J( ) is a monotonically increasing function of ¢,

condition (A4.2) is satisfied if the LHS of (A4.4) is nonpositive with J(t*-tq)

- a/(aty):
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¢
J'l{;ﬁ;}(ﬂﬂ) - (aty) {“1{ . } $dI(4) <0, or

a+y

a+y

¢
-1{ o aty M
J {a+7} = By {-1{.:} $43(4), (A4.5)

which is condition (43) in Lemma 2. This completes the proof of Lemma 2.
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Appendix 5

Derivation of Equations (50), (51) and (52)

Equation (50) follows directly from differentiating (49):

MCSO(3) = -N 92 (85.1)
ds
In the case tr > t* we have
p=C=B(tr-t ) = g% ?" $dJ () (45.2)
P q By T ' '
Y
at+y
Integrating by parts:
_ é
p - {¢J(¢) - J<¢>d¢}.
J —
S e A o
and differentiating
é
a __Lél
d§ T T PB+y IM { (A5.3)
Now J(¢) = Pr {N/s < ¢) = Pr {n(p) - < 4}
SO
- Pr (n < ¢80(P)¢ ).
1 ¢80(p)¢
Thus, J(¢) = [ [ f(n,o)dndo, (A5.4)
0 0
1 - A d_ —
dI()/d8 = [ ¢a(@) [1 + 25 =2 |£(480(p)°,0)do (A5.5)
0 p ds

From (AS5.4)
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1
J(#) = [ ¢80(p)° £(480(p)¢,0)da. (AS.6)
5

From (AS5.2) - (A5.6) it follows that

.g_g %’ i T}TZ , (85.7)
which is equation (51) in the text.
And from (AS.1), (A5.7) and (15)

eSS E_ng(g) - - = (45.8)
which is (52) in the text.
In the case tr = t* we have from (44)

¢
(62 ) (8 + (e [1-3(ex-e)]) - ()] $dI(4) = 0. (45.9)

t*-t
q

Following the procedure for tr > t* one obtains the counterpart to (AS.3)

~ - -

s
dp oty I ()
ds fM

BB+ (at) [1-3() ] et (A5.10)

where ¢ = t*-tq.

The rest of the derivation is similar.



Appendix 6
Proof of Proposition 4
From equation (22) in the text:

cst(s) - e dp} £(n,0)dn do,

Oty

J { J o
0 * p(so/m)

while from (49)

] » ®
%) - S J { [ np € dp} £(n,0)dn do.
00 /A
p(s)
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(A6.1)

(A6.2)

p(8o/n) in (A6.1) is given by (17b), and E(g) in (A6.2) by (42').

Define z = o/n, and let z(§) be the value of z such that the price of a

trip in the predictable regime equals the expected price in the unpredictable

]} f(n,o)dn do.

regime, i.e.
p(5z(8)) = p(8). Then
z Z z(8) o p(8z) : p(8) e n : o/z(8).
Thus
— 1 o/z(8) ( p(8)
cst sy - 6% - I { f  op€ dp} f(n,o)dn do,
0 0 p(sz)
1 = p(8z) _
- f f { f np edp} f(n,o)dn do.
0 o/z(s) 5(§)
o/z(8) - R
_ } f e pl-e p(s) ] ] } [_E_ l-e p(8z)
0 L0 Lo p(8z) 1-¢ 5(%)
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. dp s o1 . .
Since s p I:: for both regimes (viz. equations (17b) and (51)),
—=F . ——0 . l-¢ —=F, A —=0, .
MCS (8) - MCS (8) = - S(1+e) (CS" (8) - CS ' (8)).

If ¢ < 1 the differences in marginal and total expected consumers’ surplus have

the opposite sign. If ¢ > 1 they have the same sign. Furthermore, since

dMcs 8 L2
ds  Mcs 1+e

for both regimes (equations (23) and (52)), their relative efficiency can be

established by examining any level of design capacity. QED.
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Appendix 7

Proof of Theorem 1

To compare the relative efficiency and optimal capacities of the full
information and zero information regimes it suffices to compare the marginal
consumers’ surplus from capacity expansion for any level of design capacity.
For simplicity, we set § = 1.

Theorem 1 concerns fluctuations in capacity alone. Let H(¢) be the
c.d.f. of 0. Now, with §=1, ¢ = N/o. Making the change of variable from ¢ to

o, equation (53) in the text becomes

2

—=F nl+€ i;f 1 6;1

MCS™ = 7 8¢ [ o™T¢ aH(o). (A7.1)
+e€ 0

To proceed further, the cases tr > t* and tr = t* must be considered
separately.
a) t_ > t¥*

r

From equation (42') in the text

C—c?ﬁ

T e W
oty

H-l{_z_
[ P,
- o dH(o).
Bty 0

Given N = n (S)-e this reduces to

H-l{_z_ 1

_ aty) 1l+e

P - { ﬂ%fi n o 1dH(a) } . (A7.2)
0

Using (54) and (A7.2)
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2 -1 {_J_} l-¢
1+e at+y 1+e€
O_ = 1dH(a)N.} (A7.3)

H
at -
MCS = T { ﬁ;:3 n g o
Comparing (A7.1) and (A7.3), and using the relationship é = gv/(f+vy), we have

MCS 2 MCSF ®

H-l{_y__} Lie
a+y e-1
+ 1 > 1 17 L-e <
L[ o7 daH(e) { [ o€ dH(a)} as ¢ 1. (A7.4)
T 0 0
Now, since a-l is a decreasing function of o,
-1
i b S
gil [ ol age) > [ o tau(o). (A7.5)
0 0

Moreover (See Hardy, Littlewood and Polya [1934, Proposition 2.9.1])

1

1 1 1 1-¢
f o "dH(o) = { f Pl dH(a)} , (A7.6)
0 0

for €20 (= if e=0). Combining (A7.5) and (A7.6) with (A7.4) yields

Mcs© z MCST  as e : 1. (a7.7)

This proves the second statement in Proposition 3. Combining (A7.7) with
(A6.1) in Appendix 6 we have

gst(a) > cs%¢8),

which proves the first statement. QED.

- t*
b) e, =t
From equation (54) in the text

MCS0 = n(p) ¢/ (1ve), (a7.8)
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where from (45)

p - B3 (A7.9)

with ¢ defined implicitly by

$
3B + (et [1-3(BD]) - <a+1>£“ $dJ(4) = 0.

Transforming variables, this can be written

o1 aH(o) - H(o) = ;f; . (A7.10)

o

Ot Q1

Setting & = n(p) /3,

and' substituting into (A7.9)

= (Bn/oy/(1+e)

(A7.11)
Substituting (A7.11) into (A7.8):

1
1ee 1=€ &1
#cs? - - plte glte (A7.12)

Thus, given (A7.1) and (A7.12),

MCS™ > MCSF ®

lt+e

1 l-¢
g+ > 1+e¢ <
o < { g o dH(a)} as ¢ _ 1. (A7.13)

1
B 51t aue (A7.14)
0

Proof of Lemma

Using (A7.10) we have
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1

-5 ot anee) -1 +f - Ly, (A7.15)
0

-1

Y(o) = H(g) + ¢ [ o = dH(o).

Qi—

Since Y( ) achieves a maximum value of 1 at ¢ = 1, the expression in (A7.15) is
positive. QED.
Combining (A7.14), (A7.6) and (A7.13) one obtains (A7.7) as before. This

completes the proof of Theorem 1.
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Appendix 8

Proof of Theorem 2

The method of proof is similar to that for Theorem 1. Let G(n) be the
c.d.f. of n. With §=1 as before, ¢ = n(E)-e. Changing variable from ¢ to n,

equation (53) becomes

j—s

~€ 2

w
HCST = =2 §1%¢ [ al*ac(n). (A8.1)
+€ 0

Again, the cases t_ > t* and t. - t* must be considered separately.
a) t_ > t*
T

-€
From equation (42') and the relation N = n(p)

1
{ ndG(n) pe. (A8.2)
{m}
Substituting (A8.2) into (54)
o 1-¢
—0 1 - o l+e¢
MCS™ = T+e O { ﬂzfz f-l n:G(n) . (A8.3)
G —
{3}
Comparing (A8.1) and (A8.3) we have
Mcs¥ 2 MEST e
l-¢ +¢ l-c 2 ite
atyl 2 = 2 [ % 25 (% Tte 2
{—11} () { I ndG(n) } z { In dG(n)} : (A8.4)
7 G-l - 0
aty

Here, there are two inequalities, working in opposite directions. On the one

hand,
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l-¢ l+e¢ l-c l-e 1+e
+) 2 -2 (% 250 2 5 - <
{9—1} (n) { I ndG(n)} { fn dG(n)} (m)° =mnas e _ 1. (A8.5)
K -1 [_o <% >
G ——
a+y
On the other hand, (Hardy, Littlewood and Polya ({1934, Proposition 2.9.1})

l+e

© ©o T 2
n = f ndG(n) ; { f n1+e dG(n)} as € : 1.
0 0

The sign of the inequality in (A8.4) is thus ambiguous, unless ¢ = 1 in which

case marginal consumers' surpluses in the two regimes are equal.

-tk
b) t. t

From (54)

HCSC = a(p)l ¢/ (1+e), (AB.6)
where from (45)
p~-83-8p °n,

and with n defined implicitly by

- 1 < atf+y
G(n) + z { ndG(n) = oty (A8.7)

The relative magnitude of (A8.1) and (A8.6) is ambiguous, as true of the case
t_ > t*x,
T
To conclude the proof we consider an example in which, depending on
parameter values, the inequality in (A8.4) can go in either direction. Suppose
that ¢ ~ 0 and the intensity of demand has the p.d.f:
ny with probability 1l-n
n= . (A8.8)
n, > ny with probability =

We consider the two cases tr > t* and tr = t* in turn.
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a) t_ > tkx,
r
The condition for this to be the relevant case is given by equation (40) in the

text:

¢
-1l a aty
J {a+7} ™ £§1{ a } ¢dJ (). (A8.9)

aty

Making the change of variable from ¢ to n, (A8.9) becomes

-lj_a aty 7
G {a+7} > iy {-1{ o } ndG(n) . (A8.10)
a+y

There are two ranges of the probability x to consider.

(1) = > v/(at+y)

In this case it is easily verified that condition (A8.10) is universally

satisfied. Substituting (A8.8) into (A8.4), one finds, provided only that n, >

ng,
MCSC > MCS. (48.11)

In this case the full information regime is unambiguously more efficient than

the zero information regime, and has a lower optimal capacity.

(11) 7« < 7/(a+r)
Substituting (A8.8) into (A8.10) one finds that the case tr > t* is the

relevant one if and only if

—L8 A8.12
nz/n1 <1+ (et (A8.12)
Substituting (A8.8) into (A8.4), one obtains after some manipulation

MCS© : MCS® as
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[ratn) -] (ny/nd 7 + [y+(1-20) (et N(ny/m) = (Lom) (@) S O,

which reduces to

—0 > —<F < a

MCS < MCS as n2/n1 N 1+ ;j;zzz;) (A8.13)
The RHS of conditions (A8.12) and (A8.13) intersect at

e (A8.14)

atf aty

-tk

b) £ =t
This case occurs only with n < y/(a+y). Substituting (A8.8) into (A8.7) one

gets

~ !&+12ﬂ’

B+ (aty) n,. (A8.15)

Substitution of (A8.15) into (A8.6) and comparison of the result with (A8.1)
yields

MCSO z MCS® as

-n(l-f)(nz/nl)2 + (l-x)f(nz/nl) - (1-m Z 0, (A8.16)
where

L ymmlaby)
E=1-8 Btn(atn) ]’

Figure 6 in the text is constructed by combining the above conditions.
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Appendix 9

In this appendix we work through the example of a bivariate distribution
of capacity illustrating the effects of autocorrelation on expected travel
costs. We assume ¢ = 0 and

{ sy with probability l-x

s = .

s, = 0s, < s, with probability =

2 1 1

As with the example in Appendix 8 there are two ranges of the probability

7 to consider.

(1) = > v/(aty)
In this case it is easily verified that the condition for t. > t* given by
equation (40) in the text is universally satisfied. Applying the probability

distribution given by (56) to (42') one obtains:

- _Lr N

P Ems, (49.1)

which is independent of s;-
(i1) n < v/(a+y)

In this case we have t. > t* if and only if

g o (A9.2)

TS @ d-0)”

When (A9.2) is satisfied, application of (56) to (42’) yields

By . (l:m(atn)-a ,,
py U v 1 - o)l )

W 1

P - (49.3)
Finally, if (A9.2) is not satisfied, (44) and (45) apply and one obtains

-~ Blaty)x N
P " pr(atnn s, (49.4)



72

which is also independent of sy-

In order of increasing x the appropriate functions of E are thus (A9.3),
(A9.4) and (A9.1), although for some parameter values either (A9.3) or (A9.4)

has a null range.

It is clear that (A9.3) is a linear function of x, that (A9.4) is an

increasing and concave function of x and that (A9.1) is independent of x. Now

the left-hand derivative of p at LI obtained by differentiating (A9.3) is

dp ot l-0) N
- . (A9.5)
dnx xfxc B+ s,
The right-hand derivative, obtained by differentiating (A9.4), is
dp _ _\2 N
dr |xix (aty)(1-0) s’ (A9.6)

As long as L < v/(aty) we have (A9.6) > (A9.5) so that 5 has an upward kink at
LR P This establishes that Figure 7 in the text is applicable for a

nondegenerate set of parameter values.






