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Abstract

This paper considers a two-person repeated game in which there is a
small probability of espionage, i.e., that one or both of the players will
be iqformed of the other's supergame strategy and have a chance to revise
his strategy based on this information before the game begins. It is shown
that in such a game any subgame perfect equilibrium pair of payoffs is
Pareto efficient provided that the probability of espionage is small enough.

In view of the "Folk Theorem," several attempts have been made to shrink
the set of outcomes that are supported by equilibria in an infinitely
repeated game. Two main approaches are to create new solution concepts
which allow "collective deviation,"™ and to introduce bounded rationality
considerations. The present paper assumes neither "collective deviation"

nor bounded rationality to derive the result.






1. INTRODUCTION

Since the seminal paper by Aumann [3], repeated games have drawn
attention of many theorists.}/ The wunderlying observation that has
motivated those studies is that in a one-shot game an undesirable outcome is
often supported by an equilibrium, and moreover, it may happen that only
inefficient outcomes are equilibrium outcomes as in the case of classical
prisoners’ dilemma example. This wunfavorable situation 1is partially
reconciled when one considers the repetition of the one-shot game. 1In a
repeated game players can make their actions depend upon what they observed.
This implies that players can punish those who took unfavorable action in
some preceeding periods. In this situation players may be reluctant to
deviate from a socially favorable equilibrium for fear of punishment in
later periods in spite of an instant extra benefit the deviation may yield.
Because of this mechanism, the set of equilibrium outcomes may differ from
the simple repetition of the equilibrium outcomes of the one-shot game. The
repeated games are classified into two categories according to the length of
repetition of a game: finitely repeated games and infinitely repeated
games. The results for these two types of repeated games differ.g/ As far
as infinitely repeated games are concerned, the most important property is
the Folk theorem, which basically states that every ‘feasible pair of
individually rational payoffs can be attained by a noncooperative
equilibrium.g/

In those papers which derive the Folk theorem, Nash equilibrium or its

refined concepts such as subgame perfect equilibrium have been used as the

criteria for equilibria (see e.g. Rubinstein [11]), Abreu {1]). The standard



assumption.underlying these results is that each player can observe only the
actions taken by the other players, rather their whole supergame strategies,
and hence a player cannot condition his choices on these strategies. The
purpose of this paper is to analyze what will occur if there is a small
chance of leakage of information on players’ actual supergame strategies.
To this aim, I shall build a two-person repeated game in which there is a
small probability of espionage, i.e., that one or both of the players will
be informed of the other’s supergame strategy and have a chance to revise
his strategy based on this information before the game begins. It is shown
that in such a game any subgame perfect equilibrium pair of payoffs is
Pareto efficient for sufficiently small probability of espionage.
Furthermore, in the case of one-sided espionage, this result is shown to
hold for any positive probability of espionage.

The above question is worth being raised because in many industries
spying activities, which may be either legal or illegal, have important
roles, and by means of these activities there is always a small chance of
information 1leakage. Suppose that a firm’s strategy is determined in
meetings of board of directors and filed in meeting protocols and other
written statements. This strategy may leak to 1its opponent by means of
industrial espionage with at least small probability. If the firm (board of
directors) knows that this is the case, then it takes that possibility into
account in determining its strategy. The results may be quite different
from those without the possibility of information leakage.

From a theoretical point of view, attempts have been made to shrink the
set of outcomes that are supported by equilibria. Two main streams can be

discerned in this literature. One of them is to cope with the problem by
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creating new solution concepts which allow "collective deviation." The
earliest attempt was made by Aumann [3], though his main motivation was to
build a non-cooperative foundation for cooperative game theory. Another
effort is made by Pearce [10], who deals with the problem by using a new
equilibrium concept called renegotiation-proof equilibrium.

Those papers cope with the situation where unlimited communication is
available between participants of the game and assume that communication
makes it possible for players to deviate simultaneously. As opposed to
those papers, the present paper assumes only a small probability of
information leakage without any negotiation procedure. Furthermore, this
paper does not assume any possibility of "collective deviation." Still the
result is that cooperation emerges.

It is worth noting here that this paper is related to Kalai [7] though
the latter does not deal with repeated games. He built a formal model for
preplay communication process and derived the result that only Pareto
efficient outcomes are supported. by a noncooperative (subgame perfect)
equilibium, which shares the basic direction of research with this paper.

The other stream is to deal with the problem by using finite automata.
Rubinstein [12] restricts his attention to infinitely repeated prisoners’
dilemma and explicitly introduces the cost of implementation of strategies.
Under the assumption that each player has lexicographical preferences in
which the repeated game payoff ‘matters first, and the complexity cost
measured by the number of internal states in the automaton matters second,
it 1is shown that the Folk Theorem does not hold any more. Abreu and
Rubinstein [2] extend the model to other cases and obtain the similar

results. Here, however, the Nash equilibrium in a one-shot game still



remains an equilibrium.

Another type of analysis is made by Kreps, Milgrom, Roberts, and Wilson
[9) and Aumann and Sorin [5].6/ They show that if there is a small
probability that the opponent is irrational, only one Pareto efficient
outcome appears as an equilibrium. The point of these papers is not only
that the opponent is not rational with small probability, but also that this
irrationality should be restricted to a certain class of automata. In Kreps
et al. [9], the only possible irrationality permitted in the model is "tit
for tat”, which starts with cooperation and after that follows the previous
action of the other player. In this sense cooperation is incorporated in
the model. In fact, depending upon the choice of machine representing
irrationality, every feasible pair of strictly individually rational payoffs
emerges as an equilibrium in a long but finitely repeated game. On the
other hand, Aumann and Sorin [5] sophisticate the model by assuming that a
player faces all the finite recall automata with positive probability.
Here, however, one of the "simplest” strategies, grim-trigger strategy, is
not permitted. Moreover, their result is restricted to a specific class of
games in which the Pareto efficient set is a singleton.

The driving force for cooperative outcomes in the present paper is
totally different from éhat of those two papers. In this paper players are
perfectly rational, but with small probability one of them has a chance to
revise his strategy after the opponent’s strategy has been revealed to him.
In very bold strokes, the logic of the main result may be explained as
follows: Consider for simplicity the case of one-sided espionage, say, where
player 2 may be informed of player 1l's strategy. Next, éonsider a pair of

strategies which yield a Pareto dominated pair of payoffs. Player 1 can



deviate to a strategy which expects a certain "signal" from player 2. If
the signal is not received, player 1 will stick to his original strategy.
if it 1is received, however, player 1 will switch to a strategy which
corresponds to a Pareto dominating pair of payoffs. Thus, if player 2
happens to know player 1l's strategy, his best response is to give the
required signal and switch to the better payoff. Note that at equilibrium
player 2 will give the signal and cooperate mnot only in the revision node
after observing player l'’s strategy but also from the very beginning.

It is worth mentioning that in order to obtain this result one has to
assume that there is a certain cost of revision of strategies. Introducing
the revision cost, one has to specify the trade-off between this cost and
the supergame payoff. In the basic model, I deal with lexicographical
preference, but later on it will be shown that a similar result can be
obtained for other preferences in which the revision cost 1s not
infinitesimal.

The contents of this paper are as follows. In Section 2 I shall present
the model of one-sided espionage and lexicographical preferences. Section 3
illustrates the logic of the main result. In Section 4 I shall define an
equilibrium to this game and find the set of outcomes which can be supported
by equilibria. In Section 5 the result of Section 4 will be extended to the
cases of two-sided espionage and positive revision cost. Section 6

concludes the paper.

2. MODEL

Supergame



> be a two person game in normal form where S, is

Let G = <8 i

1* 520 ™10 ™
a finite set of actions for player i (i=-1,2), and ni:slxszax is the payoff
function for player i. We assume that the number of actions in each Si’
|Si| (i=1,2), is greater than one. An infinite sequence of G is called a
supergéme of G and denoted by
< G (-]

where Gt=G. The supergame of G, Gw, is of standard information if every
player can observe at t the actions of the other player which are taken

before t. We confine our attention to a supergame with standard

information. A strategy of the i-th player in a supergame with standard

information is a sequence of functions (f;):_l such that f;esi and
f;:st-lﬂsi for t>1 where S=Slx52. We also confine our attention to pure
strategies. We denote by"‘,}'i the set of all the supergame strategies of
player i (i=1,2). Given the strategies chosen by both players, the

supergame is played as follows. At the first period, the pair of actions is

1 1
(£, £

2,.1 .1 2,.1 1 . . .
(fl(fl,fz),fz(fl,fz)). In this manner, a sequence of pairs of actions in G

At the second  period, the pair of actions is

((si,s;)}:gl is deterministically generated by the pair of supergame
strategies. We denote by 'sz(fl,fz) the action in G of player i at t

determined by (fl’fZ)' The supergame payoff of player i defined on'3ix$j is

assumed to be basically the limit of means:

<z 1T t t s
ni(fi’fj) = llmlnfT*®T2t=lwi(sl(fl’f2)’ SZ(fl’fZ))’ i=-1,2.

For later use, we introduce the following notations. Let §ieSi be such that

S5 € argmlns.es.maxs.es.wj
i~ i3

Let gl=maxslesln1(sl,§2) be the minimum individually rational payoff for

player 1. Player 2 can impose the payoff =«

(51’52)'

1 for player 1 no matter what



strategy player 1 takes. The payoff T, is defined in a similar way. A
strictly individually rational payoff for player i is a number which is

greater than .

Information leakage game

Next, we describe a information leakage game (leakage game for short) in
which two players choose supergame strategies. The leakage game consists of
three stages. 1In the first stage, both players determine their supergame
strategies simultaneously. In the second stage, Nature chooses one of the
two alternatives with probability l-¢ and the other with probability & where
we assume that e is strictly between zero and unity. The first alternative
(that with probability 1l-¢) results in the supergame played by the supergame
strategies which both players chose in the first stage. The second
alternative brings player 2 to the third stage. 1In the third stage, player
2 is informed of player 1l'’s strategy and may revise his supergame strategy.
This revision is not restricted by what player 2 chose in the first stage.
Player 1 is assumed to keep the strategy that he chose in the first stage.
After the third stage ends, the supergame by the strategies determined by
player 1 and 2 starts.

Strategies of player 1 and player 2 in the leakage game are described by

a triple (f,,f,;F) where fle 7 f2€ 92, and F:%¥ x 324 7 A pair of

1’72 1’ 1 2°
supergame strategies (fl,fz)'is chosen in the first stage, and a typical
value of F, F(fl’f2)’ is a supergame strategy taken by player 2 if f1 and f2
are chosen by player 1 and player 2 respectively, and if the revision node

for player 2 is reached. The strategies in the leakage game may be called

meta strategies in the sense that they determine supergame strategies. We



will refer to triples of supergame strategies (fl'fZ;fE) € ‘7ix§52 as
outcomes of the leakage game. (fl,fz; F(fl'fZ)) is an outcome induced by
strategies of the leakage game (fl,fz;F).

Preference relations of the players are defined on the set of outcomes
of the leakage game. Player 1l's prefefence relation is simply the ordering
of his expected supergame payoff:

(l-c)Hl(fl,fz) + aHl(fl,F(fl,fz)).
We assume that the player 2's preference relation is lexicographical in the
following sense. Player 2 prefers (fl’f2;f§) to (fi,fé;fg') if
(1-:)H2(f2,f1) + cHZ(fa,fl) > (l-c)Hz(fé,fi) + cHZ(fa',fi).
If the left and the right hand sides of the above inequality are equal, and
if f2=f§ and fé#f;', then player 2 prefers the former to the latter.
Otherwise, player 2 is indifferent between the two outcomes. That is, if
the supergame payoffs are the same, player 2 prefers to use the same
supergame strategy chosen in the first stage rather than change his
supergame strategy to another strategy.- This implies that if the revision
node for player 2 is reached and if the supergame strategy chosen by player
2 in the first stage maximizes his supergame payoff, then he strictly

prefers his original supergame strategy chosen in the first stage to any

other alternative.
3. ILLUSTRATION IN INFINITELY REPEATED PRISONERS'’ DILEMMA

In this section, we illustrate the 1logic of the main result in the
repeated prisoners’ dilemma. Figure 1 describes the one-shot prisoners’

dilemma, in which (D, D) is the only Nash equilibrium. In the infinitely
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repeated game with the limit of means criterion, every feasible pair of
individually rational payoffs is supported by a subgame perfect equilibrium
(the Folk Theorem).
Figure 1
In contrast, the set of pairs of equilibrium payoffs in this model
consists of strictly 1individually rational and Pareto efficient

3/

allocations.= In other words, a pair of payoffs (x{, x%) is supported by a
subgame perfect equilibrium if and only if either
(xf, x5) = A(2,2) + (1-2)(3,-1), 2elj, 1],
or
(x{, x%) = A2(2,2) + (1-2)(-1,3), AE(%, 1],
holds. Particularly, (D, D) disappears as an equilibrium in this model.

6/

Figure 2 shows this.-
Figure 2
The logic goes as follows. Suppose that the both players use the same
t. o
supergame strategy f = (f }t-l where
ft(-) =D for all t.
Since there is a small probability that player 2 has a chance to revise his
supergame strategy after being informed of player 1l’s choice, player 1 has

an incentive to deviate (for example) to f, where

1
1
£ - D,
£t " h = ¢ iestlag,
1 2

t-1

LD if S, = D for t>1.z/
If player 1 deviates, and if the revision node for player 2 is reached,
player 2 will choose (for example) f2 where
£, = C,

11



£5(+) = C for 1.
By this choice, both players get 2 instead of zero if the revision node for
player 2 is reached. Knowing this, player 1 deviates to gain 2e¢. Note that
this new strategy profile is not an equilibrium, either, since player 2
deviates to f2 not only in the third stage but also in the first stage; In
the similar way, every Pareto dominated pair of payoffs does not sustain as

a subgame perfect equilibrium in the leakage game.

4. EQUILIBRIA

In this section, we define subgame perfect equilibria of the leakage
game and find the set of equilibrium outcomes. Given fj' let ?i(fj) be the
class of the best-response-supergame-strategies, i.e., the class of all the
supergame strategies fi such that

Hi(fi,fj) = Hi(fi,fj) for all fie ¥,.
The_ mapping ?1:95*2 i is the best response correspondence of player i to
player j’s supergame strategies. Taking into account the cost of revision,
we define the following. Given a pair of supergame strategies chosen in the
first stage, let §2(f1'f2) be:
?z(fl,fz) -4 (f,) if £, ?z(fl)
L ?z(fl) if £

P F2(f1).

§2(f1'f2) is the best reaction correspondence in the third stage to f1 given

his choice f2 in the first stage. If a pair of supergame strategies (fl'fZ)
is taken in the first stage, and if f2 is the best response to fl’ then
player 2 strictly prefers to keep his supergame strategy rather than change

it. Using this notion, we define the criterion for equilibria to the
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leakage game.
Definition: Given €, a strategy configuration (f{,f*; F*) is a sgubgame

perfect equilibrium of the leakage game if

fg_e Fz(f’i), (1)
F*(£f,£,)€ F,(f;,£,) for all fj€ ?1 and £,€ ?2, (2)

and for all fie‘?i
(l-c)Hl(ff,fg) + eHl(ff,F*(ff,fg))
= (l-c)Hl(fi,f§) + eHl(f',F*(fi,fg)). (3

(2) implies that a best-reaction-supergame-strategy 1is chosen in every
subgame of 'the leakage game. A function F* satisfying (2) is called a best
reaction function. The criterion for equilibria used in this paper is not
subgame perfectness in the supergamé; rather, it is perfectness in the
leakage game, i.e., supergame strategy chosen in the third stage of the
leakage game is the best reaction to the other supergame strategy given what
was chosen in the first stage.

We are now in a position to state the following lemma which will be used

later in proofs of theorems.

LEMMA: For any feasible pair of strictly .individually rational payoffs

(xf,xg) there exists a_ pair of supergame strategies (fl,f2) and a positive

number d such that for i=1,2,

x{ = Hi(fi'fj)

fie Fi(fj), (4)
and
n.(f£.,f£.,) <I.(f,,£! for all f! with I, (f,,£,)-1I.(£f’, £, )«d. 5
(£ £) < I(E £ } 3550 £ T (£ £ ) (5)
Proof: Let {(s;, sg)}:_l be a sequence of pairs of actions such that
. 1 _T. t t
llmT»mth-l“i(sl'SZ) - x? for i=1,2.

13



Next, we construct supergame strategies fi (i=1,2) as follows:

11
fi = S5,
f‘i:(rl,...,rt'l) -{s; if el ety - st s,

L S5 otherwise.

If player i tries to change the sequence of payoffs ((s;, s;)}:_l, he can
get at most . Set d = Mini-l,Z {%(Hi(fi, fj)-gi)). Then each supergame
strategy is a best response to the other strategy, and each player cannot
lower the supergame payoff of the other player without decreasing his own
payoff by more than d. Q.E.D.
Since S is taken forever by player 1 if player j does not follow the
strategies (s§), player j cannot change the outcome without lowering his
payoff to ?j' Note that this lemma also shows that if a leakage pgame
consists of only the first stage, i.e., 1if there is no possibility of
revision of supergame strategy, then the Folk Theorem holds.

Before we present theorems, the definition of Pareto efficiency is
given.

Definition: A feasible pair of payoffs (x¥, x%) is (weakly) Pareto
efficient if there exists no feasible pair of payoffs (xl, x2) such that
x. > x¥ for i=1,2.
i i

We say that a pair of payoffs is Pareto dominated if it is not Pareto
efficient.

We are now in a position to characterize the set of pairs of payoffs
that can be supported by subgame perfect equilibria. Theorem 1 is the main

result of this paper stating that no Pareto dominated allocation can be

supported by a subgame perfect equilibrium.

THEOREM 1: 1If (nl(fl’fZ)' H2(f2,f1)) is Pareto dominated, then for any best

14



reaction function F, (f;, f,; F) 1s not a subgame perfect equilibrium of the
leakage game.

Roughly speaking, the proof of the theorem goes as follows. Let (fi,fé) be
a pair of supergame strategies satisfying Hi(fi,fi) > ni(fi'fj) for all
i=1,2. Then both players prefer to change their supergéme strategies from
(fl'fZ) to (fi,fé) if possible. Player 1 knows that if he constructs f!,
then with probability e player 2 will revise his supergame strategy, and
this revision will necessarily increase player 1l'’s payoff as well as player
2's payoff. Here, however, the replacement of fl by fi may harm player 1
because with probability of at least l-¢ player 1 faces f2, and (fi'fZ) may
decrease player 1l's payoff. Therefore, player 1 constructs a supergame
strategy f{ by connecting fl and fi; his strategy ff behaves like fl unless
it receives a certain signal from player 2 at stage 1 of the supergame, in
which case f{ immitates fi. By using f¥, (f{,fz) attains the same payoff as
(fl'fZ) does. If the revision node for player 2 is reached, player 2 now
has an incentive to revise his supergame strategy to a strategy f§ which
gives f¥* the appropriate "signal™ at stage 1 and immitates fé after that.

1

Therefore, player 1 has an incentive to construct ff. Note that the
resulting strategy profile is not an equilibrium, either, since player 2 has

an incentive to change his supergame strategy to f§ not only in the third

stage but also in the first stage. The following is the- formal proof of the

theorem.
Proof: Assume the contrary, 1.e., that there exists an F such that
(fl,fz;F) is a subgame perfect equilibrium. First, note that fzefz(fl).

For if not, player 2 has an incentive to deviate in the first stage. From

the lemma, there exists a pair of supergame strategies (f!, fé) which

15



satisfies the following:

1 F ’ 6
fieFi(fj) (6)
Hi(fi’fj) > Hi(fi'fj) (7)

and
t Fn ' ' P v
Hi(fi'fj) > Hi(fi’fj) for all fjeFj(fi) (8)
for i=1,2. Ve now construct a supergame strategy f{ by connecting f1 and fi

in the following manner:

1 .1
ST
t, 1 t-1 £, 1 t-1 11
£2(s7,...,8s7 ) = 4 £1(s7,...,s7 ) if s, = f,,
L5t 6" h if s) = £) for 1.

If the node in which player 2 can revise his supergame strategy is reached,
player 2 has an incentive to change his supergame strategy to f%, which is

constructed as follows:

1 1
f§ » f2,
R CR L fét-l(sz,...,st-l) for t>1.
Clearly, f%efz(f{), and (f{, f§) attains the same pair of payoffs as (fi,fé)

does. Let F be any best reaction function. Then

Hl(f{,F(f{,fz)) > Hl(fi'fé)
always holds by virtue of (8).  Furthermore, F(fl'f2) - f2 holds since
?z(fl,fz) = {f2] by fzefz(fl). Since we have

Hl(f{,fz) = Hl(fl'fZ)
and
the following inequality holds:

- * -
(1 e)Hl(fl,fz) + Enl(ff'F(ff'fz)) > (1 e)Hl(fl,fz) + eHl(fl,F(fl,fz))

for any best reaction function F. Therefore, player 1 has an incentive to

16



deviate from fl to ff for any best reaction function F. Hence, this is not
an equilibrium. Q.E.D.
Since player 1 usually faces the supergame strategy f2, he constructs f{ to
cope with that supergame strategy, too. Note that the above logic works
because ?2(f1,f2) is a singleton. In other words, f2 is not only a
best-reaction but also the best-reaction-supergame-strategy to ff given f2.
This shows that the revision cost as well as the possibility of revision is
essential to the result.

Indeed, if there is no cost of revision, then the following strategy

profile (ff,f%;F*) of the information leakage game is an equilibrium in the

example of Section 3:

s1 st-l
2'°° T2

| D otherwise,

fft(.) = { C if = C, and t= 3m where m=1,2,...,

£5°¢:) =D for all t,
and F* is a best response function, i.e., F*(fl,fz)e Fz(fl) for all fle F

and all fze F2, with

F*(£3,£5)(+) = C  for all t.
Here, player 1 takes the strategy that cooperates every three periods as
long as player 2 has cooperated. First, player 2 has no incentive to

deviate since F* is a best response function, and f% is a best response to

2

fvli'. Since fii' is a best response to f%, player 1 has an incentive to

deviate, say, to fi only if Hl(f',F*(fi,fg)) is greater than H(f{,F*(ff,f;))

= 2%. If this is the case, then player 2's payoff should be below the
individually rational payoff, which contradicts that F* is a best response

function. Thus player 1 has no incentive to deviate.

Next, we derive the following theorem which states that every strictly

17



individually rational and Pareto efficient allocation is supported by a

subgame perfect equilibrium.

THEOREM 2: Suppose a feasible pair of payoffs (x{, X§) is Pareto _efficient

and strictly individually rational. Then, there exists a triple (f{,fg;

F*) and ¢ > 0 such that for all 0 < ¢ < E;

Hi(ff’ fﬁ) - xf i=1,2,

and (f§, £§; F*) is a subgame perfect equilibrium with respect to «.

The logic of the proof of the theorem goes as follows. First, from the
lemma, we can construct a pair of supergame strategies (ff'ff) satisfying
(4) and (5) in which (fl’fZ) is replaced by (ff,fg). Player 2 cannot
benefit from unilateral deviation. As for player 1, he cannot gain anything
either unless player 2 responds to his deviation in the revision node.
Consider the extreme case in which the revision node is reached almost
certainly, i.e., € = 1. 1In this situation player 1 can "blackmail" player 2
by choosing a strategy which makes player 2 play the strategy that gives
player 1 the payoff higher than xf. If the possibility of reaching revision
node is small, however, player 1 should also take into account the
possibility that his blackmail cannot affect player 2's supergame strategy,
andvhis strategy has to face ff' In that case, the probability of which is
l-¢, player 1l's payoff decreases by at least d; recall that (ff,f;) is
constructed so that each player cannot decrease his' opponent’'s payoff
without decreasing his own payoff by at least d. For sufficiently small ¢,
this loss cannot be compensated by the gain obtained through the revision of
supergame strategy by player 2. Therefore, player 1 has no incentive to

deviate. The following is the formal proof of the theorem.

Proof: From the lemma, there exists a pair of supergame strategies (ff, fg)

18



such that for i=1,2,
- wX
ni(fg, f}) x¥, (9)
f; € Fi(ff), (10)
] ' %) - '
I, (%, f}) < I, (f%, fj) for all f' with I (f;,f ) nj(f§,f y<d

h| h| h| h|
for some d>0, (11)

(11) implies that neither of the two players can lower the other'’s payoff
without decreasing his own payoff by at least d. Let F*(fl’fZ) be in
FZ(fl’fZ) for all_fle F1 and all fze F2.

subgame perfect equilibrium of the information leakage game for all O<e<e

We will prove that (f{,fg;F*) is a

for some £>0. Clearly, F* is a best reaction function, and player 2 has an
incentive to deviate neither in the first stage nor in the third stage since
(10) holds. Therefore, the triple (ff,f*; F*) sustains itself as a subgame
perfect equilibrium if and only if for all fie Fl’
- %
(1 e)Hl(ff,f§) + enl(ff’F*(fl’f§))
> (l-e)Hl(fi,fg) + eHl(f",F*(fi,fg)) (12)

helds. Let then fi be an arbitrary strategy in El. To show that (12)
holds, we consider two cases.
1) If M (f].£%) = I (f},£5), i.e., f{eﬁl(fﬁ), then (11) implies that

n2(f§’fi > Hz(f§,ff).
We consider the following two subcases,
3. YT n " £y T ny § 3
i-a) 1If fzer(fl), then F*(fl,fz)e F2(f1) implies that

* n ” "

H2(F (fl,fg),fl) > Hz(fg,fl) > Hz(ff'ff)'
From the Pareto optimality of (Hl(ff,f§),H2(f§,ff)), we have

Hl(fl,F*(fi,fg)) < Hl(ff,fg).
Therefore, (12) holds for all €.

i-b) 1If f%e?z(fi). then player 2 does not have an incentive to revise his

19



supergame strategy even when he has a chance to do so in the third stage,
i.e., F*(f{,f%)-fﬁ, and (12) trivially holds for all e.
.. " * .
ii) Next, suppose Hl(fl,fﬁ) < nl(fl’fZ)' Then to violate (12),
- - n " " * - * *

(1-&) (I, (£%,£5) -0, (£7,£%) )} < (I, (£], F*(£],£%)) I, (£%, £%)) (13)

should hold. 1If f§Eﬁ2(fi)’ then F*(fi,fg —f%, and (13) fails to hold by f{v
F %

€ Fl(fZ)' Hence,

fie Fz(fi) (14)
holds. (14), the positiveness of the right hand side of (13), and the
Pareto optimality imply that

£, £¥

From (11), it must be the case that
- "ofx
Hl(ff’fﬁ) nl(fl’fZ) > d.
Therefore, for sufficiently small ¢ (13) does not hold since the set of
feasible payoffs is bounded. Hence (12) holds for sufficiently small e.
Since f! is arbitrary, player 1 has no Incentive to deviate. Therefore,

1

(£%, f%; F*) is a subgame perfect equilibrium. Q.E.D.

5. EXTENSIONS OF THE RESULT

The result of the previous section can be extended to other situations.
Here, we examine two of them. The first is that both players have a chance
to revise their supergame strategies. The second situation is that revision
"cost 1s small but positive so that preference relation 1is not
lexicographic. In the following only the counterparts of Theorem 1 are

presented.
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(1) Two-sided espionage

In this subsection the information leakage game is modified to describe
the situation in which both players have a chance to be informed of the
other players’ supergame strategies. The structure of the leakage game is
the same as before except that player 1 as well as player 2 has a chance to
revise his strategy after observing the other player’s strategy with
probability e. It is assumed that both players’ information gathering
activities are independent of each other without knowing whether their own
strategies are revealed to their opponents. Therefore, they simultaneously
have chances to revise their strateies with probability 22. A strategy

profile is written as (fl,f Fl’FZ) where fie?i and Fi:?ix ?5» ?1 for i=1,2.

2;
The expected supergame payoff for player 1 (i=1l,2) is now given by

= 2
Hi(fi’fj’Fi’Fj) = (1l-¢) Hi(fi’fj) + c(l-e)Hi(Fi(fi,f.),fj)
2
+ e(l-c)Hi(fi,Fj(fj,fi)) + € Hi(Fi(f f ), Fj(fj fi))'
A similar modification is made on preference relations. We assume that

player 1 has lexicographic preference as player 2 does, that is to say, the
expected supergame payoff for player 1 matters first, and whether player 1
changes his supergame strategy in the revision node matters second.

We apply subgame perfect equilibria to this modified leakage game. A

strategy profile (ff,f*'F*,Fg) is said to be a subgame perfect equilibrium

2'71
if
ﬁ.(f*,f?;F%,F*) n (f f* F, j for all fie"}i and all F,, and
F¥(f, , f ) € argmaxf 67 (1 eI, (£}, j) + eIl (f}, F}t(fj £:0)
w
for all fie'{'y’i and all fje Jj,
with

)+elly (f' Fx(f, ,f )).

Ff(fi,fj) - fi if £, € argmax G? (1- c)H (f j HSIE

i
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for i=1,2.

If both players have large chances of observing other player’'s supergame
strategies, for example with probability one, the result will be the same as
‘in the case of no information leakage. To see this in the example of
Section 3, suppose that both players take the supergame strategy that always
defects in the first stage, and suppose that both players’ reaction functio-
ns are such that each player chooses the same strategy when he takes the
supergame strategy that always defects in the first stage. Then this
strategy profile becomes a subgame perfect equilibrium for properly chosen
Fl and FZ' This happens because each player's observation has nothing to do
with the actual supergame strategy taken by his opponent since it is revised
with probability one. Thus, we have the following weaker statement the
proof of which is given in the appendix.

THEOREM 3: If for any >0 there exists e€(0,e] such that (f),£,;F,F,)) is a
subgame perfect equilibrium of the leakage game with respect to e, then
(Hl(fl’fZ)’HZ(fZ’fl)) is Pareto efficient.

Proof: See Appendix.

(2) Positive revision cost
This subsection examines the case when the cost of revision is large so
that the loss in supergame payoff may be conpensated by not revising his
strategy. To make matters simple we turn back to the case of one-sided
information leakage. We assume that the cost of revision incurred by player
2 is k (>0). Since we are no longer bothered by lexicographical preference,
we define the total payoff for player 2 as follows:
o, (f,.f
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where § = { 0 if F(f ,f,) = £,,
| 1 otherwise.
Player 1l's total payoff is defined in a similar way except that k=0 for
player 1. Note that the revision cost is incurred by player 2 only when he
actually changes his supergame strategy. Then a strategy profile (f{,f;;
F*) is a subgame perfect equilibrium of the leakage game if
I (£F,£5:F%) 2 [ (£, £5;,F%)  for all fi€ %,

Hz(fg,f{;F*) = Hz(f LE5F) for all fze‘?2 and all F, and

2’71

T ' ) T ' ’. ' ’

I, (£5,£1;F%) = I (£),£;;F) for all F, for any fi& %, and fie *32.
Suppose that both players’ supergame strategies chosen in the first stage
are best responses to each other. Then player 1 gains by deviation only if
player 2 responds to it in the revision node, that is to say, only if player
2's supergame payoff is increased by more than k; still player 1 should get
more than his current supergame payoff. Thus, the statement corresponding
to Theorem 1 is modified in the following way.

THEOREM 4: If (Hl(fl’f2)' Hz(fZ’f1)+k) is Pareto dominated, Then (fl,fZ;F)

cannot be a subgame perfect equilibrium of the leakage game for any F:?lx
b

F,2 9,

We omit the proof of the theorem since its logic is the same as that of

Theorem 1.
6. CONCLUSION

In a supergame without information leakage, Pareto dominated outcomes
are supported by equilibria because each player believes that his deviation

cannot affect the strategy of his opponent. This sense of resignation is
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conducive to the appearance of a Pareto dominated outcome as an equilibrium,
If a player knows that his deviation leads to revision of strategy of his
opponent with at least small probability, the player incorporates the
following statement into his strategy: 1if his opponent behaves
cooperatively,bthen he will also cooperate. If this is indeed the case,
then his opponent follows cooperative behavior. In this manner, Pareto
dominated outcomes cannot be stable, and cooperation emerges.

There are two remarks on this model. First, in this model the revision
of strategy is assumed to occur before the supergame starts. This revision
may occur at any stage of the supergame as far as the total probability of
revision is small enough.

Second, I constructed an information leakage game and applied Nash
(subgame perfect) equilibria to this game. There 1is an wunderlying
assumption that both players determine their entire strategy before the game
begins. This assumption does not hold in the real world; rather, people
make trial and error to seek the best (or better) strategyifor them.g/ The
question is what will occur under such circumstances. I would 1like to
conclude the paper by raising this question not only as the problem of the
model of this paper, but also as the problem of the current appfoaches to

the repeated games.
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2)

3)

4)

5)

6)

7)

8)

FOOTNOTES

See the survey by Aumann [4].

As for finitely repeated games, a serious problem arises when one tries
to relate it to infinitely repeated games. Selten [13] pointed out
that no matter how long the horizon becomes, the equilibrium outcome is
simply the repetition of the equilibrium outcome of a one-shot game
unless the component game has a special structure.

In a pioneering paper Friedman [6] derived Pareto efficient outcomes as
noncooperative equilibria, but he did so simply by assuming it.

To be honest, I have not seen the proof of the result obtained in
Aumann and Sorin {5].

As will be defined in Section 4, the criterion for equilibria used in
this model is subgame perfectness in the sense that every player has an
incentive to change his supergame strategy neither in the first stage
nor in the third stage.

This asymmetry at the end point is caused by the fact that only player
2 has a chance to revise the supergame strategy. Note that if the
information on player 1l's supergame strategy leaks to player 2 with
probability 1, i.e., e=1, then the set of equilibrium pair of payoffs
consists of (22, 0) only.

As you might see, this is not the best deviation for player 1.

Kaneko [8] proposes an alternative framework and solution concept
called conventionally stable sets. There, players do not know the
structure of the game and try to attain higher stationary payoff by

trial and error.
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APPENDIX

In this appendix, we present the proof of Theorem 3. To do that, we
need the following two lemmas.
LEMMA Al: Suppose that there exists (f',fé) 6‘71x‘?2 such that
Hi(fi’fj) > Hi(fi’Fj(fj’fi)) (a-1)

or i=1,2. Then (f F2) is not a subgame perfect equilibrium for any

1,f2;F1,
e € (0, ] for some & >0.
Proof: Assume the contrary, i.e., that there exist F1 and F2 such that

(f F2) is a subgame perfect equilibrium for O<e<e. From the lemma in

1’f2;F1,
the main text, there exists a pair of supergame strategies (gl,gz)e ?1x ?2
which satisfies the following:
gie Fi(gj)v (8'2)
and
Hi(gi,gj) > Hi(gi,gj) for all gje ?j satisfying
Hj(gj’gi) - Hj(gj,gi) <d for some d>0 (a-4)

for i=1,2. Construct a supergame strategy f{ by connecting 81 and f1 in the

following manner:

1 1
£ = £],
t, 1 t-1 t, 1 t-1 1 1
* - -
13 SCRFNNE A {fl(s,...,s ) if s, = £,
l glt-l(sz,...,st-l) if s% v f; for t>1.

From (a-4), for sufficiently small >0
% *
I (£5,F,(£,, £5)) = 1, (g, ,8,)
holds. Moreover, we have
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Hl(Fl(f{.fz).fz) - Hl(Fl(fl'fZ)'fZ)'
Then
- 2
M = - - * *
Hl(ff,fz,Fl,Fz) (1l-¢) Hl(f{,f2)+(1 e)eHl(fl,Fz(fz,fl))
2
+(1-c)eH1(F1(f{,f2),f2) + € Hl(-)
2
> (1l-¢) Hl(fl,f2)+(1-c)cnl(f1,F2(f2,fl))
2
+(1-c)eH1(F1(fl,f2),f2) + € Hl(-)
= Hl(fl,fz;Fl,Fz)
holds for sufficiently small ¢ by virtue of (a-1) and (a-3). Thus, player 1

has an incentive to deviate from f1 to f¥ in the first stage, and then

1
(fl,fz;Fl,Fz) is not a subgame perfect equilibrium for sufficiently small
>0, Q.E.D.
LEMMA A2: Suppose that for any £>0 there exists e€(0,e] such that

(fl,fz;Fl,Fz) is a subgame perfect equilibrium with respect to e, Then
Fl(fl,fz)réf1 implies F2(f2,f1)¢f2 and
Hi(Fi(fi'fj)'fj) - ni(fi'fj)

ni(Fi(fi'fj)'Fj(fj'fi)) > ni(fi'Fj(fj'fi))

for i=1,2.
Proof: Let gi=Fi(fi'fj) for 1i=1,2. The subgame perfectness of
(fl,fz;Fl,Fz) and g1# f1 implies that

(1'5)n1(g1vf2) + Cnl(gl'gZ) > (1'€)H1(f1,f2) + Cnl(flvgz)-
This inequality must hold for sufficiently small e¢. Thus, we have
where the equality holds only if

I, (8,,8,) > I, (£;,8,).

If (a-5) holds with strict inequality, then player 1 has an incentive to
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deviate from f1 to g in the first stage for sufficiently small e. Therfore

it must be the case that
Hl(gl'fZ) - nl(fl’fZ)' and

which implies that By™ £ Hence, in a similar way, we obtain

,-
My (gy,£)) = Ty(£,.£)),

I,(8,,8)) > I,(f,,8,)- Q.E.D.

We are now in a position to present the proof of Theorem 3, which is rather
straightforward once we prove the above two lemmas.

Proof of Theorem 3: Suppose (f F2) is a subgame perfect equilibrium,

1°E23F

and (Hl(fl’fZ)’HZ(fZ’fl)).is Pareto dominated. If Fi(fi’fj)-f for i=1,2,

i
then there exists (fi,fé) € ?ix ?2 such that

M (£7,£1) > I (£, F(£;,£)) = I (£, £))
2;Fl,Fz) is not a subgame perfect
equilibrium. So suppose Fi(fi’fj) »~ fi for i=1 or 2. Let gi-Fi(fi’fj) for

for 1i=1,2. Then by Lemma Al (fl,f

i=1,2. By Lemma A2,

I (g;,85) > I (£ Fi(£5,£))

holds for i=1,2. Again by Lemma Al, (fl’f ;

2’F1’F2) is not a subgame perfect

equilibrium. Q.E.D.
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