Discussion Paper No. 785

BERTRAND COMPETITION WITH SUBCONTRACTING
by
LS
Morton I. Kamien
Lode Li¥**

and

Dov Samet*

June 1988

*
J. L. Kellogg Graduate School of Management, Northwestern University,
Evanston, Illinois 60208.

**Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, MA 02139.

We wish to thank Tom Palfrey, Jerry Pope, and Israel Zang for their
comments and suggestions.

[3-3]



BERTRAND COMPETITION WITH SUBCONTRACTING

Abstract

We investigate a two stage game in which in its first stage two firms
engage in price competition to supply a market and in the second stage may
subcontract production to each other. It is supposed that the firms produce
the identical product with the same strictly convex cost function. A firm
is obliged to supply the entire quantity demanded at its guoted price. In
the event of a tie each firm supplies one-half the gquantity demanded at that
price.

Our analysis discloses that if the winner of the game's first stage
determines the terms of the subcontract in its second stage then there
exists a unique subgame perfect Nash equilibrium (SPNE)} in pure strategies
in which the firms bid the same price in the first stage and both realize
zero profits. On the other hand, if the loser of the game's first stage
sets the terms of the subcontract in the second stage then there exists a
unique SPNE in pure strategies in which the firms bid the same price in the
first stage and both realize positive profits. The presence of the
potential for subcontracting supports the unigue SPNE in pure strategies
even though no actual subcontracting occurs in these two cases. The SPNE
price is below the socially optimal price in the first case and above it in
the second case. We also consider other modes of sharing the gains from
subcontracting between the two firms such as the Nash bargaining solution.
Expansion of the set of strategies to include mixed strategies confirms that
the pure strategy SPNE are unique. Finally, we show a case in which

subcontracting does occur in the SPNE.






1. Introduction

Subcontracting is a commonly employed practice for reducing production
costs. The aspect of it of interest to us is the situation in which rivals
compete for a market or production contract and then the potential for
subcontracting among the very same rivals exists. Recognition of the
linkage between the two rounds may cause the rivals to behave in a tacitly
coliusive manner. This in turn gives rise to the question of whether or not
subcontracting is beneficial from the standpoint of society as a whole.
For, on the one hand, subcontracting may benefit society through lowering
the total cost of production while on the other hand it may be detrimental
by supporting tacit colilusion.

We address these issues in terms of a two stage game involving two
firms producing the identical product according to an identical strictly
convex cost function. It is the strict convexity of the cost function that
creates the incentive for subcontracting, as total costs are lowered when
production is split. In the first stage of the game each firm submits a
price at which it is willing to supply the entire quantity demanded, given
by the product's demand function. In the event of a tied price, each firm
supplies one-half of the quantity demanded at that price. Thus, the firms
are engaged in Bertrand competition in the first stage of the game. In its
second stage, the firms may subcontract production to each other. There are
any number of ways that the amount to be subcontracted and the price to be
paid can be arrived at. We focus on two polar cases. 1In the first case,
the winner of the first stage of the game acts as a Stackelberg leader in

the second stage. That is, he determines the gquantity to be subcontracted
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and the price to be paid to the loser, so as to maximize his own profit
subject to the loser's opportunity cost, which is zero. In the second case,
the loser of the first stage is the Stackelberg leader in the second stage.
That is, he chooses the quantity to be subcontracted to the winner and its
price so as to maximize his own profit subject to the winner's opportunity
cost, which is the profit he can realize if he produces the entire quantity
demanded himself. We also indicate what happens if the terms of the
subcontract are determined by other means, such as the Nash bargaining
solution.

We employ the subgame perfect Nash equilibrium (SPNE) as our sojution
concept. Thus, we conduct the analysis from the second stage of the game
back to its first stage. Our analysis discloses that for a downward sloping
demand function each version of the second stage game exhibits a unique pure
SPNE in which both firms choose the identical price in the first stage and
therefore each produces exactly one-half of the quantity demanded. Thus, in
equilibrium, there is no actual subcontracting. The equilibrium price when
the winner of the first stage is assumed to be the Stackelberg leader in the
second stage equals the average cost of producing one-half of the quantity
demanded. Thus, both firms realize zero profits at the equilibrium. On the
other hand, if the loser of the first stage of the game is the Stackelberg
leader in the second stage, the equilibrium price is higher and both firms
realize positive profits. The intuitive reason for this difference in the
equilibrium prices, is that if the winner of the bidding stage gets to set
the terms of the subcontract in the second stage, then being the loser of
the first stage is very costly, it results in zero profit for the loser, and

therefore the price in the first stage is bid down to the level at which the
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winner's profit equals the loser's. However, if the loser of the first
stage gets to set the terms of the subcontract in the second stage, then he
is assured a positive profit, and the price in the first stage is only bid
down to the level that assures both firms that profit level. The
interesting result here is that it is advantageous to both of them to let
the loser of the first stage have the power to determine the subcontracting
terms in the second stage. Yet this arrangement does not necessarily yield
the firms the maximum profit they could realize from complete cooperation,
the monopoly profit of a single firm with two identical production
facilities. OQur analysis of mixed-strategy possibilities indicates that no
SPNE other than the pure SPNE exist.

We also consider the welfare implications of subcontracting. For the
duopoly case, the price equal to the marginal cost of producing one-half of
the quantity demanded maximizes consumer plus producer surplus. Thus, the
Nash equilibrium price that obtains if the winner of the first stage sets
the subcontract price is too low and it is too high if the loser of the
first stage determines the terms of the subcontract in the second stage.
However, there does exist a means of sharing the gains from subcontracting
such that the SPNE price is socially optimal.

Finally, our analysis of competition for a contract to produce a fixed
quantity discloses that if the loser of the first stage is the leader in the
second stage then there exists an SPNE in which there is a single winner in
the first stage and subcontracting occurs.

We are unaware of any previous work on Bertrand competition with
subcontracting. The most closely related work appears to be that dealing

with price competition in the presence of convex costs and/or capacity
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constraints, summaries of which are provided by Allen and Hellwig (1986).
Dixon (1984), and Maskin (1986). 1In that work only the existence of a mixed
strategy Nash equilibrium is established whereas here the potential for
subcontracting allows the existence of unique pure strategy SPNE. This
result obtains even though there is no actual subcontracting at the SPNE,
Stahl (1988), in a paper more closely related to ours, also showed the
existence of a pure strategy Nash equilibrium.

In the next section we present the model for the case of competition
for a market. In the following section the case of competition for a fixed

quantity is presented. A brief summary follows in the subsequent section,

2. Competition to Supply a Market

We posit two firms that produce an identical divisible product, the
demand function for which is Q(P), with the same cost function C(Q). The
assumed properties of Q(P) and C(Q) are:
A.1 The demand function Q(P) is defined for P > 0. nonegative,
differentiable. downward sloping, (Q'(P) < 0), and
lim, . Q(P) = 0.

A.2 The cost function, C(Q), is defined for Q > 0, differentiable,
strictly increasing (C'(Q) > 0), strictly convex, (C"(Q) > 0), and
c(0) = 0.

A.3 Production is profitable, i.e.. Q(C'(0)) > O.

The game involves two stages. In its first stage the two firms choose
prices and compete for the production of the total quantity demanded at that

price. The firm with the lowest price wins and is obliged to provide the
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entire quantity demanded at that price. 1In the event of a tie, each firm
produces one-half of the total quantity demanded at that price and the game
ends. In the second stage of the game we allow subcontracting to take
place. One of the firms is a Stackelberg leader who offers the other firm a
gquantity to produce and the unit price to be charged. We study two versions
of the game. 1In the first, I"., the leader is the firm which won in the

1

first stage. 1In the second version, T the loser of the first stage is the

2
leader in the second stage.

As we seek subgame perfect equilibria we begin with the second stage.
We start with Fl' in which £he winner is the leader.

Suppose there was a single winner in the first stage who offered the

lower price P. He chooses the quantity, g, to subcontract to the loser and

the price, p, to offer so as to

(1) max, o PQ(P) - pa - C(Q(P) - q)

(2) s.t. pg - C(q) 20, p,q20
Note that P, and Q(P), are fixed from the first stage and that Q(P) - q is
the amount to be produced by the winner. Also, the constraint represent's

the loser's profit from subcontracting and cannot be driven below zero as

this is his opportunity cost. For q > 0, the constraint can be rewritten as
(3) p 2 C(q)/q

Since the objective function (1) is strictly decreasing in p, it is set
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equal to its iowest value, namely p = C(qg)/g. Thus, the maximum at (1) is

attained by solving

(4) max PQ(P) - C(q) - C(Q(P) - q)

s.t. qz090

which, upon differentiation with respect to g, yields

(5) C'(q) = c'(Q(P) - @)

Since the objective function in (4) is strictly concave in g, the first
order condition is necessary and sufficient for a maximum. As the cost
function is strictly increasing, (5) implies that q = Q(P)/2. Thus the
winner subcontracts one-half of the total output at the unit price, p =
C(Q(P)/2)/(Q(P)/2), the loser's average cost of production. The payoffs to

the winner and loser, respectively, as a function of the winning price P are

(6) W, (P) = PQ(P) - 2C(Q(P)/2)

(7) L, (P)

|
o

The winner realizes the entire benefit, C(Q(P)) - 2C(Q(P)/2), the cost
saving from splitting production, of subcontracting in this case.
If the first stage ends with a tie, the payoffs to both players are the

same and are given by



(8) T(P) = PQ(P)/2 - C(Q(P)/2).

Before proceeding to the analysis of the first stage of the game we

record the following result:

Lemma 1: There exists a unique price P1 such that

P1 = C(Q(Pl)/z)/(Q(Pl)/Z), WI(P) < 0 for each P < P Wl(P) > 0 for each

1 1
P > Pl and dWl/dP > 0, for P = Pl'
Proof: Let P be the lowest price for which Q(P) = 0. If Q is positive for

all P then P = ». For P < P, Q(P) > 0 and (6) can be rewritten as

(9) W, (P) = Q[P - €(Q/2)/(Q/2)]

where we write Q for Q(P).

Consider the function

(10) G(P) = P - C(Q/2)/(Q/2)

Upon differentiation we find

(11) G'(P) = 1 - Q'{C'(Q/2) - €(Q/2)/(Q/2)1/Q

By the strict convexity of € and Q'(P) < 0, G'(P) > 0 for all P. Also G(0)

< 0 and lim _ G(P) =P - C'(0) > 0 by A.3 and A.2. Thus, there exists a
PP

P., 0 < P. < P such that G(Pl) = 0, G(P) < 0 for each P < P

i >
1’ 1 and G(P) q

1
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for P > Pl' From (9) it follows that Wl(Pl) = 0 and Wl(P) < 0 for each P <

while wl(P) > 0 for P > Pl' And from (10) we have P1 =

C(Q(Pl)/Z)/(Q(Pl)/2). Differentiating W, gives dwl/dP =

Pl,

1

Q+Q'{P-C'(Q/2)). But P - C'(Q/2) < G(P) and therefore for P < Pl'

P - C'(Q/2) < 0, which shows that for such P, dWl/dP > 0. Clearly the
properties of P1 imply that there can be at most one such point.

Proposition 1: In the game I” i.e., if the winner of the first stage of

1 y
the game is the Stackelberg leader in the second stage, there exists a
unique SPNE in pure strategies, in which both firms offer the price P1 that
is uniquely determined by Pl = C(Q(Pl)/z)/(Q(Pl)/Z) in the first stage.

Each firm produces one-half of the total guantity demanded at that price and

they both realize zero profit.

Proof: Note that T(P) = Wl(P)/z. Let P be the lowest price offered in the
first stage. Suppose P < Pl’ then both T(P) and W(P) are negative and
therefore a firm that offered that price will be better off by bidding a
higher price and being the loser. If P > Pl, then either there is a losing
firm which makes zero profit or there is a tie, in which case both firms
realize T(P). 1In the first case the loser could be better off choosing a
price P, P1 < P < P becoming the winner and obtaining Wl(P) > 0, since
dW/dP(Pl) > 0. In the second case one of the firms could bid a price P - €
for small enough € > O that satisfies W (P - €) > WI(E)/Z = T(P). Thus, P =
P.. If there is a winner in the game then he can gain by choosing a winning

1

price P > P

1 close enough to P1 and getting Wl(P) > wl(g). So the only

possible SPNE is one in which both firms offer the price Pl' It is easy to



see that this is indeed a SPNE.
We turn next to the game F2 where the loser of the first stage of the
game is the Stackelberg leader in the second stage. The loser, if there is

one, determines the subcontract terms by solving the problem

(12) max, . Pd - C{a)
(13) s.t. PQ(P) - pg -~ C(Q(P) -~ q) = PQ(P) - C(Q(P))
p.g 20

The constraint (13) indicates that the winner's profit cannot be reduced
below the level he could realize by supplying the total quantity demanded

alone. For q > 0, it can be rewritten as

(14) p = [c(Q(P)) - c(Q(P) - q)]/q

As the objective function (12) increases with p, the subcontract price is

set at its upper limit. Thus, (12) and (13) reduce to

(15) max c(Q(rP)) - c(Q(P) - q) - C(q)

s.t. gz 0

upon substitution for p from (14). Taking the derivative of (15) with

respect to g and setting it equal to zero yields

(16) C'(Q(P) -~ q) = C'(q@)
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from which it follows that g = Q(P)/2. Thus, the payoffs to the winner and

loser, respectively, as a function of the winning price P, are

(17) W,(P) = PQ(P) - C(Q(P))

(18) L2(P)

c(Q(P)) - 2c(qQ(P)/2).

The loser realizes the entire benefit of subcontracting in this case but
both firms realize positive profits. If a tie occurs the profit function
T(P) is given as before by (8). The counterpart of Lemma 1, in this case

is:

Lemma 2: There exists a unigue price P2 such that

P2 = [C(Q) - €(Q/2)1/(Q/2) where Q = Q(Pz), WZ(P) < L2(P) for each P < PZ'

A

P, and

Wz(P) > Lz(P) for each P > P 2

9 sz/dP(P) > 0 for each P

sz/dP(P) < 0, for each P.

Proof: Let P be the lowest price for which Q(P) = 0 (§ o if there is

]

none). For each such P < P we can write, for Q = Q(P)

[}

(19) W,(P) - L,(P) = PQ - 2[C(Q) - c(Q/2)]

= Q{P - [C(Q) - c(Q/2)}/(Q/2)} = QG(P)

where

(20) G(P)

P - [C(Q) - c(Q/2)1/(Q/2)
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Upon differentiating G(P) we have:

(21) G'(P) =1 - 2Q'{C'(Q) - €'(Q/2)/2 - [C(Q) - €(Q/2)]1/Q)}/q,

We recall that by strict convexity of C(Q), [C(Q) - €C(Q/2)]/Q < C'(Q)/2, and

thus by substitution

{c'(Q) - c'(Q/2)/2 - [€(Q) - €(Q/2)}/Q} > [C'(Q) - C€'(Q/2)]/2 > O.

Since Q'(P) < 0, it follows that G'(P) > 0. But G(0) < 0 and lim _ G(P)
N P~P
< P such that G(Pz)

P - C'(0) > 0 and therefore there exists a P,, 0 <P,

5 and G(P) > 0 for P > P2. Clearly

Pz = [C(Q) -~ €(Q/2)1/(Q/2) where Q = Q(P2) and from (19) wz(P) < L2(P) for P

0, G(P) <0 for P < P

< P, and Wz(P) > L2(P) for P > P

A Finally, to show that dwz/dP >0 for P £

5
Pz observe that

(22) dwz/dP =Q + Q'[P -C'(Q)] >0

since for each P € P, P - C'(Q) < G(P) < 0 and Q' < 0. To show sz/dP <0,

2!

simply observe that

(23) dL,/dP = Q' (P)[C'(Q(P)) - €' (Q(P)/2)] = O

by convexity of C(Q) and Q'(P) < 0.

We can now state the counterpart to Proposition 1:
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Proposition 2: In the game Fz. i.e., if the loser in the first stage of the

game is the Stackelberg leader in the second stage, there exists a unigue
SPNE in pure strategies in which both firms bid the price P2 which is

uniguely determined by

P, = [C(Q(P,)) ~ C(Q(P,)/2)]/(Q(P,)/2),

in the first stage. 1In equilibrium, each firm supplies one-half of the
total quantity demanded at that price and they both realize a positive

profit, C(Q(P,)) - 2C(Q(P,)/2).

Proof: The proof is similar to the proof of Proposition 2. We observe
first that T(P) = (W2(P) + L2(P))/2. The lowest price, P. in the first
stage in equilibrium cannot be lower than P2 since if only one firm bids P
it can benefit by increasing its bid a little (W2 is increasing below Pz)
and if both firms bid P then a firm can gain by increasing its bid and
becoming the loser as Lz(E) > T(P). This lowest price P cannot exceed P2.

Since if there is a losing playver he can choose P close enough to P2 with

P2 < P < P, become a winner and gain, as W2(P) > W2(P2) =L_(P > Lz(E) by

2 2)

Lemma 2.
Consider next a tie situation. Two cases are possible. 1In the first,

. close enough to P

WZ(E) = LZ(E). By deviating to P > P a player can

2 2’

become a winner and obtain W2(P) > W2(P2) =L ) 2 LZ(E) = T(P}. In the

2(P2
second, WZ(B) > Lz(g). By deviating to P < P, close enough to P, a player
can become a winner and obtain W2(P) > (Wa(g) + La(g))/z = T(P). Therefore

the lowest price is P2' There cannot be a winning player since he could
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still win by bidding P > P, close enough to P, and obtain WZ(P) > Wz(Pz).

2 2

So the game can only end in a tie where they both bid P It is easy to

2"
show that this is indeed a SPNE.

In the Appendix we analyze mixed strategy equilibria in Pl and Fz. We
show that even in this wider set of strategies there exists a unigque SPNE in

each game which is the pure strategy SPNE of Propositions 1 and 2.

We now turn to social welfare implications of subcontracting.

Proposition 3: P, < P¥ = C'(Q(P*)/2) < P

1 , where P* is the price that

2

maximizes consumer surplus plus producer surplus.

Proof: The price P*¥ and the quantities to be produced in the two identical

production facilities is determined from the problem

)
(24) maxg, o o P(Q)4Q - C(q) - C(Q* - @),

where P(Q) is the inverse demand function. Partial differentiation with

respect to Q¥, and g, yields

(23) P(Q*¥) - C'(Q* - q) =0, -C'(q) + C'(Q* - g) =0
and thus
(26) P(Q*) = C'(Q*/2)

But by the strict convexity of C(Q) it follows that
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(27) P, = C(Q(P,)/2)/(Q(P,)/2) < C'(Q*/2)

< P, = [C(Q(P,)) - C(Q(P,)/2)1/(Q(P,)/2).

Thus, from society's standpoint the price, Pl. is too low and
production too high if the winner in the first stage gets to set the terms
of the subcontract in the second stage and P2 is too high and production too

low if the loser in the first stage is the Stackelberg leader in the second

stage.

Remark: Suppose the terms of the subcontract are determined by a bargaining
process in which the winning and losing firms share the potential gains from
subcontracting in proportions s and 1 - s, respectively, with 0 £ s < 1.
The gain from subcontracting C{(Q(P)) - 2C(Q(P)/2) is realized entirely by
the winner in the game Fl and by the loser in the game Fz. Then it can be
shown that:

a. the quantity subcontracted is always Q(P)/2;

b. the SPNE price in pure strategies is

SC(Q(P)/2) + (1 - s){C(Q(P)) - C(Q(P )/2)]

Py =
Q(p,)/2

The Nash bargaining solution occurs at s = 1/2 and PS = C(Q(Ps))/Q(Ps), the
average cost of producing the entire quantity demanded. It can be shown
that there exists an s, say s¥*, such that Ps* = P*, the socially optimal

price and an s, say s**, such that PS** = Pm, the monopoly price, providing
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Thus, comparing Propositions 1 and 2 it is evident that were the firms
able to choose the means of subcontracting, they would both prefer that the
loser in the first stage be the one that sets the terms of the subcontract
in the second stage. The intuitive reason for this is that if the winner of
the first stage gets to set the subcontract in the second stage, the loser
realizes zero profit and therefore being the loser is very disadvantageous.
Thus, bidding in the first stage is aggressive to the point that both firms
realize zero profit in equilibrium. On the other hand, if the loser of the
first stage gets to set the terms of the subcontract in the second stage,
then being the loser is not disadvantageous and both firms bid less
aggressively in the first stage. While both firms are better off if the
loser of the first stage is the leader in the second stage, these profits do
not necessarily coincide with those that obtain under full cooperation,
i.e., the profit of a monopolist with two identical production facilities.
Examples can be constructed with explicit cost and demand functions in which
the monopoly price is above, equal to, or below the SPNE price if the loser
of the first stage is the leader in the second stage. It should be noted
that we have not indicated which sharing rule would be chosen by the firms
if they could. This would require adding a previous stage to the game in

which the sharing rule was determined strategically.

3. Competition to Supply a Fixed Quantity

The description of the games Fl and F2 remain the same in this section,

but we assume now that the demand function is of the form
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0 if P>P

(28) QP) = ¢ 0

i <
Q0 if P = PO

for the positive price P, and quantity QO' This is descriptive of the

0
situation in which the first stage involves bidding for production of a
fixed quantity as in a government contract. The analysis of the second
stage of the game remains the same since P is assumed to be fixed in this

stage. Thus the loser's and winner's payoffs as a function of the winning

price P are given by

For P < P: W, (P) = PQ; - 2€(Qy/2)
L(P) =0
W,(P) = PQ, - C(Q,)
L,(P) = C(Qy) - 2C(Q,/2)

For P > P, W (P) = L (P) = Wy(P) = L,(P) = 0.

The payoffs for both players in the case of a tie are

PQ0/2 - C(Qo/z), for P £ P
T(P) = {
o, for P > P

Ov

0

The prices

P_ = €(Q,/2)/(Q,/2),
P, = €(Qy)/Q,.

P, = [C(Qy) - €(Qy/2)1/(Qy/2),
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play an important role in describing the equilibria in the games Tl and Fz.
Note that W1 is an increasing linear function vanishing at Pa. w2 is a

increasing linear function vanishing at Pb and coincides with the constant

function L, at P
2 c

Note also that as above T = (W, + L

Proposition 4: 1In the game Fl. i.e., if the winner of the first stage of

the game is the Stackelberg leader in its second stage the following hold.
(a) 1If P0 > Pa there exists a unique SPNE in which both firms bid the

price Pl = Pa and end up with payoff zero.

(b) If P, < Pa then in any SPNE both firms bid prices higher than P

0 0

in the first stage. Moreover any two bids higher than P . support

0

an SPNE. 1In all these SPNE's, the firms produce zero and receive
zero payoffs.
(c) If PO = Pa then all SPNE's in (b} are still SPNE and there is an

additional SPNE in which both firms bid the price P each

Oy

produces Qo/z and receives a zero payoff.

Proof:

(a) Conditions similar to those of Lemma 1 hold here for P1 =

C(Qo/z)/(Qo/z) and the proof now follows that of Proposition 1.

(b) For any P £ P WI(P) < T(P) < 0. Thus the lower price in the

07
first stage in an SPNE cannot be lower than PO since in this case at least

one of the firms receives a negative payoff and it can always guarantee a

zero payoff. So in any SPNE the two bids are above P Indeed, any such

0
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two prices constitute an SPNE since the payoffs in this case are zero and no
one can improve upon it.

(c) Clearly, bidding PO is also an equilibrium.

Proposition'S: In the game Fz, i.e., if the loser of the first stage is the
leader in the second stage, the following hold.

(a) If PO > PC, then there exists a unigque SPNE where the firms bid
the same price Pc in the first stage and each receives the
positive payoff C(QO) - ZC(QO/Z).

{b) 1If Pb < PO < Pc, then all the SPNE's are of the following type.
One firm wins by bidding PO while the other bids a higher price.
This results in subcontracting in the second stage. Both firms
enjoy a positive profit, the loser's being higher.

{c) 1If PO = Pb, then all SPNE's of (b) are also SPNE here. 1In
addition, any pair of prices higher than PO are also SPNE prices
resulting in zero payoffs for both firms.

{(d) If PO < P any pair of prices higher than PO is an SPNE. These

b’
are all the SPNE's.

Proof:
(a) Conditions similar to those of Lemma 2 hold here and the proof is
similar to that of Proposition 2.
(b) Similar to Proposition 2, the lowest bid, P, cannot be below Py

P cannot exceed P, since in this case both realize a zero profit and a firm

0

can gain by bidding P become the winner and receive wz(Po) > 0. Thus

09

P = PO. It is impossible in equilibrium that both bid PO since by
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increasing the bid and becoming a loser, a firm receives L2(P0) > T(PO).
Therefore one firm bids PO and receives W2(P0) while the other bids a price

higher than PO and receives L2(P To see that this is indeed an

0)'
equilibrium we note that the loser receives the highest payoff in the game
and would not deviate and the winning firm can only lower its payoff by

bidding a lower price or receive zero by increasing its bid.

The proofs of (c) and (d) are simpler and left to the reader.

4. Summary

We have investigated a Bertrand duopoly with the potential for
subcontracting production to the rival as a two stage game. The presence of
convex production costs together with the requirement that each rival stands
ready to supply the entire quantity demanded at his quoted price creates the
incentive for subcontracting. Our analysis of the SPNE of the game
discloses that if the terms of the subcontract favor the loser of the game's
first stage then both rivals are better off than if they favor the winner.
(A result that should be of some comfort to all the losers in the world.)
Indeed, if the winner of the first stage sets the terms of the subcontract
in the second stage then competitién to be the winner dissipates away all
the profits. On the other hand, if the first stage loser sets the terms of
the subcontract then both firms realize the full benefits of subcontracting.

The presence of subcontracting possibilities does not in general assure
that the SPNE price will be socially optimal. However, the potential for
subcontracting does give rise to pure strategy SPNE, even though there is no
actual subcontracting in equilibirum, instead of only mixed strategy

equilibria that occur in the absence of subcontracting possibilities.
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There are a large number of possible extentions of our analysis. These
include considerations of more than two firms, firms with different cost
functions, repeated play of the game, the absence of complete information,
and the possibility of information sharing. Expansion of the game to
include the choice of the mode of subcontracting as a strategic variable

would also be interesting.



21

Appendix

We consider the games Tl and F2 (in the case of competition to supply a
market) when the firms use mixed strategies in the first stage. (Allowing
mixed strategies in the second stage does not change the analysis since in
this stage the leader has a dominant strategy.) We show that the results of
Section 2 do not change. The pure strategy egqguilibria in Propositions 1 and
2 remain the only equilibria also in the bigger set of mixed strategies. We
study a single game I' which generalizes both Fl and FZ'

Consider a two person game I in which pure strategies for both players
are prices in [0,w). We denote the players by 1 and 2 and when we use i and
Jj to refer to the players we always assume i # j. The payoff function to
player i is vi(Pi,Pj) where the price chosen by 1 appears always as the
first argument. The payoff functions are given by three continuous

functions on [0,»), L, T, and W, as follows.

r
IL(P.) if P, > P,
| J 1 J
Vi(Pi’pj) = :T(Pi) if Pi = Pj
[W(P.) if P, < P,
L4 i j

Clearly, vi is continuous at each point (Pi,Pj) when Pi # Pj' We assume
that the functions L, T and W satisfy the following requirements. There

exists PO > 0 such that

(1) for P < B, L(P) > T(P) > W(P);
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(2) For P > PO, W(P) =2 T(P) 2 L(P), where sirong inequality holds in a
neighborhood of P0 and both inequalities are strict whenever one
of them is;
(3) W(P} is not decreasing for P < PO;
(4) L(P) is not increasing for P > PO;

(5) W and L are differentiable at PO.

Observe that by continuity of L, T and W, L(PO) = T(PO) = W(PO) by (1) and
(2). A mixed strategy is a measure u on [0,) which we represent also by
its cumulative distribution function F. We identify each P € [0,») with the
mixed strategy with all mass at P. The payoff functions vi are extended

naturally to mixed strategies. For a pair of mixed strategies Fl and F2
v.(F.,F.) = j2§% v (P.,P.)dF.(P.)dF (P.)
ity Tdoede Vit 0y

The support of F, denoted supp(F), contains all points which do not have a
neighborhood of measure 0 (i.e., where F is constant). The set of atoms of
F (i.e., where F has a jump) is denoted by J(F). For P € J(F), u(P) is the
measure of P. A pair, (Fl’Fz)’ is an equilibrium if for each player i,

3
P #P., it follows that v, (P,F.) (= j© v, (P,P.)dF.(P.)) is continuous in P
] 1 J 0 1 J J ]

Vi(Fi’Fj) = max vi(F’Fj)' Note that since vi is continuous whenever

1

whenever P ¢ J(Fj). This remark can be easily used to prove the following

proposition.

Proposition 6: Let (Fl'Fz) be an equilibrium. Then for each price P and

player i, vi(P'Fj) < vi(Fi'Fj)' Moreover, equality holds for each
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P e supp(Fi) whenever either P € J(Fi) or P ¢ J(Fj).

Corollary 1: Let (Fl’Fz) be an equilibrium. If Pi € supp(Fi) and either

F >
Pi € J(Fi) or Pi & J(Fj) then for each P, Vi(Pi,rj) > Vi(P,Fj).
Theorem 1: T has a unique equilibrium in mixed strategies given by (PO,PO).

We note that the functions Wl, Ll and T as well as the functions wz, L2

and T satisfy all the requirements (1)-(5), and therefore by Theorem i, Fl

and Fz each have a unigue SPNE in mixed strategies.

We prove the theorem through Lemmas 3 and 4. We assume throughout the

proof that (Fl'Fz) is an equilibrium of .

Lemma 3: min(supp(Fl) U supp(Fz)) > Po.

Proof: Let P = min(supp(Fl) u supp(Fz)) and assume P < Po. Now either
P € J(Fl) N J(Fz) or for at least one j, P ¢ J(Fj). In either case, by

Corollary 1, vi(g,Fj) > vi(Po,Fj). We finish the proof by contradicting the

last inequality. Indeed, for Pj > PO, vi(g,Pj) = W(P) & W(PO) = vi(PO,Pj)

0 _ 0
by (3). For P < Pj <P, vi(g,Pj) < T(Pj) < L(Pj) = vi(P 'Pj) by (1). Thus

oo

vi(E.Fj) = IP

o
(P,P)AF (P.) < v, P ).
v; (B,P)AE () < v (P7,P,)

Lemma 4: For at least one player i, Fi is the pure strategy Po.

Proof: Let P = max(supp(Fl) u supp(Fz)) and suppose P > PO.
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Case 1. P ¢ supp(Fi) and P £ J(Fj).
By Corollary 1, vi(P0 + e,Fj) - vi(E,Fj) < 0. Evaluating this
difference and assuming that P0 + e ¢ J(Fj) and that Po + & < P we find,

using (4) and (2), that

p 0 .
i) (WP~ + &) — L(P.,)IdF (P.)
p0.c [l AN
p 0 0
> J (w(P® + e) - L(e® + €)1dF.(P.)
plie 3o

mee® + &) - LE® + &)] JPO dF (P,) Z 0.
P +e

Thus, we conclude that [W(P0 + €g) - L(P0 + g)] JPO dF, = 0. But for small
P +e

enough ¢, W(P0 + g) - L(P0 + €) > 0 by (2) and therefore jpo dFj = 0.
P +g
Letting € » 0 and using Lemma 3, we conclude that Fj is PO.

Case 2. P € J(Fl) M J(Fz) and W(P) = L(P).
By (2) also T(P) = L(P), and vi(P,P) = L(P). The computations of Case

1 remain exactly the sanme.

Case 3. P € J(Fl) n J(Fz) but W(P) > L(P).
We show that this case is impossible. By (2) alsoc W(P) > T(P) > L(P).
By Corollary 1, vi(P - e,Fj) - Vi(P’Fj) < 0. But this difference when

P-¢¢g J(Fj) isg

J[P—e,P) (Wp - ) - L(Pj)]dFj(Pj) + #j(P)[W(P + €) - L(P)]



When € -+ 0 the integral vanishes and the other term converges to
yj(P)[W(P) - L(P)1 > 0 by the stipulation of the case, which is a
contradiction.

Proof of Theorem 1: By Lemma 4 there exists a player i such that Fi is Po.

By Lemma 3, supp(Fj ) € [Po,m). Using Corollary 1 and (4) and (5) for

p0 . € ¢ J(Fj),

02v. (P’ +¢e,5.) -v. (P F.)
i J 1 J

P e ar e ¢ 7 WO+ e)dE (b)) - L)
T o BPPAR B A

P P +e

v

Lp? + e)ﬂj((Po,Po +e)) + weed + e)#j([Po v e,®))

+

uj(P°)L(P°) - n(p%

L(p®) + eL' (P%) + 0(8)]#j((P0.P0 + €))

+

m(e®) + ew' (p°) + O(S)Jﬂj(IPO v e@))

+

uj(Po)L(PO) - u(eY)

e[L'(PO)ﬂj((PO,PO v e)) + w'(P°)uj((P° + e,@))] + 0(e).

Since /.LJ.((PO,Po + g)) = 0, it follows that

€-0
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o 0 0 0 0 0
0 2 lim 1nfe~0 [vi(P + e,Fj) - vi(P ,Fj)l/e > W' (P )yj((P ,©)). But W' (P)

> 0 and hence ﬂj((Po,w)) =0, i.e., Fj is PO.
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