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1. Introduction

The bilateral bargaining problem in which a seller and buyer negotiate
the exchange of a good (or, more generally, two rational individuals attempt
to arrange any mutually beneficial transaction) is fundamental to the study
of economics. It is enigmatic whether two rational agents will reach
agreement and. if so, how they will divide the surplus, even under the
simplifying assumptions that all information is common knowledge and that
all dealing occurs at a single moment in calendar time. Yet the bargaining
problem becomes still more complex when we introduce two additional.
essential features into the model: (1) the bargaining process is explicitly
dynamic and (2) each party possesses private information.

In this paper, we analyze the seller-offer bargaining game with two-
sided incomplete information. A seller repeatedly proposes prices to a
buyer, who accepts or rejects each offer. Each trader's valuation for the
single good is unknown to the other player, but the distribution functions-
for seller and buyer valuations are common knowledge and have common
support. Bargaining continues untjl such time that an offer is accepted.
Although this game is one of the most streamlined infinite-horizon
bargaining games with private information on both sides. we will see in this
paper that it provides a fairly rich environment for studying the nature of
sequential bargaining.

One of the basic issues we explore is the relationship between static
and dynamic bargaining. Research by other authors had warned that. in a
dynamic context. players would necessarily suffer a substantial loss in ex-
ante expected gains from trade (relative to the ex-ante efficient

mechanism), due to their "inability to commit to the static mechanism”
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(Cramton. 1988, Section 6). The intuition behind this critique is that
optimal mechanism design requires that, sometimes, the buyer's valuation
will strictly exceed the seller's and yet the players will trade with
probability zero. 1 Such an arrangement--plausible in a static context—-
might conflict with our notion of sequential rationality in a dynamic game
if it necessitates "that the bargainers are able to commit to walking away
from the negotiating table, even Qhen it is common knowledge that the gains
from trade are positive” (Cramton, 1984, p. 591). Roughly the same argument
is implicit in Fudenberg. Levine and Tirole (1985). and Chatterjee and
Samuelson (1986, 1987).

Another fundamental issue we study is the role of stationarity in
bargaining solutions. Many authors have argued that stationarity--the
notion that history should matter only insofar as it is reflected in the

current "state"2

~-is an interesting property to find in sequential
equilibria of bargaining games.3 It had been hoped that a restriction to
stationary sequential equilibria would provide attractive solutions to the
infinite-horizon bargaining game with two-sided incomplete information,
especially as the time interval between. successive offers was allowed to
converge to zero (so that the extensive form concealed arbitrarily little
exogenous precommitment). Unfortunately, efforts to construct such
equilibria were frustrated by what has become known as the Coase conjecture:
various stationarity restrictions in bargaining games with one-sided
incomplete information imply that the offers of the seller (the uninformed
party) rapidly converge to the lowest buyer valuation.

In this paper, we establish a series of results concerning stationary

sequential equilibrium in the seller-offer bargaining game. One major
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finding is that there is considerable loss in generality and plgusibility in
examining equilibria which satisfy the additional restriction that the Coase
conjecture holds for the lowest seller type. This additional restriction
does delineate what might have seemed to be a natural class of sequential
equilibria and, indeed, the equilibria in Cramton (1984) and Cho (1988)
satisfy the latter requirement. Unfortunately, we demonstrate in Theorem 2
that, when the supports of the seller and buyer distribution functions have
a common minimum value (and the seller distribution does not possess a mass
point at the bottom of its support), the restriction has a rather severe
implication: when the time interval between offers is made brief, the

bargaining outcome approximates zero trade. That pessimistic conclusion

might be thought to support the concern that inefficiency is inherent in
sequentiality.

However, all is not lost in the study of stationary sequential
equilibria of this game, provided we forego the above property. Instead. we
consider equilibria in which the lowest seller type does not fully reveal
hér valuatioﬁ before beginning to sell {(and in factAnever fully reveals),
and so the Coase conjecture need not hold. Our challenge is then to
identify a class of static mechanisms which are implementable by stationary
sequential equilibria, in the sense that there exists a sequence of such
equilibria whose outcomes converge (in measure) to the desired static
mechanism. Since the seller makes all the offers, a natural definition to

propose is the following: a seller-first mechanism is a static mechanism

which would maintain its incentive compatibility even if the seller were
required to publicly reveal her type before the buyer made his announcement.

Although the seller-first mechanisms are natural candidates for
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outcomes of seller-offer bargaining games, we demonstrate that not all
seller~-first mechanisms are implementable. The reason for this is that the
sequential nature of the game does place some restriction on the form of the
equilibrium: certain deviations by the seller cannot be deterred by even
the most adverse buyer inferences. The avoidance of unstoppable deviations

motivates our definition of sequentially seller-first mechanisms. We are

then able to establish the main result of the paperl Theorem 3:
(essentially) every sequentially seller-first mechanism is implementable in
stationary, sequential equilibria.

We next ask: What is the seller-first mechanism which maximizes gains
from trade? In Theorem 4, we assume that the distribution function of
seller valuations is convex and the distribution function of buyer
valuations is concave. Surprisingly, we demonstrate that the "monopoly
mechanism” (in which each seller type charges her own monopoly price against
the buyer distribution) is efficient within the class of seller-first
mechanisms. Since it also satisfies the sequentiality requirement., we know
that it is implementable by stationary sequential equilibria.

While the monopoly mechénism typically does not maximize expected gains
from trade within the class of all incentive compatible bargaining
mechanisms.4 it frequently comes fairly close. In the example where seller
and buyer valuations are each uniformly distributed on a common interval.
the monopoly mechanism realizes 8/9 of the gains from trade achieved by the
efficient static mechanism. (See, also, Chatterjee and Samuelson., 1983:
Myerson and Satterthwaite, 1983: and Myerson, 1985.)

Another reasonably attractive mechanism which can be implemented in

stationary strategies is the single-price mechanism: for arbitrary price m,
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the players trade with probability one whenever the seller's valuation is
less than w and the buyer's valuation exceeds w. and they trade with
probability zero otherwise. In the double-uniform example, the "competitive
mechanism"” (where m equals the midpoint of the support) also realizes 8/9 of
the gains achieved by the efficient static mechanism.

We thus argue that there is no need to despair of dynamic bargaining
processes with asymmetric information. Rather appealing outcomes of the
bargaining process are consistent both with stationarity and sequential

rationality.

2. Literature Survey

The seminal paper examining infinite-horizon, offer/counteroffer
bargaining games was that of Rubinstein (1982). He found that the
alternating-offer game with complete information possesses a unique subgame
perfect equilib{ium. Moreover, he showed that stationarity is implied by
the solution concept in such complete information games.

Much of the résearch on bargaining with one-sided incomplete
information has centered about Coase's (1972) conjecture that a seller's
price would drop toward the competitive level "in the twinkling of an eye.“5
It turns out that the validity of the Coase conjecture hinges on whether a
certain version of stationarity is required to be satisfied, and this in
turn depends on the distributional assumptions. In the case of "the gap”
(i.e., the seller's valuation equals s, the buyer's valuation is distributed
over [b,b] where b > s, and the buyer's distribution function is Lipschitz-
continuous at b), sequential equilibrium implies stationarity and hence the

Coase conjecture in the seller-offer game (Fudenberg, Levine and Tirole,
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1985, and Gﬁl. Sonnenschein and Wilson, 1986). In the case of "no gap"
(i.e.. b £ s), stationarity is not implied by sequentiality. If it is
assumed, the Coase conjecture holds (Gul, Sonnenschein and Wilson, 1986); if
it is not assumed., a folk theorem holds in the seller-offer game (Ausubel
and Deneckere, 1986, 1988).

One earlier (Cramton, 1984) and one contemporaneous (Cho. 1988) paper
have been written using the same {two-sided incomplete information)
extensive form which we analyze in this article. Peter Cramton studied the
seller-offer game where seller and buyer valuations are each privately known
and uniformly distributed. Cramton's equilibrium path displays "separation-
over-time." Low-valuation seller types make revealing offers early in the
game, while high valuations pool by making unrealistic offers (yielding zero
sales) until times which credibly signal their types. After the initial
revealing offer, the seller follows the successive-skimming strategy of the
Coase conjecture (Stokey, 1981, and Sobel and Takahashi, 1983), where price
descends exponentially toward her reported valuation. In deciding when to
make her first serious offer. the seller must balance two competing factors:
late revelation permits high prices and hence more profitable sales; early-
revelation requires reduced price but also lowers the cost of delay. The
seller thus delays agreement in order to signal strength. Since delay hurts
a low-valuation seller more than a high-valuation seller, strategic delay
serves as a credible (albeit costly) screening device.

In-Koo Cho studied the seller-offer game with more general
distributional assumptions, and proved the existence of a sequential
equilibrium with a different description. All seller types reveal their

valuations in the initial period. However, higher types (through their
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higher offers) induce lower probabilities of acceptance. The Cho
equilibrium is stationary in an extremely strong sense: subsequent behavior
only depends on the seller's beliefs about the buyer's valuation. (In other
words, the buyer's beliefs about the seller's valuation are not part of the
"state.") Hence, the seller must prove her valuation anew in each
subsequent period. Whereas Cramton's seller encountered an incentive
constraint only in periods up until the one in which she first revealed,
Cho's seller faces an analogous6 incentive constraint in all subsequent
periods as well.

Interestingly, despite the fact that Cho's post-revelation equilibrium
paths differ from those of bargaining games with one-sided incomplete
information, Cho argues that (just as in Cramton's equilibrium) the Coase
conjecture'is satisfied for the seller with lowest valuation. It should
therefore be observed that when the lowest seller and lowest buyer
valuations coincide, and as -the t}me interval between offers approaches
zero, both equilibria yield arbitrarily little utility to the lowest (zero)
seller type. Thus, as far as efficiéncy and "delay"” are concerned, the
Coase conjecture becomes a two-edged sword. It requires extreme efficiency
(and "no delay") for the seller with zero valuation. But, in order to
prevent the zero seller from mimicking higher valuations, this may

necessitate extreme inefficiency (and long delay) for the seller with

positive valuation. 1Indeed, in Section 6, we demonstrate the "no-trade
theorem"”: as the response time approaches zero, strategic delay becomes
arbitrarily costly.

Some other papers have described sequential equilibria with different

qualitative properties, but in games with different extensive forms.
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Chatterjee and Samuelson (1957) were able to demonstrate the existence of a
unique Nash equilibrium in a game where the seller repeatedly makes offers
but where the set of prices, the set of seller types, and the set of buyers
are each doubletons. Since Chatterjee and Samuelson worked in a game with
different extensive form, we find it illuminating to. instead. describe an
equilibrium with a similar flavor in the game that we are studying in this

7

article. Suppose that the seller distribution has support on [§_§] and the

buyer distribution has support on [9,5], where s < b < s < b. In every
period, in equilibrium, the seller charges either the price s or the price
b. Charging the price b has the effect of immediately ending the game, as
the buyer accepts the price b with probability one. However, whether the
seller first cuts her price to b, or whether the buyer first accepts a price
of s. is determined as if the players were engaged in a war of attrition.
Delay, as usual, becomes a credible signal of strength. However. what is
most striking about this equilibrium is that, despite the fact that only the

seller is permitted to make offers, the equilibrium is almost fully

symmetric. In every period n, there exists a cutoff sn such that the seller
cuts her price to b if and only if her valuation is less than S, There
also exists a cutoff bn such that the buyer accepts the high price of s if
and only if his valuation exceeds bn’ Since s < s0 < s1 < s2 < ... < Db and
b > bO > b1 > b2 ... > s. each player's survival in the war of attrition
causes his rival to update his beliefs (and makes the latter more
pessimistic).8
Finally, Cramton (1988) constructed an equilibrium in a continuous-time

model in which the bargainers use delay to signal their strengths. The

equilibrium has the attractive features that it is stationary and fully
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symmetric--the game permits each player the endogenous option to make the
first offer. However, the extensive form has the property that. after a
trader has made an offer, she must wait until her rival replies before
making her next offer. As such, the extensive form may conceal a certain
amount of commitment power that is not present in the standard
offer/counteroffer bargaining game; it is not completely clear how to
implement an analogous equilibrium in stationary strategies in the standard

model .

3. Sequential Games and Static Mechanisms

Consider a trading situation in which indivjdual 1 (henceforth referred
to as the seller) owns a single indivisible object which she would like to
sell to individual 2 (referr;d to as the buyer). We assume that s. the
seller's valuation for the object, and b, the buyer's valuation for the
object, are private information. Thus, each trader knows his own valuation
at the time of bargaining, but treats his opponent's valuation as a random
variable. In this paper, we assume that these random'variables are
distributed independently, according to the (common knowledge) distribution

functions Fl and F respectively. We also assume that the supports of

X
these distribution functions coincide, and that they form an interval.
Without further loss of generality, we will consider the case where

supp Fi = [{0,1], for i = 1,2. For future reference, let us also denote by

#i the measures corresponding to Fi. so that yl([O.s]) = Fl(s) and

yz([o,b]) = Fz(b). Define a bargaining mechanism to be a game in which each

trader simultaneously reports his private information to a mediator, who

then determines whether the good is transferred and how much the buyer must
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pay the seller. A bargaining mechanism is chafacterized by two (Borel
measurable) outcome functions: p(s,b), which denotes the probability of
trade given respective reports of s and b; and x(s,b), which denotes the
expected transfer payment given those same reports. For any bargaining

mechanism {p,x}, we define the following functions:

B, (s) = J Bs.vy)diy(vy)i  By(b) = J plvy.blda (v,);

- 1 - 1
x,(s) Io x(s,vz)duz(vz); xz(b) = Io X(vl,b)d,ul(vl):

Ul(s ,8) = xl(s') - spl(s ) Uz(b ,b) = bpz(b ) - X2(b ).
Thus, il(s) is the expected revenue and 51(5) is the probability of losing

the object, for a seller with valuation s. U ,(s',s) denotes the expected

1(
utility to a seller of valuation s, when reporting a valuation s' to the
mediator, and when the buyer reports truthfully. The quantities 52(.),

§2(°), and U2(°.°) have a similar interpretation.

A bargaining mechanism is incentive compatible if honest reporting

forms a Bayesian Nash equilibrium, i.e.,

v

U ,(s',s) Y s,s' € [0,1],

(1) Ul(s,s) 1

\'%

Uz(b.b) 2 Uz(b‘.b) ¥ b,b' € [0,1].

A bargaining mechanism is (interim) individually rational iff:

v
(=}

(2) Ul(s.s) v s e [0,1],

v
(=}

U2(b.b) VYV be [0,1}.
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Mechanisms satisfying both the individual rationality and the incentive

constraints will be referred to as incentive compatible bargaining

mechanisms (ICBMs).

Ih this paper, as in our previous work {Ausubel and Deneckere, 1988)
with one-sided information, we study the relationship between incentive
compatible bargaining mechanisms and sequential equilibria of infinite-
horizon bargaining games. Specifically, the game form we analyze here has
the seller make offers at discrete moments in time, spaced equally apart.
Let z (z > 0) denote the time interval between successive offers. Then the
seller makes bids at times t = 0,z,2z,3z,... . In each of these time
periods, after hearing the seller offer, the buyer has an opportuqity to
accept or reject the offer. If the offer is accepted, the game ends and
payoffs accrue. If the offer‘is rejected, thé bargaining continues. Both
players exhibit impatience, which is specified by a common discount rate r
{r > 0). Hence, if the good is traded at time t for the price w betyeen a
seller with valuation s and a buyer with valuation b, the seller derives a
surplus of e~rt(n - s) and the buyer obtains a surplus of e—rt(b - .

Corresponding to any Nash equilibrium of the seller-offer game, there

exists a sequential bargaining mechanism.9 Such a mechanism specifies a

pair of outcome functions t(e,e) and x(e,¢), where t(s.b) denotes the time
that the good will be transferred to the buyer, and x(s.b) the expected

payment to the seller, conditional on the reports (s,b). Let 51(5) =

fl -rt(s,b)

. -rt(s.b
5 e du, (b) and p,(b) = j(l) e Ttis.b)

dyl(s). The incentive
compatibility constraints for the sequential bargaining mechanism then are
also (1). However, observe that acceptances are necessarily ex-post

individually rational (along the equilibrium path), yielding the stronger
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individual rationality constraints:

(3) Uy(s.s) = x,(s) - sp,(s) 20. Vs e [0.1],

e—rt(s.b)

b - x(s.b) 2 0, V s.b € [0.,1}.

Thus., every Nash equilibrium of the seller-offer game induces, through the

e—rt(s.b)' a static bargaining mechanism which is

transformation p(s.b) =
incentive compatible.
Conversely, consider any ICBM {p,x} which satisfies buyer ex-post

individual rationality. Then, the mechanism {p,x} suggests a time and a

price at which (s.b) should trade. through the transformation:

(4) t(s.b) -{1/r) log p{s.b).

w(s,b)

x{s.b)/p(s.b),

where w(s.b) is defined only when p(s.b) > 0. In one-sided incomplete
information. where there is but a single seller type. transformation (4)
parametrically defines a nonincreasing path of prices for the seller to
charge over time. Moreover. every such price path is implementable in the
seller-offer game (Ausubel and Deneckere. 1988).

However. in the case of two-sided incomplete information. matters are
much more complicated. Typically, the times and prices generated by (4)
cannot be interpreted as "nrice paths" for the seller. For fixed s, there
will frequently exist b and b' such that p(s,b) = p(s.b') > 0 but
X(s,b) # x(s,b'). Equation (4) then requires the same seller to charge two

different prices at the same time, and for different buyer types to accept
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these different prices. (The reader may wish to attempt this exercise for
the Chatterjee-Samuelson (1983) mechanism, described by (ps'xs} at the end
of Section 8. below. This ICBM would ask s € [0, 3/4) to charge a continuum
of prices. all at the same time.) Furthermore. even if {mw(s.b},t(s.b)}
parametrically defines a price path for seller s, the path need not be
monotone nonincreasing.

The interesting questions to be asked are: Under what conditions on
{p.x} does transformation (4) suggest declining seller price paths and when
can close approximations to these price paths be sustained by sequential
equilbria of the seller-offer game? These guestions are nontrivial. for as
will be shown in Section 4. there exist ICBMs which lend the price-path
interpretation yet cannot be implemented. However. there also exists a nice

class of ICBMs which are implementable.

4. Seller-First Mechanisms

We will now define a class of static mechanisms from which a menu of

(nonincreasing) price paths can be read off quite naturally.

Definition 1: A seller-first mechanism is an ICBM {p,x} satisfying:

(i) bp(s,b) - x(s,b) = bp(s.b') - x(s.b'). V¥ s.b.b'" € (0.1]:
(ii) x{(s,b) - sp(s.b) 2 0, Y s.b € [0.1]: and
{iii) bp(s.b} - x{s,b) > 0. Y s.b e [0.1].

Condition (i) above requires that the buyer report truthfully, given

knowledge of the seller's type. Thus. seller-first mechanisms are ICBMs for
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which the buyer's incentive constraints are not upset if he were told which
seller he was facing. In essence. this requires that a seller's first trade
occurs either at a fully-revealing price, or that any seller types which
have pooled together up until that point keep on pooling forever after. One
way to visualize the bargaining situation is to imagine that the mediator,
rather than soliciting simultaneous reports, first asks the seller to report
her type within earshot of the buyer. Only then does the mediafor require
the buyer to reveal his valuation. Conditions (ii) and (iii) strengthen the
requirements in the definition of an ICBM from interim IR to ex-post IR. for
sellers and buyers, respectively. The reason for insisting on seller ex-.

post IR is explained in the following lemma.

Lemma 1: Let o be a sequential equilibrium of the seller-offer game, and
let {p,x} be the induced static bargaining mechanism. Then if {(p,x}

satisfies Definition 1(i) and (iii), {p.,x} also satisfies Definition 1(ii).

Proof: We will prove that (i) and (iii) imply that every seller type
charges a (declining) price path, i.e., announces a (weakly) decreasing
sequence of prices. This then immediately implies ex-post IR for the
seller. Indeed, if the seller's price path ever dropped below her
valuation, the seller could deviate by naming prices which induced zero
sales, and would thereby avoid making unprofitable trade.

To see that the price paths are monotone, first observe that

Definition 1(i) implies:
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bp(s,b) - x(s,b) 2 bp(s,b') - x(s,b'), and

(5)

b'p(s,b') - x(s,b') 2 b'p(s,b) - x(s,b).

Adding these inequalities yields: (b' - b)p(s,b') =2 (b' - b)p(s,b). Thus,
if b' > b, we have p(s,b') 2 p(s,b).

Also, from (5) we see that:
b'[p(s,b') - p(s,b)] 2 x(s,b") - x(s,b) 2 b{p(s.b') - p(s.b}].

Letting b' - b, this implies dxs(b) = bdps(b), for all b € [0,1], where
xs(b) = X(s,b) and ps(b) = p(s,b). Since x(s,0) = 0, this implies

x(s.b) = 18 rdp_(r). Hence:
3/3b (x(s,b)/p(s.,b)] = {[bp(s.b) -~ X(S.b)]/p(s.b)lz}{a/ab [p(s.b)]1},

whenever ps(b) is differentiable (and a similar expression holds at
discontinuities). By Definition 1(iii), bp(s.,b) - x(s,b) 2 0, and hence

x(s,b)/p(s,b) is increasing in b. {1

In the course of proving Lemma 1 we also established that, given
p(e,+), there is at most one function x(e.¢) so that {p,x} is a seller-first

mechanism. This function is given by x(s,b) = Ib

0 rdps(r). Hence we obtain

the following corollary to Lemma 1:

Lemma 2: Suppose {pl.xl} and {pz,xz} are seller-first mechanisms with
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It is worth noting that the set of all seller-first mechanisms has a
simple structure: it is a nonempty, closed, convex subset of the set of all
incentive compatible bargaining mechanisms. It is also a fairly rich set,

as the next three examples demonstrate.

Example 1: Single-price mechanisms.

Consider the direct mechanism:

r r

11 |t 0O<s<mand w £ b <1,
PI(s.b) =4 x1(s.b) =4 if

|0 |0 otherwise.

L L

These mechanisms can be thought of as arising from a static game in which
the seller and buyer announce simultaneous price bids. If the seller's bid
is lower than the buyer's, then the buyer obtains the object at the average
of the two bids. It is easy to see that one type of Nash equilibrium of
this game (there exist others: see Chatterjee and Samuelson (1983).
Leininger, Linhart and Radner (1987)., and Satterthwaite and Williams
(1988a.b)) has: the seller bid w, if s £ 1w, and 1, otherwise: and the buver
bid . if b 2 m, and 0, otherwise (for any m satisfying 0 < m < 1). Observe
that, given this strategy of the seller. knowledge of the seller's type does

not help the buyer in formulating his own optimal bid.

Example 2: The monopoly mechanism.

Consider the mechanism:
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r r
2 (1 » g(s) b 2 g(s),
p (s,b) =4 X“(s,b) =4 if
{0 {0 otherwise,
L L

where g(s) € arg max_ {(m - s)(1 - Fz(n))).

This type of mechanism was studied by Chatterjee and Samuelson (1983)
for the case where Fz(b) = b. It corresponds to a game in which the seller
has the ability to commit herself to a take-it-or-leave-it offer.
Obviously, the optimal strategy for each seller is to name one of her

monopoly prices.

Example 3: Revelation -over time.

Assume that F2 is absolutely continuous, and that b - (1 - Fz(b))/fz(b)
is strictly increasing, so that the profit function to any seller s € [0,1],
W(m:;s) = (m - s)(1 - Fz(n)), is strictl& quasiconcave in w. Let
g(s) = arg maxTr W(m:s), and let q(s) be any increasing C1 function defined
on [0,1]. Also assume that g(s) < g(s) £ 1, that q(0) < 1, and that

q'(s) > 0 whenever q(s) < 1. Consider the following mechanism:

r r
3 fh(s) 3 |h(s)q(s) b 2 q(s),
P°(s,b) =4 x"(s,b) =4 if
|0 |0 otherwise.
L L

where h(s) = exp{-Iz q'(s)[fz(q(s))/(l - Fz(q(s))) - 1/(q(s) - s)lds}, and
; = sup{s: q(s) < 1}. It is possible, though somewhat tedious, to check

that {Ds,xs} is an ICBM. Observe that h(s) = 1, and that h(es) is an
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increasing function of s. Thus, if we convert {ps,xs} to times and prices
at which trade takes place (using transformation (4)), we see that high
valuation sellers trade earlier, and at higher prices than low valuation
sellers. As in Cramton (1984), time acts as a screening device. As
discussed earlier, however, Cramton has low valuation sellers reveal before
high valuation sellers reveal. We would obtain a similar revelation pattern
here if we chose 0 £ g{(s) < g(s), with g(1) > 0. 1In that case the formula

for the probability of trade would become:

h(s) = exp{So q'(s)(f,(a(s))/(1 - Fyla(s))) - 1/(als) - s)]ds},

Observe that in this mechanism, as in the previous one, the first serious
price offered by the seller is perfectly revealing, and hence that the buyer
receives no additional information when told what seller type he is facing.
Observe also that we could have the seller offer declining price paths after
revealing her type through her first serious offer; the explicit description

of the resulting mechanism would become somewhat cumbersome.

Although a seller-first mechanism yields a price path for every seller,
its requirements are insufficient to guarantee implementability. All that
is assured is: 1if a seller is required to select from the menu of price

paths implicit in the mechanism and is bound to follow her selection for all

future time, then the seller truthfully reveals her type; furthermore,
buyers accept or reject as posited by the mechanism. However. in the
seller-offer bargaining game, a seller is free to initially follow a price

path from the menu but to subsequently deviate in any number of arbitrarily
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complicated ways, and thereby raise her profit above the value indicated by
the static mechanism. Many such deviations may be deterred by adverse

inferences, but it is never possible to deter a deviation which entails zero

probability of future trade, i.e., a deviation which is tantamount to a

unilateral refusal to further trade. Consider, for example, the following

mechanism:
F F
i1 (1/2 0 £s < 1/4 and 3/4 < b £ 1,
I I
4 11/2 4 {1/8 0 £s < 1/4 and 1/4 £ b £ 3/4,
p(s.b) = X (s,b) = if
|16/27 {7/27 1/4 £ s £ 7/16 and 7/16 £ b £ 1,
I |
|0 |0 otherwise.
L L

v

One way to think of mechanism {p4,x4} is that sellers in [0,1/4) pool by
initially charging a price of 1/2 and subsequently, at a time they discount
to 1/2, cut their price to 1/4. Sellers in [1/4,7/16] also pool, and charge
a price of 7/16 at a time they discount to 16/27, and never cut their price
thereafter. Finally, sellers in (7/16,1] pool and charge a price of 1
forever. It is easy to verify that {p4,x4} is an ICBM, and that it
satisfies the additional requirements of a seller-first mechanism. However,
the mechanism is not implementable by sequential equilibria in the seller-
offer game. To see this, note that sellers in {1/4,7/16] could select to
initially pool with sellers in [0,1/4), but subsequently refuse to cut their
price any further. While it is entirely possible that this refusal would
not lead to any further sales (since buyers expect prices to drop to 1/4),
sellers would be better off by following this strategy than by selecting the

price path required by the static mechanism. The easiest way to see this is
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to observe that the seller of type 7/16 would make exactly zero profits from
charging a price of 7/16 at a time discounted to 16/27, but would make
strictly positive profits from charging a price of 1/2 at time O.
Similarly, all sellers in (1/4,7/16] would prefer to deviate in the manner
described above.

More generally, consider a seller of type s, who initially selected a
price path geared toward type s' # s. A refusal to deal would then become
profitable, relative to continued adherence to the price path of s', when
the price dropped below s. A stopping rule of this form would assure s a

payoff of:

~ 1 ’
(6) Uj(s',s) = [o [x(s'.b) - sp(s',b)]du,(b),
b(s',s)
where b(s',s) = inf {b € [0,1]: p(s',b) > 0, and x(s',b)/p(s',b) = s}
denotes the last buyer to purchase from seller s' at a price at least equal
to s. Observe that 61(s,s) = Ul(s.s) in seller-first mechanisms, but that

U (s',s) 2 U

1 (s',s) generally. Thus, a seller-first mechanism must satisfy

1
an additional incentive constraint to become implementable. We refer to
seller-first mechanisms satisfying this additional incentive constraint as

sequentjally seller-first mechanisms.

Definition 2: A sequentially seller-first mechanism is a seller-first

mechanism satisfying:

U (s,s) 2T (s'.s), ¥s',s € [0,1].
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Although a formal definition of implementation must wait until the next
section, we conclude with a statement of Theorem 1, which follows from Lemma

2 and the above reasoning:

Theorem 1: Every seller-first mechanism which is not sequentially seller-
first cannot be implemented by sequential equilibria in the seller-offer

game.10

Finally, it is worth noting that there is an easily described subclass
of the class of seller-first mechanisms for which Ul(s'_s) = Ul(s',s);
namely, mechanisms for which p(s,b) takes on at most one value different
from zero, for every s € (0,1]. In such mechanisms, the seller never cuts

.

her price below her first serious offer.

5. Implementability in the Seller-Offer Game

We will now make precise what we mean by the statement "{p,x} is
implementable by sequential equilibria of the seller-offer game.” The most
obvious definition to propose is that {p,x} is implemented by'a sequential
equilibrium g in the seller-offer game, with time interval z, when o induces
the mechanism {p,x} through the transformation p(s.b) = exp{-rt(s,b)} and
X(s,b) = m(s.b)p(s,b), where t and 1 denote the times and prices at which s
and b trade in the equilibrium. Such a definition is somewhat
unsatisfactory for two reasons. First, since we are working with a
discrete-time model, the set of implementable equilibria would most likely
not be invariant with respect to the time interval between offers. A second

(and somewhat related) reason is that we are interested in understanding the
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outcome of the bargaining situation when there is virtually no restraint to
the rate at which the seller can make offers. These considerations lead to

the following definition:

Definition 3: Let {p,x} be an arbitrary ICBM. We will say that {p,x} is

implementable by sequential equilibria of the seller-offer game if there

exists a sequence {cn.zn}:_l such that:

(i) zn { 0 and, for every n 2 1, cn is a sequential equilibrium of the

seller-offer game where the time between offers is zn; and
(ii) for each € > 0, and for each u ¢ {ul X @, 2 x #2}’ where R denotes
the Lebesgue measure on [0,1], the ICBM's {pn.xn} induced by "

satisfy:

(7) 4{(s,b): [p"(s.b) - p(s.,b)| > €} = 0
(8) ui{(s,b): |x™(s.b) - x(s.b)| > €} = 0.

While our notion of convergence of {p",x"} to {p.x} is fairly weak, namely
convergence in (#1 X 9)- and (Q X yz)—measure, its implications are very
strong. For, as we show in Proposition 1 below, (7) and (8) imply uniform

convergence of buyer and seller utilities.

Proposition 1: Let {p,.x} be an arbitrary ICBM, and let {pn.xn} be a

sequence of ICBM's such that (7) and (8) hold. Then, if we let U?(s,s) =
-n ~-n n = = .
xl(s) - spl(s) and Uz(b,b) = bpz(b) xz(b), we have:

|U2(S.S) - Ul(s.s)l - 0, uniformly in s; and
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|U(b.b) - U,(b,b)| ~ 0, uniformly in b.

Proof: Since {p,x} is an ICBM, Myerson and Satterthwaite (1983, equation 4)

implies that Ul(s,s) = I; Bl(vl)dvl. An analogous formula holds for

Ug(s.s). Consequently, for all s € [0,1]:
1U%s,s) - U (s.s)] < S22 1p™(v,v.) - p(v,,v.)] du,(v,)dv
177 177 - °s70 1'7°2 1'°2 2° 2 1’

Since pn - p in (% x uz)—measure. this implies that ¥V € > 0, 3 n(e) such

that ¥V n 2 n: iUT(s.s) - Uy(s,s){ < e, for all s € {0,1]. Also, since
Uz(b,b) = jg Bz(vz)dvz. and since pn - p in (ﬂl x 9)-measure, the proof that
IUg(b.b) - U(b,b)|{ = 0, uniformly in b, proceeds entirely analogously. ]

One remark is in order here. If we are merely interested in
convergence of traders' utilities, we do not need to require (8) in the

definition of implementability. This motivates the next definition:

Definition 4: {p)} is implementable if there exists an x such that {p,x} is

implementable.

6. Stationary Sequential Equilibria and the No-Trade Theorem

Before delving into the statement of our main theorem, it is necessary
to be a little more precise about the nature of the strategy spaces and the
meaning of sequential equilibrium. At the start of each period t, the
history of the game is a sequence of rejected price offers: nt -

{po,pl,...,pt_l}. Given this history, the seller updates her belief about
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t t . t
the buyer type to ﬂs(b|H ). The seller then makes a price offer p
according to her own type and the history, using the strategy:

st [0,1] x #® = [0,1].

Having observed history Ht and the seller's offer of pt in period t, the

buyer forms a posterior conjecture, /.tlg(slHt,pt

), of the seller's valuation.
He then decides whether or not to accept the offer according to his own
type, the pre-period history and the current price, using the strategy:
¢

b fo,1] x Ht x [0,1] - {accept,reject}.

A sequential equilibrium is a pair of strategy profiles {st,gt}:=o, and a
system of beliefs {ﬂZ(b|Ht).#é(slﬂt,pt)}:zo that satisfy the requirements of
sequential rationality and consistency. Consistency says that the posterior
beliefs conditioned on the history Ht must be computed through Bayes' rule
whenever possible. Sequential rationality says that given any history and
the induced posterior belief, strategies from then on must be optimal for
both players.

In analyzing sequential equilibria of bargaining games with incomplete
information, several authors (Gul, Sonnenschein and Wilson, 1986; Gul and
Sonnenschein, 1988; Cho, 1988) have found it useful to impose a stationarity
restriction on strategies and updating rules. Stationarity is attractive on
simplicity grounds, since in stationary equilibria players do not condition

their actions on the entire history of the game, but only on a lower-

dimensional summary of it (state space). Formally, we may define



25

stationarity in the seller-offer game as follows:11

Definition 5: A strong stationary sequential equilibrium in the seller-
offer game is a sequential equilibrium satisfying the following two

requirements:

(i) players' (current-period) strategies are constant on histories H1

and H2 that induce the same beliefs, i.e.,

T-1

ML S e I A I

1 t t. T, T

=> st(s.Hi) = sT(s.H;). and

po(blHD) = ul(b|HY) and g (s|H},p) = 4 (s{H}.p)

= bt(b.HE,p) - bT(b,H;,p): and

(ii) players' updating rules are constant on histories H1 and H2 that

induce the same beliefs, i.e..12

T-1

t-1 t-1, _ T-1 -1 t t. T, T
) = Ky, (s|H2 Py ) and ys(blﬂl) = ys(bgﬂz)

-1
“é (s{Hy ".py

t t T T
=> Mp(s|H ,p) = s (s|H,.p), ¥ p. and

t t t
pg(bIHD) = ul(b|HY) and w(s|H;,p) = s (s[H}.p)

tel,, | t+l 1 +1
=> #s* (b|H1+ ) = #:* (b|H; ).

As in the case of one-sided incomplete information, it is often necessary to

slightly relax the requirement on the seller's strategy in order to ensure
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the existence of stationary equilibria. In a weak stationary sequential

equilibrium the seller's strategy is allowed to depend not only on current

beliefs, but also on the previous price she charged:

t-1 t-1 t-1, _  T-1 -1 T-1 t t, T T
My “(siHy “opp 7)) =y T(s{H, Tipy, 7). u (BIH]) = u (DIH,),
t-1 _ 11 __ t t, T T
and p; © = p, " =>s7(s,H) = s (s.H;).

Of the two papers on the seller-offer game discussed in Section 2. only
Cho's (1988) equilibrium satisfies the stationarity restrictions. The
revelation-over-time equilibrium exhibited by Cramton (1984) is not
stationary: it satisfies neither property (i) nor property (ii) in
Definition 5. It is perhaps worth elaborating on exactly where the
nonstationarity is located in the Cramton equilibrium. Let us consider two

different histories: in H?, the seller has mimicked type s for the first n

periods of the game; in Hg*l, the seller has mimicked type s for n periods

and charged a price of 1 in period n. Clearly, no buyer will buy in period

n+1

n of H2

as the price then charged exceeds his valuation. Consequently,
the seller will have the same beliefs about the buyer entering period

(n + 1) after H2+1 as she does entering period n after H?‘ In addition,
Cramton requires that the buyer's conjecture conditional on a price higher

than the equilibrium price remains the same as the conjecture on the

equilibrium path. Thus, entering both period n after H? and period (n + 1)

n+1

t H
after 5

the beliefs held by the buyer and the seller are identical.
However, in the first case the seller strategy specifies charging a price of

pn(s), while in the second case it calls for a price of pn+1(s) < pn(s)

(where pj(s) denotes the price s charges along the equilibrium path in
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period j = n,n + 1), thus violating (i). In addition, as emphasized by
Wilson (1987, p. 48), the buyer's updating rule is nonstationary: if after
H? the seller made an offer of pn+1(s) < pn(S). the buyer would revise bis

beliefs downward, whereas no such updating occurs when the same price is

n+1
5

charged in period (n + 1) after H
The two equilibria nevertheless do have important properties in common.
First, in both equilibria, the seller reveals her type before any trade
takes place. In Cho (1988), the separation occurs entirely in the first
period:13 in Cramton (1984), the separation occurs over time. Second, both
equilibria specify a strategy for the zero seller type (and associated buyer
beliefs) that implies the celebrated Coase conjecture: as the time between
successive offers shrinks to zero, the zero seller's initial price converges
to zero. It remains an open question today whether stationarity (as stated
in Definition 5) together with revelation-before-trade (at least for the
zero seller type) are sufficient to imply the Coase conjecture property for
the zero seller's strategy.14 If, on the other hand, once the zero seller
has revealed, buyers never update beliefs, as in Cramton (1984), and if the
zero seller's price is monotone in the state (the highest remaining buyer
valuation), then it is easy to show that the Coase conjecture must hold.
However, as we show below, this leads to disastrous results: as the time
between successive offers shrinks to zero, the induced mechanism approaches

the zero-trade mechanism (i.e., p(e,¢) = 0; X{(e¢,¢) = 0).15

Lemma 3: Let the distribution function Fl(o) satisfy Fl(O) = 0. Then there
exists an absolutely continuous distribution function G{e) such that

Fl(s) < G{(s), for all s € {0,1], and G(0) = O.
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Proof: Let A = {(x,y): x € [0,1] and 0 Sy = F,(x)}, and let B be the
convex hull of A. Also define G(x) = sup{y: (x,y) € B}. It is
straightforward to v=rify that G(+) is a continuous increasing concave
function on [0,1), and that G(0) = 0 and G(1) = 1. The concavity of G(e)

then establishes its absolute continuity. £]

n,o

Theorem 2: Consider any sequence {a",z n=1

} of sequential equilibria of the
seller-offer game and associated time intervals between successive ofters
such that:

n

(i) z 1 0; and

(ii) the Coase conjecture holds for the zero seller type.

Also, suppose that the distribution of seller types satisfies Fl(o) = 0.

Then the aggregate probability of trade, J jé pn(s,b)dyz(b)dgl(s), converges

[l

to zero as n - o,

Proof: Define G(e) as in Lemma 3. Since El(o) is monotone:

(9) Iy Bi(s)du (s) < g BN(s)g(s)ds.

where g(e) is the density of G(e). By the Coase conjecture property,

1

n
U,(0.0) = J,

52(s)ds - 0 as n » o. The absolute continuity of G(e) then
implies that the right side of (9) goes to zero as well., and hence the

desired result follows. [l
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It is easy to understand what economic forces drive Theorem 2: if the
zero seller's profits were approximately equal to zero, but a higher seller
also had substantial probability of trade, the latter would be imitated.
Incentive compatibility thus forces a low aggregate probability of trade.

In order to avoid the disastrous consequences of Theorem 2, it is
necessary to discard at least one of the four joint properties implying the
Coase conjecture (stationarity, revelation-before-trade, monotonicity and
absorbing beliefs at s = 0). We have chosen to drop full revelation at the
lower end of the support of seller types: all our equilibria, while
stationary, involve some amount of pooling of low seller types with the

seller of type zero.16

7. The Main Result

In this section we prove Theorem 3, which establishes the
implementability of sequentially seller-first mechanisms. 1Its proof will
require two sets of conditions: some mild restrictions on the distribution
functions of player valuations, and some technical assumptions on the

mechanisms which will be implemented.

Assumption 1: Fl(o) and Fz(-) satisfy the following properties:

(i) the support of each distribution function equals [0,1];
(ii) Fl(o) is absolutely continuous on [0,e], for some € > 0; and
(iii) - F2(°) is absolutely continuous on [0,1], and there exist L, M

(0 <M 2L <w) and a > 0 such that an < Fz(x) < an for all



Assumption 2:

(i)

(ii)

(iii)
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x € [0,1].

{p.x} satisfies the following conditions:

ﬁl(s',s) is quasiconcave in s' for all s;17

there exists K < » such that p(e,b) has total variation less
than K for almost every b € [0,1]; and

for every € > 0, there exists 4{(€) > 0 such that lim S(e)

€i0

0 and p(s,s + €) = 0 for all s € [0,s - §(e)]., where

(7]

= sup{s: Bl(s) > 0}.

We now state the main theorem:

Theorem 3: Suppose that the distribution functions satisfy Assumption 1 and

let {p,x} be any sequentially seller-first bargaining mechanism which

satisfies Assumption 2. Then {p,x} is implementable by stationary

sequential equilibria in the seller-offer game.

The proof of Theorem 3 is long and intricate, and is therefore

relegated to the Appendix. 1In the remainder of this section, we will

highlight some of the ideas and constructions in the general proof by

demonstrating the implementability of our first two examples of seller-first

mechanisms.

First we will directly argue the implementability of single-price

mechanisms (Example 1 of Section 4). For any single price w (0 < mw < 1),

the transformation (4) suggests a price path m

0(t) = 1 for all seller types
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s € [0,n]. Meanwhile, seller types s € (mw,1] make no sales, suggesting a
price path nl(t) = 1. This naive attempt at implementation runs up against
immediate difficulties, as the zero seller type faces inexorable temptations
to cut her price below m after she has sold to all buyer valuations above m.
Indeed, in any sequential equilibrium, the zero seller type must eventually
transact with every potential buyer (possessing positive valuation).
Sequentiality thus mandates that the zero type's price path converges toward
zero. Simplicity recommends that we utilize a single, smoothly-descending
price path for all types s € [0,m], who remain pooled so long as it stays
profitable.

We redefine the lower price path by no(t) = e_Atn. and define nl(t) as
before. In equilibrium, a seller with valuation s charges no(t) in all
periods such that no(t) exceeds her valuation s and charges nl(t) otherwise.
If the buyer observes a history inconsistent with this strategy, his
expectations change in two respects: (a) he comes to believe that the
seller's valuation equals zero, and never updates his beliefs thereafter:
and (b) he expects that the seller will follow a "Coase conjecture" price
path in wh;ch offers are exceedingly low (compared to the highest buyer
valuation remaining in the market).

Why does the seller adhere to her equilibrium strategy at all moments
in time? (This is demonstrated formally in part III of the proof.) The
answer has two parts, depending on whether the seller's valuation is
relatively closer to zero or to the current price Ty(t). If the seller's
valuation is in the vicinity-of zero, then the seller retains a tangible

probability of a relatively profitable sale by continuing to adhere to

no(o), whereas a deviation would trigger the Coase conjecture. Meanwhile,
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if the seller's valuation is in the vicinity of the current price, then
while continuation profits are insubstantial, a deviation would trigger
adverse inferences, which choke off profitable sales altogether.

To demonstrate the implementability of the single-rrice mechanism, we
now consider a sequence of equilibria of the above form, using rates of
descent A" 1 0. Observe, for arbitrarily small An, that arbitrarily close
to all buyer valuations in [mw,1]) accept the initial offer ﬂO(O). and that
arbitrarily close to all buyer valuations in [0,w) defer purchase until
arbitrarily far into the future. Finally, as AT 0, seller types "drop
off" the price path M,(+) arbitrarily slowly. Thus, the probabilities of
trade implicit in the sequence of equilibria converge in measure to
{Dl(o,O).xl(o.o)}, establishing implementability.

It should further be observed that these equilibria are stationary, as:
(a) the state evolves in every period along the equilibrium path; and (b)
behavior after a deviation is also stationary (see Fudenberg, Levine and
Tirole, 1985; Gul, Sonnenschein and Wilson, 1986). Moreover, these
equilibria satisfy even a stronger sense of stationarity than we require 'in
Definition 5; the buyer's acceptance behavior depends only on his beliefs

about the seller and the current seller offer.18

Let us also note that this is not literally the way in which our
general proof of Theorem 3 treats a single-price mechanism. (The general
proof defines multiple pools of seller types. while that is clearly
unnecessary to handle a single-price mechanism.) However, we literally do
treat the "bottom pool"” (which includes the zero type) in exactly the above
manner .

Now we will directly argue the implementability of the monopoly
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mechanism (Example 2 of Section 4). Define a grid of equidistant seller

types such that 0 < s, < s, < ... < Sy < 1. Begin a menu of price paths by
defining nk(t) = g(sk), for k = 1,...,N, where g(sk) denotes a static
monopoly price of Sy Enlarge the menu of price paths by also offering the
set of constant price paths w(t) = q, for all q € [g(sN),l]. Consider an
auxiliary game in which the seller must select one price path from this menu
(and becomes committed to following it forever), and the buyer then
optimizes against her selection. Observe that this game has a unique
sequential equilibrium, which induces a seller-first mechanism. It has the
property that seller types partition themselves into (N + 1) intervals such
that the kth interval (which contains the type sk) charges the monopoly
price of Sy for k = 1,...,N, and the last interval (sN.l] fully separates
by each type charging her own monopoly price.

As argued above, to make this a sequential equilibrium, we should add
one additional price path, no(t) = e—th(O) and invoke a change in buyer
expectations after a detectable seller deviation from any of the
aforementioned price paths. To demonstrate implementation, we merely need
to let A" 1 0 and N" 1 =.

The implementation of the single-price and monopoly mechanisms was
straightforward on account that their implicit price paths were constant

over time. 1In general, however, the price paths {nk(t)} from seller-

N
k=1
first mechanisms are nonconstant, leading to some complications. First, for
each seller type on the grid, we will need to take a discrete approximation
to her continuous-time price path. Second, ﬁl(s',s) will generally not

coincide with Ul(s'.s), so it will require a delicate argument to show that

the separation of seller types in the auxiliary game is preserved when the
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seller has the option to depart from the chosen price path.

Third, the profit calculations in the proof require that (except for
the bottom interval of seller types) each seller type selects a price path
which, once chosen, is strictly adhered to (i.e., the seller is not allow~d
to drop off the price path). Obviously, when the price paths are constant
over time, there is no incentive problem in assuring permanent adherence.

In general, however, we must be careful to argue that the most preferred
price path of each seller type (outside the bottom interval) is one which
never dips below her valuation. This is particularly a problem for seller
types who have zero probability of making sales in the mechanism being
implemented. Our purpose in introducing a continuum of constant price paths
taking values near one is to provide most-preferred paths for high-valuation
sellers to which they permanently adhere.

Fourth. the general specification of price path no(.) requires the
property that it always asymptotically approach zero, in order to permit the
zero seller to eventuaily transact with all positive-valuation buyer types.
At the same time, it should be defined in such a way that seller types in
the interval [O'SI) nontrivally partition themselves between selecting paths
HO(-) and nl(o). Informally speaking, we construct no(-) so as to begin by
approximating the zero type's price path from the mechanism yet to terminate
with an exponential rate of descent toward zero. However, the formal proof
requires a fixed-point argument: seller types allocate themselves between
ﬂo(-) and nl(-) according to the profits they expect; but the profits
attributable to selecting ﬂo(-) depend on which seller types choose that
price path (since this, in turn, influences optimal buyer purchase

behavior). Additional complications of a less intuitive nature are also
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handled in the proof.

8. The Efficiency of Monopoly

An interesting question one might ask is: What is the most efficient
sequentially seller-first mechanism, and how does its efficiency compare to
that of the most efficient ICBM? In this section we will show that if the
efficiency objective consists of maximizing expected gains from trade, and
provided the distribution functions satisfy some regularity conditions, the
answer to the first question is surprisingly simple. We will also argue
that the most efficient sequentially seller-first mechanism may realize a
level of gains from trade that comes close to that of the ex ante efficient
ICBM.

Maximizing efficiency over the set of sequentially seller-first
mechanisms is a potentially daunting task. Lemma 4 below greatly simplifies
the search for such a mechanism. However, before stating the lemma, we must
introduce a definition.

Definition 6: A mechanism {p,x} is a 0-1 mechanism if there exists a

nondecreasing function ¢(s) such that x(s,b) = p{(s,b) = 0 for 0 £ b < ¢(s)

and p(s,b) =1 for ¢(s) £ b < 1.

Lemma 4: Suppose 0 £ p(s,b) £ 1 maximizes:

_ 11
(10) f(p) = IOIO gvz - vl)p(vl,v2)dy1(v1)du2(v2),

subject to the constraint:
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v
= rl 1.2
(11) h{p.s) = IO tzp(s,tz)dﬂz(tz) - IOIO p(s.tz)dtzdﬂz(vz)

1 - -
- Jg py(ty)dty - sp,(s) = 0, for all s € [0,1].

Suppose also that p(e,e) satisfies the requirements of a 0-1 mechanism.

b

Then, letting x(s,b) = IO

rdps(r), the mechanism {p,x} maximizes the gains

from trade among all sequentially seller-first mechanisms.

Proof: We will show that p(e,e) maximizes the gains from trade cver all
seller-first mechanisms. Since {p,x} is a 0-1 mechanism, it is also
sequentially seller-first and hence maximizes the expected gains from trade
over this smaller set as well.

To prove the first claim, observe that in any ICBM:
— - 1 - -
x = =
1(s) Ul(s,s) + Spl(s) js pl(tl)dt1 + spl(s).

Furthermore, in a seller-first mechanism, x(s,b) = Ig rdps(r) =

bp(s.,b) - Ig p(s,r)dr. Hence we have il(s) =

v
1 1.2 . .
fo tzp(s,tz)dyz(tz) - IOIO P(s.tz)dtzdyz(vz). Thus, in any seller-first

mechanism, constraint (11) must hold.
Observe now that {p,x} is an ICBM (it is a 0-1 mechanism), and that it

satisfies the requirements of a seller-first mechanism. {3

Before stating our efficiency theorem, let us first make our

"regularity” assumptions on the distribution functions F1 and F2:19
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Assumption 3: Fl(-) is convex and C2. Fz(o) is concave and Cz.
Furthermore, v2 - (1 - Fz(vz))/fz(vz) is an increasing function.

Theorem 4: Suppose F1 and F_, satisfy Assumption 3. Then the most efficient

2

sequentially seller-first mechanism is the monopoly mechanism.

Proof: We will show that there exists a function p(s) of bounded variation

on [0,1]) such that the 0-1 mechanism with boundary g(s) satisfying:
g(s) - s = (1 - Fo(g(s)))/f,(g(s)) =0

maximizes the Lagrangian L(p,p) = f(p) + jé h(p,tl)dp(tl) subject to
0 £ p(s.») £ 1. The sufficiency theorem of Luenberger (1969, p. 220) then
implies that p(e,e) solves the infinite-dimensional linear program (10)-

(11). Observe first that we may rewrite L as:

1
L=1Jy Uy lvy-v

1
+ IO [v2 - vy - (1 - F2(v2))/fz(vz)]P(vl.vz)dp(vl)}dyz(vz).

1 p(vl)/fl(vllp(vl.vz)dyl(vl)

Now let p(vl) = fl(vl)[g(vl) - v_]. Then the coefficient of p(vl.vz) under

1

L becomes:

(12) {V2 - g(vl) + [V2 - vy - (1 - F2(v2))/f2(v2)]

[(£1(v)/E (v ) (glv)) = vy) + g'(v) - 1]},

Notice that, evaluated at the point (Vl’g(vl))' the expression in (12) is
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equal to zero. Next, we will argue that its derivative with respect to v,
is nonnegative. This will imply that the mechanism described above

maximizes L, and hence establish its optimality. Now, the derivative of

(12) is given by

(13) 1+ (2 + “’("2))[(fi("1)/f1("1”(g("1) vy v glvy) - 1},

h - - . . - _ _
where w(Vz) is implicitly derived from (d/dvz)[v2 (1 F2(V2))/f2(v2)]

1 + w(vz) > 0. Concavity of F

2 implies that w(vz) € 0. Also, convexity of

F1 and g(vl) > vy implies that (13) 2 1 + (2 + w(vz))(g'(vl) ~ 1). Since
g'(vl) = 1/(2 + w(g(vl))), and since -2 < w(vz) < 0, we may bound the latter
expression again to obtain (13) > 1 + (2 + (w(vz))(—l/z) = —w(vz)/z > 0.

This establishes tﬁe desired result. (1]

One immediate consequence of Theorem 4 is that when F1 and F2 satisfy
Assumption 3, then the optimal seller-first mechanism is implementable. In
fact, this mechanism fares quite well in terms of efficiency when compared
to the ex-ante efficient ICBM. When F1 and F2 are linear, for example,
Myerson and Satterthwaite (1983) established the optimality of the

mechanism:
r
5 |1 5 [(s + b + 1/2)/3 if b 2s + 1/4
P (s,b) =4 x”(s,b) = {
|0 |0 otherwise.
L L

Some simple computations show that the sum of the players' ex-ante expected
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utility in that case is equal to 9/64. The monopoly mechanism, on the other
hand, yields a total utility of 1/8. Thus only one-ninth of the feasible
gains from trade are lost by restricting attention to seller-first

mechanisms.

9. Conclusion

Consider the problem of a durable goods monopolist whose marginal cost
is incompletely known by the outside world. Let us reinterpret our "single
buyer with (potential) valuations" as a "continuum of buyers with (actual)
valuations" distributed according to the function Fz(.), With this
reinterpretation, we now face the question--analogous to the bilateral
bargaining problem--of what will be the pricing behavior of a rational
durable goods monopolist who faces rational (but incompletely informed)
consumers. The foregoing game immediately becomes an attractive model of
durable goods monopoly with private marginal cost.20

Contra Coase's conjecture, we have established (in Theorem 3) that this
durable goods monopoly game possesses stationary sequential equilibria in
which the seller, ex ante, expects substantial profits. The intuition
behind this result is quite natural: the consumers' incomplete information
provides the monopolist with a credible means to hide her valuation and
hence not to reduce her price. Were the monopolist to unexpectedly cut her
price, consumers would view this as a sign that her marginal cost was low
and her resolve was weak, and they would accordingly expect even further
price slashing.

Two equilibria, in particular, are very easy to describe. The first

comes arbitrarily close to the story that the monopolist truthfully reveals
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her cost in the initial period and charges the static monopoly price (for
her cost) forever, i.e., the monopoly mechanism. The second comes
arbitrarily close to a description that the monopolist truthfully reveals in
the initial period whether or not her cost exceeds some price m, and in the
latter event she charges that price forever, i.e., a single-price mechanism.
Both equilibria have the appealing feature of relative simplicity.

Furthermore, we have argued that even if proponents of the Coase
conjecture were té win the battle, they would still lose the war.21 With
private seller valuations, the Coase conjecture does not lead to an
especially happy state of affairs. Suppose that there is no gap between the
consumers' minimum-possible valuation and the monopolist's minimum-possible
marginal cost. Then we have demonstrated (in Theorem 2) that, as the time
interval between the monopolist's offers approaches zero, the expected
gquantity of sales (discounted for time of trade) must also converge to zero.
The Coase conjecture chokes off the market: in order for the low-cost
seller to earn minimal unit profits, the high-cost seller must make minimal
overall sales.

Returning to the bargaining problem, we should remark that since our
model involves two-sided incomplete information, all the results have
obvious analogues in the game where the buyer makes all the offefs.

Clearly, single-price mechanisms are implementable in the buyer-offer game;
also, the "monopsony mechanism"” where the buyer fully reveals and charges
his monopsony price is implementable. More generally, all sequentially
buyer-first mechanisms are implementable in stationary sequential equilibria
of the buyer-offer game, and the monopsony mechanism is optimal within the

class of buyer-first mechanisms when Fl(.) is concave and Fz(.) is convex.
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Finally, we hope that our article contributes some insight into the
general nature of sequential equilibrium in games of incomplete information.
It is easy to prematurely conclude that a folk theorem will hold in most
sequential games, on the grounds that "any action can be deterred by
beliefs.” We have shown (in Theorem 1) that such reasoning is false in the
seller-offer bargﬁining game with two-sided incomplete information.

It is impossible (within the rules of the game) to induce a seller to
continue along a price path for which all future offers lie below her
valuation and for which the probability of acceptance is positive.
Independent of the buyer's inferences, a refusal to deal always dominates.
More generally, folk theorems may fail in games of incomplete information on
account that certain actions cannot be deterred by any conjectures, no
matter how extreme or unreasonable. We will continue on this theme in

future papers.
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Notes

The mechanism design result is due to Myerson and Satterthwaite (1983).

In the seller-offer bargaining game with bilateral private information,
we define the "state” to be: the seller's most recent beliefs about
the buyer; the buyer's most recent beliefs about the seller; and the

current (if any) offer on the table. See Section 6, below.

Authors who have studied stationarity in bargaining games include:
Fudenberg, Levine and Tirole (1985); Gul, Sonnenschein and Wilson
(1986); Wilson (1987); Gul and Sonnenschein (1988); Cho (1988); and
Cramton (1988).

Obviously, the monopoly mechanism will be ex ante efficient under some
choices of welfare weights--for example, when the objective is to

maximize the expected seller surplus. The implementability of ex ante
efficient mechanisms, more generally, will be addressed in a sequel to

this paper.

Papers on the seller-offer bargaining game with one-sided incomplete
information and the related problem of ddrable goods monopoly include:
Bulow (1982);: Stokey (1981); Fudenberg and Tirole (1983); Sobel and
Takahashi (1983); Fudenberg, Levine and Tirole (1985); Gul,
Sonnenschein and Wilson (1986); and Ausubel and Deneckere (1986).
Papers on the alternating-offer bargaining game with one-sided
incomplete information include: Grossman and Perry (1986); Gul and
Sonnenschein (1988); and Ausubel and Deneckere (1988). Papers on one-
sided incomplete information bargaining games with other extensive
forms include: Rubinstein (1985); and Admati and Perry (1987).
Excellent reviews of the sequential bargaining literature can be found

in Rubinstein (1987) and Wilson (1987).

It would be literally the same incentive constraint, but for the fact
that the seller's conditional distribution about the buyer's valuation

may have evolved.
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We attribute the "flavor"” of the equilibrium to Chatterjee and
Samuelson (1987), but we do not mean to imply that they would advocate
this precise equilibrium description in the game with continuous offers
and types. In particular, because this description uses two constant
price paths, ﬂl(t) = b and nz(t) = s. this equilibrium has the property
that if b < s < b < s, then the two players never trade. We imagine
that Chatterjee and Samuelson might prefer a more complicated
description utilizing descending price paths. See also their sequel

paper, Chatterjee and Samuelson (1986).

In the terminology we introduce later, the Chatterjee-Samuelson (1987)
equilibrium, unlike the Cramton (1984) or Cho (1988) equilibria, does

not induce a seller-first mechanism.
The terminology here is from Cramton (1985).

Theorem 1 does not literally say that a "folk theorem” does not hold
for seller-first mechanisms. To argue the latter, it is necessary to
show that there exists a seller-first mechanism {p,x} such that: no
ICBM {p',x'} yielding the same interim utilities as {p,x} is
implementable. However, we will demonstrate in a future paper that

{p4,x4} actually is a counterexample to a folk theorem for seller-first

mechanisms.

Somewhat more compactly, one could define stationarity as follows:
suppose two different histories induce the same beginning-of-period
beliefs. Then the sequential equilibria induced on the remainder of

the game should coincide.

Observe that, in the seller-offer extensive form, the stationarity
restriction on the seller's updating rule is largely redundant. After
any history of positive prices, the buyer's strategy must call for a
positive probability of rejection. Bayes' rule tuen completely pins
down the seller's beliefs, because of the absence of observable out-of-
equilibrium buyer behavior (excluding acceptances, which end the game}.
The stationarity of the buyer's acceptance decision makes the seller's

updating rule stationary as well.
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Cho's equilibrium does have the property that sellers inflate their
price offers not just in the initial period, but al;o in all subsequent
periods. This separation after separation occurs because the seller
must keep on convincing the buyer that she is telling the truth. It
does give the equilibrium the desirable property that the number of

out-of-equilibrium moves that can be made in any period is minimal.

There is, of course, no reason that the introductory price>of seller
types exceeding zero should converge to their valuations: an effort to
cut prices in the hope of accelerating sales could be interpreted by
the buyer as a signal of low valuation, making him reluctant to buy,

and making discounts unprofitable to start with.

Theorem 2 uses our earlier assumption that the minimum values in the
supports of F,(.) and F,(+) are the same (i.e., s = 0 =b). In all
fairness, it should be observed that the equilibrium constructions of
Cho and Cramton are also defined when b > 0. Nevertheless, in that
case, (9) still holds. Observe now that the solution to max

Ié Bl(s)g(s)ds subject to Ié Bl(s)ds = k occurs at p

1(s) =1, for s £k
and p,(s) = 0 for s > k. Since U7(0,0) = J3 p](s)ds = k. where

kn { b, this establishes an upper bound for the right side of (9) equal
to G(kn). Hence Ié 5?(s)dyl(s) < G(kn) 1 G(b), and so the mechanism is
still very inefficient when b is not too large. It is a corollary of
this result that when b < s and in any sequence of sequential
equilibria in which the Coase conjecture property holds for the seller
of type b, the "no-delay" result (see Gul and Sonnenschein, 1988)

cannot hold.

The reader may observe that in order to implement mechanisms which are
essentially fully revealing (such as the monopoly mechanism), the
amount of pooling will have to decrease as the time between offers
approaches zero. This is indeed accomplished in our equilibrium

construction.

It seems that we only use: there exists € > 0 such that, whenever 0 <
€ < g, Gl(s'.s) < Gl(s + €,s) for every s' 2 s + € and Gl(s‘,s) <

Gl(s - €,s) for every s' <s - €.
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This particular equilibrium construction satisfies the heightened sense
of stationarity on account that seller types "drop off"” the path no(.)
in every period, so that buyer beliefs about the seller become a
sufficient statistic for the state, along the equilibrium path. Note
also that this heightened stationarity is analogous to Gul,
Sonnenschein and Wilson's (1986) definition for one-sided incomplete
information where buyer acceptance behavior depends only on the current

seller offer and not on the seller's beliefs about the buyer.

The reader might wonder what the most efficient seller-first mechanism

is when Fl is not convex or F2 is not concave. While we do not have a
general answer to this question, we have established that when Fl(vl) =

_ _ _ Y
vy and FZ(VZ) =1 (1 v2) ,
mechanism is the single-price mechanism that maximizes the gains from

then for ¥ > 1, the optimal seller-first

trade. It would not be too surprising if single-price mechanisms were

_optimal more generally. It is also worth noting that, for ¥ = 1, the

efficiencies of the monopoly mechanism and the optimal single-price
mechanism coincide. In fact, in that case there exists a continuum of

other 0-1 mechanisms that yield equal efficiency (all with p(vl,v ) =0

2

for v, < 1/2 and p(O'VZ) =1 for v, > 1/2).

2 2
For example, consider a durable goods monopoly whose stock is not
publicly traded and, so, whose financial statements do not become
common knowledge. Or suppose that the financial statements are public

but are not entirely illuminating about marginal cost.

But not completely. Under the distributional assumptions of Theorem 4,
it may be unnecessary to regulate durable goods monopoly, as the

monopoly mechanism is relatively efficient.
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Appendix

Proof of Theorem 1: We will first prove the theorem when the distribution

function Fl(o) is absolutely continuous and when p(e,«) satisfies two

additional conditions: 51(.) is a strictly decreasing function on [0,s];

and for every s € [0,s], p(s.,1)

1 and p(s,e) is a continuous function of b

on the set [b(s),1] (where b(s) inf{b: p(s,b) > 0}). We make these extra

assumptions in Parts I-IV of the proof; in part V, we complete the argument

by relaxing these assumptions.

Part I: Construction of N price paths which replicate the mechanism.

Let (en}:= be any sequence such that 0 < e? < 1. for all n > 1, and

1
e® 1 0. For every n, define: st = sup{s € [0,s]: b(s') - s' > e for all

-~ -~

s' € {0,s]}. By part (iii) of Assumption 2, st s,

For any en belonging to {en}:=1’ select arbitrary N satisfying

N > 3/e™. We define a grid {sk}ﬁ=1 of N sellers by S = (k/N)sn, k =

1,...,N. We will now generally suppress the "n" from our notation until
Part IV.

For every z > 0 and for every k (1 £ k £ N), we will define a discrete-

time price path for each seller, from the grid. Let bk(t) =

Sy
sup{b: p(Sk,b) < e_rt} be the highest buyer valuation remaining in the
market at time t when the seller is sk. We de ine:

(A.1) Tri(t) = (1 - &) z‘;’zo 6jbk(t + (j + 1)z), for t = 0,z.2z,...,

~-rz

where & = e In the unlikely event that the ni(O) are not distinct for



k =1,...,N, we raise the bk(z) arbitrarily slightly so as to redefine the
ﬁi(o) and make them distinct. Then, the seller's initial offer in (A.1)
fully reveals k to the buyer.

As shown in Stokey (1981), the price path given by (A.1) induces
exactly the interval (bk((i + 1)z), bk(iz)] of buyer types to purchase in
period i. Furthermore, our condition that p(s,1) = 1 and p(s,e) is
continuous on [5(5).1] implies that bk((i +1)z) < bk(jz) if and only if
bk(iz) > g(sk). Thus, there are positive sales in every period until trade
concludes.

We next argue that for any a > 0, there exists 2(a) such that for every

z (0 <z < z(a)):

(A.2) |pz(sk,b) - p(s,.b)| < a, for all k = 1,...,N

|xz(sk,b) - x(sk,b)l < a, and for all b € [0,1],

where pz(sk,o) and xz(sk.-) are the purchase probabilities and expected

e—ri(a)

transfers implicit in (A.1). Define z(a) by 1 - = a/2. Also,

define tk(b) to be the "time" at which buyer b purchases in the mechanism

{p.x} against seller s,, and for any z (0 < z < z(«)), define ti(b) to be

K’
the time at which buyer b purchases from the discrete price path ni(t).
Observe, from (A.1), that we have defined ni(t) so that, for all i =
0,1,2,..., the intervals (bk((i + 1)z), bk(iz)] purchase at time iz.
Consequently, ti(b) = max{mz: mz < tk(b) and m is an integer}, for all

b€ [0,1]. Then, 0 <t (b) - ti(b) < z for all b € [0,1], implying
0 < exp{-rtZ(b)} - exp{-rt (b)) <1 -e "2 <1 - e T2 L o/2. Thus

|DZ(Sk.b) - p(Sk.b)l < a/2. Since bp(sk,b) - x(sk,b) = jg p(sk,r)dr and



similarly for the discrete approximation, we have:

zZ

|x%(s, ,b) - x(s.b)| < b|pZ(s

*+ IB IDZ(Sk,F) - plsp.r)jdr £«

'b) - pls).b)|

k’ k

as desired.

We further argue that inequalities (A.2) imply:

(A.3) | T2

105 s) - Gl(sk.s)| < 4a, for k = 1,...,Nand s € [0,1].

Using (6) and (A.2), observe that:

(A.4) |ﬁf(sk,s) - U (s8]
-5l %(s,.b) - sp>(s_,b)] - [x(s_.b) - s b)])du, (b
= - {[x Sy ) sp (s, ,b) x(s, . ) sp(s, . M, (D)
b(sk.s)
E)(sk’s) z z
+ J. x (s.b) - sp”(s, .b)]du,(b)|
z - k 2
b (sk,s)
1 t;(sk's) z z
< J. 2ady2(b) + Ja (x“{s_,b) - sp”(s,_.b)|du,(b),
z k k 2
b(sk,s) b (sk,s)

where bz(-) is defined analogously to b(e). Observe that everywhere in the

. ¥/ L - . z ) B z _
interval between b (Sk,b) and b(Sk,b), [x (sk,b) sp (sk,b)][x(sk.b)

sp(sk.b)] < 0: and since the two factors are within 2a of each other, they

must be within 2« of zero. In particular, ]xz(s b} - spz(s bl < 2a,

k k



allowing us to conclude-(A.3) from the inequalities (A.4).

Finally, define

(A.5) r-= 1nf{U1(sj.sj) - Ul(sk

1 £j<&Nand 1 £k £ N}.

.Sj): i ~ k| =1,

Observe that I" > 0 since: (i) ﬁl(._.) coincides with Ul(-,o) in (A.5),
n L _ 'n L.
because |sj - sk[ < g, Sj'sk < SN' and the definition of SN(z s ), and (ii)

Ul(sj’sj) > Ul(sk'sj)' because Bl(o) is strictly monotone (inducing strict

preference).
Let a = I'/12. Define il = z{(a), and let z satisfy 0 < z < 21.

Consider any s € [s where 2 £ k €N - 2. We will now demonstrate

k' Sk+1
~Z . - .
that arg maxlSJSN{Ul(sj’s)} equals k or k + 1. First, observe that:

U (sp.s) 2 Gl(sj,s) + T, for all j (1 € j < k),
(A.6)

U (s q-8) 2 Uy(sj.s) + T, for all j (k + 1< j<N).

hi is b il _ 2 _ an i = _
This is because 1(si.s) xl(si) spl(si). for i k 1, k., k + 1 and
k + 2 (since, as in the previous paragraph, [si - sf < en and so Gl(-.-)
coincides with Ul(o,o)). Consegquently:
(A.7) Uy(sp.s) - Uplsy_q-8) = [xl(sk) - xl(sk—l)]

+slpy(sp 1) - py(s )] 2 Ix (s ) = x (s 4)]

FoPyisyy) RS = U ses) = U is s



) - ﬁl( s) 2T.

k+1'S

Thus, U - U
us: Pylses) - U sy

,$) 2 I'. Similarly, Ul(s sk+2,
By Assumption 2(i), this implies (A.6). Second, from (A.3),
lﬁf(sk.s) - al(sk.s)i < I'/3, for 1 <k < Nand s € [0,1]. This together

with (A.6) immediately implies:

ﬁi(sk,s) > Gi(sj,s) + I'/3, for all j (1 £ j < k), and
(A.8)

~Z ~Z , .

Ul(sk+1,s) > Ul(sj,s) + /3, for all j (k + 1 < j £ N),
establishing that s, and Si+1 are the most preferred options (in the U?(o,o)
sense) for all s € [Sk'sk+1]' where 2 £ k € N - 2.

Also consider any s € [sl,s The second inequaiity of (A.8) still

2]'
holds, implying that S4 and s, are her most preferred options. Similarly,

consider any s € {s The first inequality of (A.8) still holds,

N-1-Sy1-

implying that s and s, are her most preferred options. We have thus

N-1 N

shown that for all s € [sl,s a seller prefers the ﬁi(sk,s) associated

N]-

with the two nearest grid points to all other alternatives.

Part I1: The treatment of the top and the bottom.

We still need to treat the two remaining intervals ([O,sl] and [sN,lj)
of sellers. First, we treat the upper interval: we add extra price paths
such that all seller types in the interval (sN_l] prefer one of the extra
price paths to all of the ni(t), 1 <k £N (in the Gf(-.-) sense); and each
seller type in the interval [0,s ) prefers one of the latter price paths to
all of the extra price paths.

~

) =z z . ~Z N
Define Ul(s) = maxlskSN Ul(sk.s). We will argue that Ul(Sk,b) is a
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convex function of s, for all k (1 £ k £ N), and therefore ﬁi(o) is convex.
Por any s' € [0,1], define E (s, ,s') = IE : p(s, ,b)du,(b) and X (s, ,s')
17k b(s .s') k 2 17k
= IE x(sk,b)dyz(b). Every seller s E [0,1] has the option of using
b(s, ,s')
the saﬁe stopping rule as s'; consequently Ui(sk,s) 2
xl(sk.s ) - spl(sk,s ), for all s and s'. Furthermore, pl(sk,s ) is weakly
monotone decreasing in s'. Since the family of lines
- | Coem ' oz » i
{xl(sk,s ) spl(sk,s )}3,6[0,1] supports Ul(sk' ) from below, this
establishes convexity of ﬁl(sk.o).
Let us define the monopoly price correspondence g(s) =
arg maxTr (1 - Fz(n)][n - s8] and let M = {m: mw € g{(s) for some s € [0,1]}.
Now define:

z . ~ ] _ =z, .
(A.9) q” = sup{m € M: [1 Fz(w)][w sN] > Ul(sN)}.

Let us denote by Hz the set of constant price paths mw(t) = q for some
q € [qz,l]. We will augment the existing menu of price paths by permitting
the seller to offef elements of ﬂz.

First consider the case where [1 - Fz(qz)][qz - sN] = ﬁ?(sN). Define
Gi(s) to be the highest utility attainable by type s when selecting from the

menu ﬂz of price paths. Observe that there exists s' 2 whose monopoly

SN

price equals qz. Hence, Sy prefers qZ to all higher constant price paths

and so Uf(sN) = ﬁi(s Moreover, U?(o) coincides with monopoly profits on

N)'

the interval [s',1] and is linear with slope -[1 - Fz(qz)] on the interval

PS

[0,s'). Note that ﬁi(s') < v’

1(s'); since ﬁi(sN) = GT(SN) and ﬁf(-) is

convex, this allows us to conclude that ﬁf(s) < Ui(s) for s € [sN,l] and

ﬁ?(s) > U?(s) for s € [O,SN]. Thus, we have shown that every type



z

N
k}k=1 and every type s € (sN.l]

s € [SI'SN) selects a price path from {m

selects a price path from Hz.

o~

Second, consider the case where [1 - Fz(qz)[qz - sN] > {2

1 ). For N

(sN

sufficiently large, there exists tN (s1 < t,, < sN) such that

N
[1 - F,(q®)10a® - ty] = 0%(ty). As above, D%(s) < U%(s) for s € [ty.1] and

ﬁ?(s) > Gi(s) for s € [O.tN]. Observe that liqum tN =s. Hence, we may
pretend without loss of generality that we began the proof using tN in place
of sy+ and we proceed as before.

We now treat [0.31], the bottom interval of seller types, by
introducing an additional price path which begins by approximatihg the zero
type's price path from the mechanism, but ends with an exponential rate of

descent toward zero. Recall that b(0) = inf{b: p(0,b) > 0} and define

Bb(0) > b(0) such that:

1
b(0)

(A.10) S x(0,b)du,(b) > U, (s,.0).

This is possible because UI(O,O) > Ul(sl,O) and by the absolute continuity

of F2(-). For every z > 0, define Tg = max{nz: e—rnz > p(O:B(O)) and n is

an integer}. Tg will denote the time at which we begin the use of

exponentially-descending prices. For t £ TZ {and integer multiples of z),

0
define bo(t) = sup{b: p(0,b) < e-rt}. For t > Tg and arbitrary X\ > 0,
define bo(t} by:
A.11 b L2, A _ _ . rz O ZLA
(A.11) olt) - my’7(t = z) =e "T[by(t) - my "(t)],
z
“A(t-TL)
Z.A _ 0" _z,\ 2z z Z A, 2, . .

where m (t) = e My (TO), for t 2> TO' and T, (TO) is uniquely



defined such that bO(Tg +z) = B(0)/(1 + z). Finally, define the entire
price path ng'x(t), t =0,z,2Z,..., using equation (A.1).

We will now demonstrate (for small z and A) that there exists a "cutoff

Z,A

0 () whereas all s €

seller” c € (0.31) such that all s € [0,c] select 7
(c,1] will select one of the previously-defined price paths in {ni}g=1 u Hz.
However, the sellers [0,c] cannot pool forever, since for every s € (0,c]

there will come a time when ﬂg'k(t) < s. In the first period at which this

occurs, seller s will separate from the pool and revert to making nonserious

Z,A

offers forever. This makes buyer optimization against LN

() somewhat
different from optimization against the earlier defined price paths (in
which sellers pool forever). Let t be any time by which sellers have

already begun to drop off. An optimizing buyer, in deciding whether to

zZ,A

purchase at t, must take into account that the subsequent price (no

(t +

z)) will only be offered with probability Fl[ng'”(t + z)]/Fl[n;'A(t)].

Z,A

Thus, the buyer uses an implicit discount factor of 6F1[n0

(t +

z)]/Fl[ng'A(t)] between times t and t + z. Finally, define W(c,z,\;s) to be

the expected payoff of seller s from following the price path 'rrZ'A

o () when

the buyer and seller optimize as above and the buver believes that the

cutoff seller is c.

Given any believed cutoff seller c, we will construct an actual cutoff
seller, ¥(c), and show that ¥(e) has a fixed point. First., observe that
ﬁf(.) is linear for s € [0,51], while W(c,z,X;¢) is a convex continuous

function of s. Thus, ﬁi(s) = W(c,z,x:s) for at most two values s € [O,sl].

(0 <z, < z ) such that

Second, observe using (A.10) that there exists z 5 )

2

W(c,z,x;0) > ﬁi(o) whenever 0 < z < 22 and 0 < X\ < 22. Also. by incentive

compatibility, there exists 23 (0 < z, < 22) such that ﬁf(sl) > W(c,z.\:s,)

3 1



whenever 0 < z < 23 and 0 < X\ < 23. Consequently, there exists one and only

one intersection point of ﬁf(o) and W{c,z,)\;e), for such z and X. We denote
this by Y(c). Third, note that W(c,z.A;s) is continuous in c, for fixed z,
A and s. This follows from the fact that interperiod discount factors, and
hence buyer purchases, are continuous in the cutoff c. Fourth, the
Lipschitz continuity (with constant of one) of ﬁf(o) and W(c,z,\;e) implies
that Y(+) is a continuous function. The Brouwer fixed poiant theorem thus
establishes the existence of a value c € (O,Sl) such that y(c) = c¢c. For

future use, let us furthermore note that there exists ¥ > 0 such that:

(A.12) W(c,z.M\;s) > ﬁf(s) + X, for all s € [0,c/2]

and (0,0) < (z.,\) < (23.2 ).

3

To summarize what we have shown thus far: we have defined a menu of

price paths {"i(t)}g=1 U né‘x(t) U ﬂz. along with a partition 0 < s1 < ... <

Sy < 1. such that if all seller types are confined to initially select one
of these paths and subsequently deviate only by stopping their sales, then:

(a) Every seller type s € (s ] for k = 1,...,N - 1 initially

k' Sk+1

selects ﬁi(-) or m () and never subsequently deviates:

z
k+1
(b) Every seller type s € (SN.l] initially selects a path from [1“ and

never subsequently deviates; and

z,

z A(e) and follows

(c) Every seller type s € [0,c] initially selects 7

this path until such time that the price drops below her

Z

1(-), and never

valuation. Also, every s € (C'Sl) selects w
subsequently deviates,

whenever (0,0) < (z,x) < (23.2 ). Furthermore, the buyer behavior used in

3



the above calculations of seller utility is optimal, given the prescribed
seller behavior. In order to complete the proof, we need to specify
behavior which deters the seller from deviating in a way other than
selecting one of the prescribed price paths and subsequently stopping all

sales.

Part 11I: Demonstration that a stationary sequential equilibrium is formed.

We now complete the description of the sequential equilibrium by
specifying the beliefs and actions which are triggered by a particular type
of (detectable) seller deviation. Suppose that the seller deviates from one
of the prescribed price paths yet persists in attempting to make sales.
Then the buyer updates his beliefs to s = 0 (with probability one) and
maintains those beliefs forever after. Furthermore, the buyer adopts the
buyer strategy from a weak-Markov equilibrium in the game of one-sided
incompléte information where s = 0 and the distribution function of buyer
valuations equals F2(°)' Finally, the seller maximizes against this buyer
strategy.

The existence of such weak-Markov equilibria is guaranteed (for every
Zz > 0) by Theorem 4.2 of Ausubel and Deneckere (1986). Let the "state” b
refer to the highest remaining buyer valuation. In any weak-Markov

equilibrium, we may define the "Coase price"” (denoted m (b)) to be the

Coase

price which the seller is supposed to charge, and the "choke price" (denoted

“choke(b)) to be the infimum of all prices which induce zero probability of

sales, when the state is b. Since (by Assumption 1(iii)) an < Fz(x) < an

for all x € [0,1], the uniform version of the Coase conjecture (Theorem 5.4

of Ausubel and Deneckere, 1986) implies that, for every u > 0, there exists



5(#) > 0 such that 7 Se(b) < ub, for all b € (0,1], whenever 0 < z < E(y).

Coa

Observe that the buyer of valuation b is indifferent between prices of

(b) this period and & (b) next period. Consequently, there exists

Trchoke

z4 (0 < z

Coase

< 23) such that w_ . (b)/b < min{c/2,%X}, for all b € (0,17,

4 cho

whenever 0 < z < 54 (where X is taken from inequality (A.12)).

The previous sentence proves that, when 0 < z < z it is impossible

4 ’
for any s € [c/2,1] to generate any positive profits after deviating from an

initially-selected price path, a fact which we had only been assuming until

now. If s € [0,c/2) and the seller initially followed one of {ﬂi}ﬁzl ] Hz,

we cannot preclude positive profits after a subsequent deviation. However,

when 0 < z < 54. the profits after such a deviation are bounded by 7 (b)

choke

(which is less than ¥X); inequality (A.12) guarantees that any s € [0,c/2)

would have done better by initially choosing ﬂg'k(t). where (0,0) < (z,X\) <

The only deviations which remain to be excluded are of the form: some

z

O'A(t) but deviates in some subsequent

s € [0,c/2) initially follows w
period. We now demonstrate that these remaining deviations are unprofitable
by calculating a lower bound on the profits to seller s from continuing to
adhere to ng'x(t) when the state is b, and showing that it exceeds "Coase

profits" for all s and all b, when z is sufficiently small. We will argue

this as if the price path ﬂg.k(.) were everywhere exponentially descending.

z

At time t 2 TO’

the continuation path literally has this property; a simple
modification extends this argument to earlier periods.
Let m (0 < w < 1) be any initial price and let X be the real-time rate

of descent in price. If all s € [0,c] initially follow this price path and

if seller s drops off in the first period that price falls below s, every



buyer b € (0,1] selects a time t to purchase by solving:

(A.13) maxt{Fl[min(c,ne_kt)]e_rt(b - ne_kt)}, where t = 0,2,2z, ...
-At(b) _
For every b, define t(b) by me = b and t(b) =
At

rt(

arg maxt{e_ b -me ©°)}). Observe, in (A.13), that b purchases no earlier

than time max{0,t(b)} and no later than time max{0,t(b) + z}. Suppose now
that bO is the current state. Then the current time is at least

. l/ab . ,
maX{O,E(bO)}. Define b1 = (M/2L) 0" where L, M and o are from Assumption
1(iii), and observe that the time at which b1 purchases is no later than

max{O.f(bl) + z}. Consequently, the seller discounts sales to the interval
—r[t(bl)-g(b0)+z] /o
[bl'bo) using a factor no less than e = wéd(M/2L) , where

r/x

w = [r/(r + X\)] The probability that b is contained in [bl'bO) is

bounded below by F(bo) - F(bl) > MbO - Lb1 = (M/Z)bg. Meanwhile, all sales
_ -amax{0.t(b,) + z}
to the interval [bl,bo) occur at prices no less than mwe =

min{w, [r/(r + X)]ble—Az}. Note there exists c, > 0 such that ClbO <

1

min{m, [c/(r + A)](M/ZL)I/abOe—AZ} whenever 0 < z < 24. Hence, a lower bound

on the expected profit to s when the state is bO is given by:

T2y r/o

o _ (o4 ~
(A.14) V(S,bo) = we (M/2L) (M/Z)bo[clb0 - s] = czbo(clbo s).

Let z_ (0 < 25 < 24) be sufficiently small that w

5 (bo) < (cl/Z)bO and

choke

"Coase(bo) < (c1c2/2L)b0. for all b0 € (0,1], whenever 0 < z < z_.. First,

5
consider any (s,b_ ) such that s >« (b.). Seller s earns nonnegative
0 choke 0

At

profits from remaining on price path me (with the usual stopping rule).

Deviation triggers Coase expectations, nets zero profits to seller s, and is



hence deterred. Second, suppose s < T (bO). Since s < (01/2)b0 and by

choke
(A.14), V(s.bO) > (0102/2)b3+a. Profits from deviation are bounded above by
1+ . . . .
"Coase(bO)Fz(bO) < (0102/2)bO , so deviation is again deterred,
demonstrating that we have indeed constructed a sequential equilibrium.
Furthermore, the constructed equilibrium is stationary. As noted

earlier, each price path {Trlz((-)}f:=1 induces positive sales in every period

until trade concludes. Elements of Hz are constant price paths, surely

Z,A

lending stationarity. Along "O

(), there are sales in every period in
which price is no less than c; and buyer beliefs about the seller evolve in
every period that price is less than c.(as sellers "drop off" every period).
If the seller has deviated undetectably, her strategy prescribes that she
follow her adopted price path until it drops below her valuation (or that
she detectably deviate): the same argument as above shows stationarity. If
the seller has deviated detectably, this fact is reflected in the state, as
only histories with detectable deviations lead to buyer beliefs that s = 0.

Strategies after a detectable deviation are certainly stationary, as buyers

merely use reservation price strategies and sellers optimize against them.

Part IV: Completion of the proof, subject to the extra assumptions.

We have shown that, for every n > 1, there exists z" (= 55 of Part IIT,

for € = en) such that for all time intervals z between offers (0 < z < En)

and all rates of descent X for the bottom pool {0 < X\ < En). the above

construction yields a sequential equilibrium satisfying inequalities (A.2)

with a = I'/12 and T defined by (A.5). Observe that for k > j,. Ul(sj,sj) >

Ul(sk‘sj) > Ul(sk.sk) > Ul(sj‘sj) - (sk - Sj)' where the first inequality

follows from incentive compatibility, the second follows from the fact that



s. <

j 3 S+ and the third follows from the fact that Ul(s) = j; D

pl(t)dt. Also

< i U >0 > U - -
observe that for & < j, Ul(sj,sj) > Ul(sQ'sj) > Ul(sQ'sQ) (Sj So

U.(s..s.) - (s. - s.),
1(sJ sJ) (sJ sQ)

compatibility, the second follows from the fact that ﬁl(si‘sj)

where the first inequality follows from incentive
2 x,(s
SJBI(SQ), and the third follows from the monotonicity of Ul(-). Hence,

~ o _ P _ | n
lUl(sj,sj) Ul(sk'sj)' < |sj skl for all j,k; since |sj sl <€ /3

whenever |k - j] =1, we conclude that T < €"/3 and so « < €"/36. We select
a sequence of pairs (zn,An}:=1 such that (0,0) < (z™AM < (z™,z™) for all

n .n n, o .
n21and (z ,2) ! (0,0), and we denote by {o }n=1 the associated sequence
of stationary sequential equilibria. Also let (pn,xn} be the ICBM induced

by a”. We will now show that (an.zn}:=1 implements the ICBM {p.x}.

n
In any equilibrium o as constructed above, let b = qZ denote the
: 3

value defined in (A.9), for (cn,zn}. Let 2(e) denote (one-dimensional)

Lebesgue measure. Define Al = {(s,b): s;, £<s £s,, and 0 <b £ 1} and Al =

1 - - °N

{(s,b): s <s<1and 0 <b < b". We will now show that:

(A.15) (s € [s,.s Ip"(s.b) - p(s.b)| > 2ve™} < (K/3)ve",

Nt
for all b € [0,1].

Since Dn(s,b) =0 = p(s,b) on A'", since the (2 x ®@)-measure of the
complement of (An U A‘n) converges to zero, and since en 1l 0, this will
establish that pn converges to p in (.. X Q)-measure on the unit square.
Furthermore, since Fl(-) and Fz(-) are absolutely continuous distribution

functions, this also establishes that {cn,zn}w

n=1 implements the ICBM (p.x}.

Define Jn(b) = {j: 1 €3 £N-1and the total variation of p(e,b) on

[s.,s ] exceeds Jen}, for every n 2 1 and b € [0,1]. Observe that the

J'7i+1



cardinality of Jn(b) is less than K/Jen; otherwise, the total variation of
p(e,b) on [sl'sN] would exceed K. violating Assumption 2(ii). For fixed n

and b, consider any interval [Sj' ] such that 1 £ j £ N - 1 and

SJ.+1

j é Jn(b). Since for any s € [Sj’s 1. pn(s,b) equals pn(sj.b) or

i+l

pn(sj+1,b), we have (for either i = jor i = j + 1j):

Ip"(s,b) - p(s,b)] = [p"(s;,b) - p(s,b)]

1A

[p%(s;,b) = p(s;.b)| + |p(s;,b) - p(s.b)]

< /36 + ve < 2ye™

Thus, s € [s ] can only be an element of the set defined in (A.15) if

] and j € J%(b)} < (K/3)ve™ since

j S+l
. n .

j € J'(b). But ®{s: s € [sJ..sJ.‘\1
sJ.+1 - sj < en/3. for all j (1 £ j £ N - 1), proving (A.15). This completes
the proof of the theorem under the assumptions of the first sentence of the

proof.

Part V: Completion of the proof, without the extra assumptions.
First let us relax the assumption that p(s,1) = 1 and p(s,e) is

continuous on [b(s),1], for all s. Observe that the previous construction

n,o

and induced ICBM's {pn,x n=1"

still yields sequential equilibria {cn}:=1
however cn are not necessarily stationary. We now argue that each {pn,xn}
is .tself implementable by stationary sequential equilibria; a diagonal
argument then clearly demonstrates the implementability of {p,x)} in

stationary equilibria. Recall that each {pn,xn} considers some grid

sl,..,,sN of sellers. Let 91 1 0; observe that for every n 21 and i 2 1,



A-16

we can construct an N-tuple {pm(sk,b),xm(sk,b)}l}j:1 of pairs of functions

of b with the property that for all k (1 £ k £ N): pnl(sk.l) = 1; rll(sk,-)

is monotone increasing and continuous on [b(sk),l]; pnl(sk,b) = 0 whenever
< - .o ni _ ni _ (b ni . .

0 £b < b(sk), X (Sk'b) bp (sk,b) IO p (sk,r)dr. and:

(A.16) 2{b € [0,1]: lpnl(sk,b) - pn(sk,b)i > 8') < o',

For z > 0, we can define (analogously to (A.1)) discrete price paths from
ni ni N . . Ces
{p (Sk.°).x (sk.o)}k=1 for each Sy {1 < k £ N) which now yield positive

sales in every period until trade concludes. Mimicking arguments which

appeared in the early part of the proof, it is straightforward te show, for

every n 2 1 and every 8 > 0, that there exists il > 1 and z" > 0 such that

whenever i 2 i™ and 0 < z < zn, all but measure 8 of sellers sort themselves

n

in the same way against {pnl,xnl} as against {pn.x }. This establishes

implementability of {pn.xn

}.
Next. let us relax the assumption that 51(.) is strictly monotone on

[0.s]. Construct the grid (s as before. Define B to satisfy

et
0 <1 - Fz(B) < Ui(sN)/3. Let g(s) = arg max_ (1 - Fz(n)][n - s] be the
monopoly price correspondence. Select 71 and 72 such that B < 71 < 72 <1
and g(s) is single-valued for all s € [71,72]. Observe that

[g(Yl),g(Yz)] C Range g. Define g(e) to be any strictly increasing C1
function on [0,72] such that g(0) = g(Yl), alr,) = g(v,). and (s) >

sup g(s) in the interior of its domain. Extend g(e) to all of the domain
[0.1] by defining g(s) = sup g(s) for s € (72.1]. In order to make it

incentive-compatible for s to name the single price q(s) forever, we

instruct s to delay offering that price until such time she discounts to



h(s), where:

Y, f,(a(t)) 1
(A.17) h(s) = exp{-q'(s) J [ - 1 dt},
s 1 -F,(a(t)) a(t) -t

for 0 £ s £7v,, and h(s) =1 for 72 < s £1. Observe that q(t) exceeds

2 .
sup g(t) and q(t) = g(t') for some t' > t. Hence,

(3/0m){[1 - Fz(ﬂ)][ﬂ ~ t]} < 0 when evaluated at m = q(t) (whenever f2(o) is
defined). It follows that the integrand of (A.17) is positive, implying

that h(») is strictly increasing on [0.72]. Finally we define an auxiliiary

mechanism {pA.xA} by:

r
A [h(s), if b 2 q(s)
(A.18) p(s,b) =4
|0, otherwise,
L

and XA(s,b) = pA(s.b)q(s). Observe that {pA.xA} is a seller-first mechanism
and 5?(0) is strictly monotone on [0,1].
Define a new (seller-first) mechanism from the original and auxiliary

mechanisms by:

p®(s,b) (1 - eMyp(s.b) + enpA(s.b). and
(A.19)

x%(s,b) (1 - eMx(s.b) + enxA(S.b).

where we restrict attention to n sufficiently large that el < 1/3. Observe

that Bi(o) is strictly monotone on [0,1]; construct price paths
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(“i}gzl u ﬂg'A U HZ as before, but now with reference to Ui(-), We need to

argue that there exists z > 0 such that sellers separate correctly whenever

0 <z < z. First, we c}aim that ﬁi(s',s) - UT(S"S) = (1 - en)[ﬁl(s',s) -
Ul(s',s)] for all s',s such that G;(s',s) > 1 - FZ(B). To see this, note

that seller type s (when following the price path of s' derived from {pc,xC

}

must sell to a buyer type b € [0,B) to attain profits exceeding 1 - Fz(s)_
Since gq{s') > B, s sells to the same buyer types in [0,8) at the same prices

when following the price path of s' derived from {p,x}, but accelerated by a

discount factor of 1/(1 - en). Second. we claim that G;(s‘,s) is strictly

2(B). This follows from: 6;(5',3)

(s',s)] = enU?(s',s) + (1 - en)ﬁl(s',s):

quasiconcave in s' when ﬁi(s'.s) >1 - F

c 1 - 2t J -
> Ul(s ,s8) + (1 en)[Ul(s ,S) U1

and the fact that each of the two latter functions is strictly quasiconcave,

peaking at s. Now suppose s € [sk'sk+1] where 1 <k <N - 1. Observe that
] (s s) > 3[1 - F_(B)], and since en < 1/8, ﬁc(s s) 2 Uc(s .8) >

1 7k+1" 2 ! 1 k+1’ - 71" kt+1
2[1 - FZ(B)]' The quasiconcavity claim demonstrates that Gi(sj,s) <

~C

max{Ul(sk.s). U1(5k+1'

s)} for all j such that 61

(sj.s) > 1 - FZ(B); clearly
this preference still holds when Ei(sj.s) <1 - FZ(B)' Finally, for z"
sufficiently small, the same preference holds for discrete approximations.

For each n. we can construct (by arguments analogous to those above) a
stationary sequential equilibrium c" for some z" € (O.in). As n 1 =, note
that the B we defined converges to one, and so the sequence {on}:=1
implements the mechanism.

Finally, let us relax the assumption that Fl(.) is absolutely

continuous. First we consider the case where there is no mass point in the

distribution at s. The generalization requires a change in the initial

as

specification of the grid of seller types. For every n, define {sk}r}\::1
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at the beginning of the proof. Define (tk}§=1 by:

t, = inf{t: F (t) 2 [k/NJF,(s™).

1
Now define {Sé)ﬁ=1 to be the ordered union of (s and {t where any

N N
k' k=1 k'k=1"

redundancies are omitted (i.e., N' < 2N). Next, repeat the main

construction of the proof, only using (s in place of {s As

N N
k k=1 klk=1"

before, we obtain a sequence of sequential equilibria with associated
{pn(°.°)}:=1. We will now establish the analogue to inequality (A.15),
where Q(e) is replaced by yl(.).

Define Jn(b) = {j: 1 £ 3 £N'" -1 and the total variation of p(e,b) on

[sj.sj+1] exceeds Jen}, for every n 2 1 and b € [0,1]. Still, the

cardinality of Jn(b) is less than K/Jen. Observe that, for fixed n and b,

[p"(s.b) - p(s,b)| > 2ve" only if: either s € [0.s1) U (sy,.1]; or

' 1 3 n 1 ] n .
s € (Sj‘sj+1) for some j € J (b). But #1((Sj'st1)} < €/3 (for all

j 1,...,N'" - 1) by construction, and hence yl{s: s € (sj,si+1) and

j € Jn(b)} < (K/3)J€n. Since Fl(o) does not possess a mass point at O or s,

this establishes the implementability of {p,x}.

Second, we consider the case where there is a mass point at s, Without

-~

loss of generality, we may assume s < 1 (since in any seller-first mechanism
and in any equilibrium, the probability 61(1) that a seller of type 1 trades

equals zero). Observe by the definition of s and by ﬁl(s.s) > Gl(s',s) that

the price path associated with s is necessarily a single price of s
beginning at some time T. For every € > 0, we modify the original mechanism

by offering all seller types an additional alternative: a single price of

“ o _
S + 82 at a time T', where T' is defined by e rT" e I‘T/(l + €). Observe



A-20

that seller type s - ¢ will forego this additional price path, since it

. Cq -rT' N 2 2
would yield her utility of [e 11 - Fo(s + €7)}le + €7] <
[e_rT][l - Fy(s)le = U;(s,s - €), whereas U;(s - €,5s - €) 2 U (s,s - &) can
be obtained from the original mechanism. By the single-crossing property,
no seller type s £ s - € will select this additional price path. Hence, as
€ 1 0, the e-modified mechanisms converge in H,-measure to the original

mechanism (since s follows a price path arbitrarily close to her original

price path). If each € is chosen so that there is no mass point in Fl(.) at

s + 62. then each €¢-modified mechanism is implementable, and a diagonal

argument completes the proof.



