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1. Introduction

A key part of a game equilibrium is the set of beliefs each player has about the actions
of other players. This normally consists of a commonly held probability distribution over
the possible actions of all players with respect to which each players’ actions are optimal
and consistent. A Nash equilibrium imposes the further restriction that the strategies of
different players are independent. Aumann (1974, 1987) argued that players may rationally
choose to correlate strategies through commonly observed signals which are not defined a
priori. This possibility motivates the concept of a correlated equilibrium, in which the
independence requirement of Nash equilibrium is dropped. No loss of rationality is
involved in using correlated equilibrium; Aumann (1987) showed when the structure of the
game is common knowledge, correlated equilibrium is equivalent to Bayesian rationality of
players.

The purpose of this paper is to extend the correlated equilibrium concept to normal
form games with uncertainty and to examine how equilibrium depends on the features of
the game. This extension is warranted by the presence of two problems with the Nash
equilibrium concept The first problem arises in the presence of uncertainty. In the
standard model of normal form games with uncertainty, each player’s information is
revealed through the observation of her type, which is some random variable. Since a
player’s strategy depends on her observation and the types of different players may be
correlated, one cannot expect strategies to be unconditionally independent. Harsanyi
(1967) solved this problem when there are finitely many possible types by defining each
player type to be a distinct player. A Nash equilibrium with respect to the redefined game
is known as a Bayesian-Nash equilibrium, which requires conditional independence given
the profile of player types. This requires defining all observable uncertainty in the game a
priori. Some uncertainty affects the payoffs of players and should be included in the game.
However, there is a great deal of other uncertainty in the environment, and additional

uncertainty can always be introduced to a game. One solution is to include only those



states of nature which are payoff relevant, but this draws a distinction between states on
which payoffs depend only slightly and states which do not affect payoffs at all. For
example, consider two games, one for which all payoffs depend slightly on the same
commonly observed signal, and a second game for which the payoff functions are
nonstochastic. If uncertainty is limited to payoff relevant states, then the resulting
Bayesian-Nash equilibria in the two games are very different. In the former, equilibria for
which the strategies of different players are perfectly correlated are admitted, while in the
latter, players’ strategies must be independent. Since these two games are empirically
indistinguishable, one should not draw a significant distinction between them. Another
problem with defining uncertainty a priori is that some other event (a “sunspot”) can
become relevant to the game merely because players believe it matters. Such beliefs cannot
be excluded on grounds of Bayesian rationality. Since beliefs are endogenous, one cannot
meaningfully discuss “exogenous information” without placing arbitrary limits on players’
rationality. Extending the correlated equilibrium solution concept to games with
asymmetric information via Harsanyi’s construction solves these problems, since adding
correlation opportunities to a game does not expand the set of correlated equilibria.

A second problem with the Bayesian-Nash equilibrium concept arises whenever the set
of player types is uncountable. Because of measurability problems, Harsanyi’s
construction can no longer be used, so strategies must be defined as type dependent. With
this formulation, however, the payoffs of players are not generally continuous with respect
to strategies. As shown by Milgrom and Weber (1985), the problem is that correlation of
strategies permitted in a Bayesian-Nash equilibrium is very fragile. One interpretation of
the result is that spurious coordination of strategies creates discontinuities in the players’
payoff functions with respect to strategies [Milgrom and Weber (1985), Cotter (1988)].
An alternative view, pursued in Sections 2 and 4 of this paper, is that is that the set of
Bayesian-Nash strategies is not closed in the set of all strategies. Using this approach, the

set of correlated strategies is the closed convex hull of the set of Bayesian-Nash strategies.



Though the bulk of game theory has focused on games with finite types, infinite
games should not be ignored or viewed as pathological by the theory. There are many
games for which a finite representation is unnatural or inconvenient, such as when
differentiability or normality assumptions are useful in calculating an equilibrium. In
addition, the inclusion of all possible hierarchies of beliefs about other players’ beliefs
[Mertens and Zamir (1985)] leads to a very large player type space. Restriction to finite
type spaces also does not permit explicit comparisons of players’ information structures
unless those types are generated by a much larger underlying state space. When the state
space is finite, the set of possible information structures about that state is not very
interesting. A more interesting set of information structures could be obtained, for
example, by studying Blackwell information matrices over a finite set of decision-relevant
player types. Including all possible information matrices, even of fixed matrix dimensions,
requires a considerably larger state space. If the underlying state space is taken to be
uncountably infinite, then the extent to which the assumption of finite player types is
restrictive becomes relevant. A common rationale for the study of games with finite types
is the belief that any game can be approximated by a finite one. It would therefore be
useful to know the extent to which the set of finite games is dense. Since this is a
topological statement, a meaningful topology on the set of games is needed for which
closeness of a pair of games implies closeness of their equilibria. The existence of such a
topology for which the set of finite games is dense is an open question. Recent results of
Cotter (1988, Section 3) cast doubt for the case of Bayesian-Nash equilibrium. However,
in Section 5 a topology is constructed for which the correlated equilibrium correspondence
is upperhemicontinuous and the set of finite games is dense.

These points are best explained in terms of a simplified model with finite action spaces
and independently defined player types spaces, which is presented in Section 2. The
general model is covered in Sections 3 and 4, while the continuity properties of correlated

equilibria are discussed in Section 5.



2. An example

This model is a simplified version of the one presented in Section 3 and similar to the
model studied by Milgrom and Weber (1985). There are I (finite) players with generic
index ie I={1,2,...,I}. Each player has the following characteristics, all of which are

common knowledge:

type space T,, a separable metric space. Let T = I—II T, be the set of joint types.
1€
action space A, = {a.l,...,a.K.}, finite.  Let A = I A. be the set of joint actions.
1 1 1K1 iel 1.

payoff function u:T X A — R, measurable

Player i’s type t, describes all characteristics of that player. The information each player
has about other players’ types is generated by a common probability distribution p on T,
where player i observes teT.

A (behavioral) strategy for player is a measurable function s;:T; = A(A,), where A(A,)
is the set of probability distributions on Ai’ i.e., the (Ki-l)—dimensional simplex. Note that
this is equivalent to the definition of distributional strategy studied by Milgrom and Weber.
Let Siki(ti) = Si(ti)({aiki}) = Prob[aikilti]. For any behavioral strategy s; an equivalent
distributional strategy is given by a measure ©; on T,;XA; where 6, (W x{ aiki}) =
Jwisiki(ti)ui(dti). Let Si be the set of strategies for player i, and S = iI;II S, Define the
induced payoff function v:S — R to be the expected payoff to player i when each player j

uses the strategy s, € Sj:

Vo= 2 o Uty an Sy (6 Sy (DD,
(K15...,kD)

A Bayesian-Nash equilibrium is a Nash equilibrium for the game defined by the payoff
functions {vl,...,vi} and the strategy sets {S;,...,5;}. Certainly the resulting strategies

$1---,81 are not independent, but are independent given the profile of player types t =



(t}s-...tp. Therefore any opportunities for correlation of strategies are limited to those
provided by the type space T. This wreaks havoc with the usual methods for studying
Bayesian-Nash equilibrium. Existence of a Bayesian-Nash equilibrium becomes an open
question. To use the Fan-Glicksberg fixed-point theorem, each S, must be a compact
metric space and each player’s payoff function must be continuous with respect to S and
quasiconcave with respect to each S;. Each v, is linear with respect to S;. To define S, as a
compact metric space, give it the topology of weak convergence of random variables. A
sequence {s?} converges to s, € S, if and only if for every measurable W; c T, and k;,
Prob™fay I, ¢ W, = _[Wis?ki(ti)ui(dti) converges to Problay, It; € Wl = _[Wisiki(ti)u(dti).
However, this does not imply convergence of Probn[(alkl,...aIkI)l(tl,...,tI)e Wlx...WI] =
_[ s?kl(tl)...s?kl(tl)u(dt) for each (kl,...,kl). Therefore A is not jointly continuous

Wix..xW]

in S. The following example is due to Milgrom and Weber (1985).

Example 2.1: Suppose there are two players, with A;= {U,D} and A, = {L,R}.

Consider the following nonstochastic game:

L R.
U (2,2) 0,0)
D 0,0) 1,1

Let T, = T, be the unit interval with its Borel sets and Lebesgue measure, and let |1 be
such that t; and t, are perfectly correlated. For eachn let slll(tl) be the point mass on U if
t102n is odd, and the point mass on D otherwise. Let sg(tz) be the point mass on L if t202n
is odd, and the point mass on R otherwise. Then for each n, perfect correlation is

achieved, so the expected payoff to each player is 3/2. However, for each i {s?} converges



to the strategy which places probability 1/2 on each action for every t;, which yields

expected payoff of 3/4 to each player. 0,

Note that Example 2.1 is valid when (t, - 1/2)e is added to each payoff, where € is an
arbitrarily small number. Therefore restricting uncertainty to those states of nature that are
payoff relevant does not help, and as argued in the Introduction, the modified game should
not be considered significantly different from the original one.

The problem is that weak convergence of each component of the strategy pair (srll,sg)
does not define the degree of correlation between them, so some payoff relevant
information is lost. The Nash equilibrium concept requires, however, that the pair be
independently distributed for every n and t. This is how a sequence of pairs of perfectly
correlated strategies can “converge” to an uncorrelated pair. Therefore the convergence
concept should be modified so that the correlation between strategies is preserved. To do
this, consider (Sl"“’SI) as a mapping from T into A(A), the set of probability distributions
on A, and define joint weak convergence to be weak convergence of this mapping. A
sequence of strategy vectors {(srll,...srll)} converges to (Sl”"’SI) if and only if for every

k ’kI) and measurable Wi - Ti foriel,

-
n n
le... leslkl(tl). i (PH(dD) - le... leslkl(tl)...sikl(tl)u(dt).

Note that now S is not closed. The sequence {(srll,sg)} in Example 2.1 converges
jointly to the strategy which assigns, for all t, probability 1/2 to the pair (U,L) and
probability 1/2 to the pair (D,R). This limit is not a Bayesian-Nash strategy since the
strategies of players 1 and 2 are not independent conditional on t. It is a correlated
equilibrium as defined by Aumann (1974, 1987). Such an equilibrium can be implemented
through a correlation device such as a coin flip. Suppose both players observe the flip of a
coin which is common knowledge. Both players believe that if the coin comes up heads,

player 1 will play U and play 2 will play L, while if it comes up heads, player 1 will play D



and player 2 will play R. Note that even without binding commitments or cooperation,
both players find it optimal to follow those beliefs. Player 1 chooses U if the coin is heads
and D if it is tails, and player 2 chooses L if the coin is heads and R if it is tails.

A correlation device which can always be used is S. In this example, the limit strategy
is a probability distribution over §,xS,, with probability 1/2 assigned to the behavioral
strategy (U,L) and probability 1/2 to (D,R). To see that using S as the correlation device
entails no loss of generality, let R, be the unit interval with player i’s information about Z,
given by some partition (possibly infinite) on Z.. A correlation device, such as a coin flip,
is a pair (Z,n) where 7 is a probability distribution on Z = igN Z,. With respect to (Z,m), a
correlated strategy is a vector of player responses g = (g,....8y\) With g;:Z, — §,
measurable. Player i receives z, € [0,1] then decides on a strategy (not action) gi(zi).
When she observes her type t, as well, the mixed strategy given by g,(z,)(t,) is chosen.
Note that even if z, is uninformative, no information about t, is lost, and z; provides no
additional information about (tl,...,tI).

Define a correlated equilibrium to be a correlation device (Z,m) and a correlated

strategy g such that for each i and any measurable function g{:Zi - S,
|v@om@ > [y, e pgema.

A correlated equilibrium is a Nash equilibrium with respect to the redefined game. This
definition is not very convenient, since (Z,) is part of the equilibrium and the use of
functions as strategies is mathematically unwieldy. Following Aumann (1987), assume
without loss of generality that the information revealed by z, about z is precisely that
revealed by g.. Any correlated strategy defines a correlated strategy distribution (c.s.d.),
which is a probability distribution v on S, where v = nog'l. If (n,g) is a correlated
equilibrium, then v is a correlated equilibrium distribution (c.e.d.), where for each i and

any measurable function 8::S; — S,



J§vi(s)u(ds) > ngi(s_i,Si(si))D(ds).

In a c.e.d., the strategy space S serves as a message space. Each player observes, not
her own strategy, but a message that, if followed, will cause her to play the strategy given
by that message. Since strategies rather than actions are suggested, the information each
player has about t is unaffected.

Each c.s.d. v defines a joint strategy, a measurable function s:T — A(A), via the

relationship

Sklkl(t) = Prob[(akl,akz,...,akI)|t] = J§ Slkl(tl)"‘SIkI(tI)D(dg)‘

Let S be the set of joint strategies. With respect to joint weak convergence, S is a compact
metric space and S ¢ S. However, the following example shows that a joint strategy

corresponds to many c.s.d.’s which are strategically different.

Example 2.2: Consider the previous matching game except that T, and T, are
singletons. Identify S; with the unit interval, where s; € §; is the probability of choosing
heads by playeri. On S, the unit square, let v be Lebesgue measure and v’ be normalized
Lebesgue measure on the region defined by the triangle with vertices (0,0), (0,1/2), and
(1/2,0) and the trapezoid with vertices (1,0), (1,1/2), (1/2,1), (0,1). Both v and v’
generate the joint distribution placing probability 1/4 on each of (U,L), (U,R), (D,L),
(D,R). However, under v, each player has a uniform prior about the other player’s

strategy, while under v’, each player has some information. O

Therefore the description of a c.s.d., rather than its joint strategy, is necessary for
studying correlated equilibria.

A topology on the space of c¢.s.d.’s will be needed. Since Sisa compact metric space,

it is tempting to use weak convergence of measures. This approach is not appropriate,

however, since if S is given individual weak convergence then A(S) is a compact metric



space but v, is not continuous. A stronger topology on A(S) is needed for v, to be
continuous, but then A(§) cannot be compact. A solution is to define equivalence classes
of c.s.d.’s that are strategically equivalent. Give A(S) the weakest topology that makes the

following functions continuous for every (ky,....kp):

ds)VW c T
L= J§ ["‘Wslk 1(tl) SIkI(tI)u(dt)]l)( S) c
v - J‘§ [Yi(si)J-W 'g-ik_i(t-i)“-i(dt-i)]D(dg) V continuous ¥;:S; > Rand W, < T,
i

To interpret these conditions, let {Da} be a convergent net (generalized sequence) of
c.s.d.’s. in this topology. The first condition implies that the corresponding net of joint
strategies converges. The second statement says that if player i deviates by choosing a
mixed strategy that depends on the s; received but not on t;, such that Prob[aikilsi] depends
continuously on s, for each k;, then the resulting net of joint strategies converges.

Let Y be the corresponding set of equivalence classes with the quotient topology. The

following results are proven in Section 4.

(1) Y is a compact metric space

(2) For any v, v’ in the same equivalence class of Y, for each i and measurable
Si:Si - S5, ,[_vi(Si(si),§_i)1)(d§) = ,[ _vi(Si(si),§_i)1)’(§), so strategic opportunities are
well-defined. ° °

(3) the set of c.e.d.’s is nonempty, compact, and convex.
These results apply to a more general model which is presented below.

3. The general model
This model of normal form games is the same one used by Cotter (1988). Itis a
generalization of the model used by Radner and Rosenthal (1982) in their study of

purifications of Bayesian-Nash equilibria, and parallels the use of independently defined



player type spaces by Milgrom and Weber (1985) and the previous section. The main
advantage of this model is the definition of players’ information as an explicit parameter of
a metric space, which is used in Section 5. There are I (finite) players with generic index
ie I={1,2,..,I}. Uncertainty is given by a probability space (Q,F,u) where Q is a set
of possible states of nature, F a countably generated o-field of measurable subsets of €2,
and [ a probability distribution on (€,F), all of which are common knowledge. Define the
space of information fields or devices F *asin Boylan (1971) and Cotter (1986) to be the
set of sub-o-fields of F (measurable partitions of (), identifying those partitions which

differ only by events of probability zero. Each player has the following characteristics:

action space A, a compact metric space. Let A = II A, be the joint action space.
iel
information field G, € F *,

payoff function u:QxA — R.

Each player’s payoff function is assumed to be continuous and integrable. To state
this precisely, let C(A) be the Banach space of real-valued continuous functions on A with
the supremum norm. For example, a payoff function u;:Q — C(A) is a random vector
taking values in C(A). Some results on Banach space-valued random vectors are used
which can be found in, say, Diestel and Uhl (1977, Chapter 2). Let E be a Banach space
with norm |I- Il and dual E*. A random vector f:Q — E is said to be measurable if there
exists a sequence {f"} of simple random vectors f" = EC?XF?, with e}l € E, F;l e F for
each n and j, and Y, the indicator function, such that for a.e. ®, limlif"-fIl > 0. Pettis’
Measurability Theorem [Diestel and Uhl (1977, Theorem 2.1)] states that f is measurable if
and only if it has essentially separable range (i.e., maps an event of probability one into a
separable subset of E) and for every x* € E*, x*(f(m)) is scalar measurable. Note that the
former requirement is automatic if E = C(A) since it is separable. A measurable f is said to

be Bochner integrable if |If(w)ll is integrable. The Bochner integral in E is defined from any

sequence of simple functions {f"} and is written _[Qf((n)u(d(n). Define the Banach space
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L(E) to be the space of Bochner integrable random vectors with norm llIiflll =
JQIIf(m)IIu(dw). The continuity and integrability assumptions on u, can be stated as

follows.
Assumption 3.1: For each i, u € L(C(A)).

All structural aspects of the game, as well as the strategies of all players, are assumed to be
common knowledge. In this game, each player observes the outcome of the partition G,
including E[uiIGi] ().

A behavioral strategy, used by Radner and Rosenthal (1982) and Cotter (1988) is a
function, consistent with the player’s information, which maps the state space into the set
of probability measures over that player’s action space. Let M(A,) be the set of regular
finite Borel measures on A; with the variation norm, and A(A,) the set of regular probability
measures on A;. A behavioral strategy is defined to be a function 5, Q- A(Ai) which
is, in some sense, consistent with that player’s information. However, since M(Ai) is not
separable, to require s to be strongly G;-measurable would be extremely restrictive.l For
example, suppose A, and €2 are uncountable. If |l is not purely atomic then any behavioral
strategy which is injective and maps into point masses is not measurable since it does not
have separable range. However, a weaker version of measurability will suffice for this
model. Note that M(Ai) is the dual of C(Ai) with the usual duality <c,M;>=
J‘A.c(ai)n i(dai). Let si:Q - M(Ai) be a random vector. Then 5; is said to be weak™ Gi'
melasurable if for every c, € C(Ai), the mapping ® — <C,,8;(w)> is scalar Gi-measurable.
A behavioral strategy for player i is defined to be a weak ™ G,-measurable random vector
with values in A(Ai).

Let S, be the set of strategies for player i, and S= I—ISi the set of Nash behavioral

strategies. Note that for any Nash strategy s = (sl,...,sI) and a.e. @, (sl((o),...,sI(co))

1T am indebted to Maxwell Stinchcombe for reminding me of this fact.
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defines a probability measure on A such that the marginals on each A, are independent. By
allowing correlation on states of nature not defined a priori, a larger set of player strategies
can be defined. Such a strategy must be consistent with each player’s information as well
as the information of any group of players. For any subset of players J < I, let A; = 11

jel

Aj and GJ = \/ G.. For any random vector s:Q2 — A(A), let sJ:Q - A(AJ) be defined by

; }

SJ((D) =the rrjlzginal of s(w) on AJ. Let S = {s:Q — AA)| Sy is GJ—measurable} be the set
of joint behavioral strategies. Clearly -§ C S, and both are contained in the the dual of
L(C(A)), denoted L(C(A))*. Since M(A) is not separable unless A is countable, L(C(A))*
# L.o(M(A)), the space of Bochner-integrable random vectors with values in M(A) which

are a.e. bounded. However,

Theorem 3.2: S is a weak™-compact subset of L(C(A))* with the duality <f,s> =

J o) Af(@)@)s(w)(da)(de), and S, is a weak*-compact subset of L(C(A))".
Proof: 1dentical to the proof of Theorem 2.3 of Cotter (1988). O

Example 2.1 shows that as a subset of L(C(A))*, S is not a closed subset of S.
Therefore S has two different topologies. With respect to the product topology generated
by each §,, S is a compact metric space, which is distinct from weak* convergence in
L(C(A))*.

Each player’s payoff function u, induces a payoff function with respect to strategies
viiS = R with vi(s) = <ui,s>. Note that v, is continuous with respect to joint

convergence, but not independent convergence.
A theory of integration for strategies will be needed. For every measure v on S (or S
for that matter) there exists an integral in S, denoted JFsdu, such that for every

f e L(C(A)), <f,IFst> = JF<f,s>D(ds) [Rudin (1973, Theorem 3.26)]. In

addition, for every s; € S;, there exists an integral in A(A,) known as the Gelfand integral
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and denoted égsi(m)u(dm), such that for every c € C(Ai), <c,§gsi(m)u(dm)> =
_[Q<c,s(m)>u(dm). Conditional expectations for strategies can be defined using the
Gelfand integral. Foreach s, € Si and every He F, there exists a unique strategy E[s;\H]
€ Si such that for every ¢ € C(A)), <c,E[siIH]> = E[<c,si>lH]. See Cotter (1988) for

details.

4. Correlated strategies and equilibria

As argued in Section 2, a correlated strategy distribution is a probability measure on S.

Definition 4.1: A correlated strategy distribution (c.s.d.) is a Borel probability
measure L on S which places probability one on S. A correlated equilibrium distribution
(c.e.d.) is a c.s.d. v such that for each i and every measurable Si:Si - Si’

(i ES) 2 I vi(3,(5,).5_)0(ds).
S

Note that by Choquet’s theorem, every joint strategy corresponds to some c.s.d., though

as shown in Example 2.2, the representation is not unique.

The next question is whether a useful topology on the space of c¢.s.d.’s can be found.
It was shown in Section 2 that this cannot be done for the entire space A(S), so a set of

equivalence classes in A(S) is required.

Definition 4.2: Give A(S) the weakest tdpology such that the mapping from A(S) to S
defined by v — _[_§D(d§) is continuous, and for each i and every continuous function
1:S,5A(A), the mapping from A(S) to S defined by v — | [¥i(s,) x §_Ju(ds) is
continuous. Define Y to be the set of equivalence classes of c.s.g.’s generated by these

mappings with the quotient topology. Identify v e A(S) with its equivalence class in Y.

13



Note that this is equivalent to the weakest topology such that v — J_§D(d§) is
S
L
continuous and for every function Fi:Si - Si of the form Fi = I=21 '))iXHl with ‘)}1 :Si - A(Ai)
continuous for each | and HI € F, the mapping from Y to S defined by v — J_(Fi(si) X -
S

§_i)1)(d§) is continuous.
Theorem 4.3: Y is a compact metric space.

Proof: For each i choose {Y}( |k = 1,....} a countable dense subset of C(Si,A(Ai)), and
{Hlll = 1,....} a countable dense subset of F with respect to the symmetric difference
metric p(H,H’) = p(HNH)+pu(H°NH’). Define ®: Y — S°° (with the product
topology) by @(v) = (| 50(d).J 1(F ) X 5 FNie ey, oy, Where L runs
over all finite subsets of the positive integers. By the definition of the topology, @ is
continuous, and by the identification of equivalence classes, P is injective. To show olis
continuous, let {v"} be a sequence in Y such that for k, L, and f € L(C(A)),
{ < ()05 >0"@)) converges to {j§<f,(IEZ‘,L Y )<E>0(d5) ).
Let I_:i = IE, ?Iixﬁl. For each ?Il choose‘))i such that for every s, and B C A,, I?:(B) - fi(B)I
< ¢g/2L, and H' such that u(I_{I A HI) < ¢/2L and {Hl,...,HL} is a disjoint partition of Q.
Repeated use of the triangle inequality shows that for every s € S, | <f,E[f3i(si)lH ]><§_i>
- <f.E(s)xs_;>| <&, uniformly in v.

Therefore @ is a homeomorphism of Y onto a subset of S™°, so Y is a separable metric
space. To show Y is compact, let {v"} be a sequence in Y. By a diagonalization
argument, there exists a subsequence such that for every L and k, {Jg[(lg Y}( (Si)XH') X

§_i]1)n(d§)} converges to Jé [(Ig Y}( (s)X g x s ;]u(ds). One can find an equivalence class

14



of measures on S taking on the desired values, since these mappings (using the duality
between S and L(C(A)) define a subset of C(§). Denoting a typical element of the

equivalence class by v, the result is proven. 0

The next problem is to show that the identification process in Definition 4.2 preserves
c.s.d.’s that are strategically distinct, so that statements about correlated equilibria are well-
defined on equivalence classes. The following version of Lusin’s theorem will be of

central importance:

Lemma 4.4: For any i, any v € A(S), and any Borel measurable function Si:Si -,
any probability measure v on S, and any € > 0, there exists a continuous function F:S, —
S, such that letting U, = {Fi(si) # Si(si)}, U, is open and Di(Ui) >1 - & where v, is the
marginal on S..

Proof: Let {fli( | k=1,2,...} be a countable dense subset of L(C(A,). For each k
define gi(:Si — [-1,1] by gli((si) = <f§,8i(si)>/lllfiklll. For each k, there exists by Lusin’s

theorem a closed subset Vi( of S, with Di(Vli() > 1 - £2"% such that on Vi(, gli( is continuous.

Let Vi = Q Uli(. Then Vi is closed, Di(Vi) > 1- ¢, and & is continuous on Vi‘

The next step is to show that Si is homeomorphic to a retract of [-1,1]7°. Let ‘P:Si -
[-1,11° be defined to be ¥(s) = (<fi1,si>,<fi2,s-l>,....). Certainly ¥ is continuous and
injective, so since S, is compact, ¥ is a homeomorphism of S, onto ¥ (S ;). Note that
‘P(Si) is a compact convex subset of [-1,1]. It remains only to be shown that lI’(Si) isa
retract of [-1,11". Let d(y,2) = gl 2'ly;-z| be a metric on [-1,11°. Define the
correspondence r:[-1,1]7 —»— ¥(S,) by 1(z) = argmin{d(y,z) | y € ¥(S,)}. To show ris
single valued, suppose for some z € [-1,1]7 there exist yl, y2 € ‘I’(Si) such that d(yl,z) =
d(y2,z) 2 d(y,z) forally € ‘P(Si). Since ‘P(Si) is convex, it must be the case that
d(?»y1+(1—7»)y2,z) > Xd(yl,z) + (1—?»)d(y2,z). However, d(Xy1+(1-l)y2,z) =

15



Ay -2).(1-0) @y < dA(y'-2),0) + dO,(1-N)(z-y) = d(Ay' A2) + d(1-W)z,(1-1)y")
= Ad(yl,2) + (1-0)d(y%z). Therefore dAy +(1-0)y%,2) = M(y',2) + (1-0)d(y2,2), so €
falls along the line from yl-z to z—y2, i.e., z is on the line determined by y1 and y2. This is
possible only if z = (1/2)(y1+y2), SOZE ‘P(Si), a contradiction. Therefore r is single
valued and continuous, and r(y) = y for y € ¥(S;). Therefore ¥(S,) is a retract of R™.
This proves that S; has the universal extension property, so there exists a continuous

F.:S, — S, such that F, = & on U,, completing the proof. O

Recall that the pointwise convergence metric on F * [Cotter (1986)] is the weakest

topology on F * such that for every h € L(R), the mapping H — IE[h|H]l is continuous.

Lemma 4.5: Let {H"} be a sequence in F * which converges pointwise to H € F ¥

Then {E[siIHn]} converges to E[s.|H] uniformly in's; € S..

Proof: Forf, e L(C(A)), |<f.E[s|H"1> - <f.E[s,|HI>| = | <E[f,|H"],s,> -
<EI[f;|H],s,>| < NE[f;|H"]-E[f,|H] Il which can be made arbitrarily small for sufficiently

large n, uniformly in S;- <>

The next result shows that the strategic opportunities of individuals are well-defined on

equivalence classes of ¢.s.d.’s.

Theorem 4.6: For any elements v and v’ in the same equivalence class of Y and for

every i and Borel measurable 8.:S, — S,

[ V.59 008) = | v(8.05).5 (@),
S S

Proof: Given € > 0 there exists by Lemma 4.4 a continuous Fi:Si - Si such that,

lewing U, = {5, S; | Fysp # 8,59), | L5 VB NE) < e and

1

'[U S vi(Si(si),E_i)u’(d§) < €. Since the set of finite partitions of €2 is dense in F*, there
XS

i
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. . - . . *
exists a sequence {H"} of finite partitions which converges pointwise to H € F . For

sufficiently large n, by Lemma 4.5 and dominated convergence,
] Vi) Us) - Igvi(E[ngi)IH“] 509 <e

| v.F ()5 0/ (@) - | v,EBIFsplH™M5 0'(ds)] <.
S S

Then
| v.6.6505 o) - [ vieis)5 '@l
S S

< |IUixg_ivi(ai(si),§_i)u(d§) -—IUixg_ivi(Si(si),§_i)1)’(d§)| + 2e < 4e.
Since € is arbitrary, the proof is complete.

Theorem 4.7 The set of c.e.d.’s is compact.

Proof: Let {v"} be a sequence of c.e.d.’s converging to some v € Y. Choosei and a
measurable Si:S ; = S; By Lemma 4.4 there exists a continuous function F;:S; — S, such

that V.= {si € S; l Fi(si) # Si(si)} is open and V(V, % g_i) < €. Asin the proof of Theorem

4.6 choose a finite partition H < G; such that

| I_vi(Fi(si),’s'_i)u(d@ - I_vi(E[Fi(si)lH],E_i)u(dE)| <Ee.
S S
Then

[ vion@ -] v.6)5 0@
S S

= [ v -] vEes @ ] vE )5 w6695 )1
S S VixS_;

> I_vi(g)u“(cﬁ) - I_vi(Fi(si),E_i)D(dE) - 2l i
S S

v

f_vi@)u“(dE) . I_vi(E[Fi(si)IH] 5_)0"(dS) -26(2 + N lI1) > -2(2 + llu, )
S S
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since V" is a c.e.d.. Since ¢ is arbitrary, v is a c.e.d.Q
In the next section it will be show that the set of c.e.d.’s is nonempty.

5. Continuity of game characteristics

As stated above, the usual assumption of finiteness of player types in Bayesian-Nash
games cannot be justified on the belief that finite type games are dense in the set of all
games with asymmetric information. When considering correlated equilibria, however,

this hypothesis is justified. The next result contrasts with Example 3.2 of Cotter (1988).

Theorem 5.1: The correspondence mapping player characteristics [payoff functions
and information fields] into the set of c.ed.’s C:[L(C(ANXF*I' =5 Y is
upperhemicontinuous when F* is given the pointwise convergence topology [Cotter

(1986)].

Proof: For each i let v? e L(C(A)) and G? € F* converging to \ and Gi respectively.
For each n let " be a c.e.d. for the game [(v'i,GI;),...,(v'Il,GrIl)]. Choose i and a
measurable Si:S [ Si taking values on weak*Gi—measurable strategies. Choose &, Fi, and
H as in the proof of Theorem 4.7. Following the proof of Theorem 4.7 yields
[ von@ - [ v.6)5, 06
S S
2 J_vi(§)un(d§) - J_vi(E[Fi(si)IH],E_i)D“(dE) - 2&(1 + ik, 1)
S S
for sufficiently large n. For such n choose a finite partition H® < GIi1 such that
If_vi(E[Fi(si)|H],§_i)u“(d§) - f_vi(E[Fi(si) |5 0" @s)l <.
S S
Then

j_vi(§)0(d§) - j_Vi(ai(Si),g_i)U(dg)
S S
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2 J_vi(E)u“(dg) - J_vi(E[Fi(si)lH“] S_)0"(dS) -2€(2 + Ilhu Iy > -2€(2 + lihu, 1)
S s

completing the proof. O

If every information field G ; is a finite partition then v; is continuous on §, SO
Theorem 3 of Hart and Schmeidler (1987) applies to show that a c.e.d. exists. Using

Theorem 5.1 existence can be extended to all games.

Corollary 5.2: The correspondence { is nonempty-valued (i.e., a c.e.d. exists) and

convex valued on [L(C(A))XF*]I.

6. Concluding remarks

These results suggest that at least for games with uncertainty, correlated equilibrium is
a more natural solution concept than Bayesian-Nash equilibrium. In the latter case,
correlation of strategies is restricted to an arbitrary space of uncertainty. Defining this
space of uncertainty a priori is a dubious undertaking, since other states of nature
(sunspots) can become decision relevant through the beliefs of players, which are
endogenous, and the statement that a state of nature is payoff relevant is empirically
meaningless. In addition, the type of correlation allowed in the Bayesian-Nash solution
concept, which depends only on the underlying type space, is unstable. When similarity of
strategies is defined to explicitly account for the degree of correlation between them, then
the set of correlated strategies is required. This recognizes the fact that not all uncertainty in
the game can be defined by the game theorist.

Perhaps many game theorists have avoided using the correlated equilibrium concept
because it allows a large equilibrium set, which includes the convex hull of the set of Nash
equilibria. This is not encouraging in light of results such as the folk theorem, which states
that in an infinitely repeated game the set of Nash equilibrium payoffs consists of all

payoffs that are individually rational. However, this equilibrium set is so large that
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expanding the solution no harm is done by using correlated equilibria since that set cannot
be larger. As with Nash equilibria, the solution is to refine the correlated equilibrium
concept by ruling out unreasonable beliefs. Though there is no reason to rule out
correlation on grounds of reasonableness, some correlated equilibria can be eliminated
through, say, dominated strategy or justifiability arguments. Given the nice mathematical
structure of correlated equilibrium (compactness and convexity) and the explicit use of

beliefs, refinements may be easier to obtain than for Nash equilibrium.
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