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""A Model of a Project Activity"
Edward A. Stohr

ABSTRACT

This paper presents a simple model of a project activity in

which the objective is to complete a given task at minimum cost. The

problem is formulated as a decision problem with an uncertain number of

stages. The optimal solution is found for the time-invariant case and

the implications for the design of activity control systems are discussed.



A MODEL FOR PROJECT ACTIVITIES
by

Edward A. Stohr

1. Introduction

This paper discusses a simple model of a project activity. It will be
assumed that a given task must be completed at minimum cost. The time taken
to complete the task is not specified beforehand and will not be known
exactly until after the task has been finished. The expected duration of
the activities may not be long enough to allow them to be described by
stochastic processes which have achieved a steady state. Thus the activi-
ties have a 'project'" rather than a '"process' orientation. When the task
has been completed, the organization which performed the work either dis-
bands or goes on to perform another task. In the mathematical model the
system will have to move from an initial state to a final state; attainment
of the latter will represent completion of the task. The problem will be
stated as a single-person multi-stage decision problem under uncertainty.
It will be assumed that the state, X s of the system at time t is a scalar
variable representing the amount of work remaining to be completed. The

€ R" specifies the levels of m different resources

decision at time t, a g

t
which are to be used at time t.

Examples of economic activities which might be modelled in this way
are: (i) (simple) construction projects in which the total amount of work
involved can be aggregated and represented by a scalar quantity, (ii) a single
activity from a PERT or CPM network, or (iii) a single production run from

a job shop. The objective of the paper is to study the design of manage-

ment control systems for this type of activity.



The model described here differs from the usual models in the manage-
ment science literature as follows. 1In the literature on PERT and CPM the
problem of controlling individual activities is not explicitly considered.
There, each activity is described either by a given probability distribu-
tion of finishing times as in PERT or by a given set of deterministic
cost-time trade-off curves as in '"CPM cost" [8]. One possible use
of the type of model developed in this paper would be to provide a rational
method of developing data concerning the characteristics of individual
activities for inclusion in these netowrk models. The management science
literature concerning production activities has usually assumed either
finite time horizons of infinite time horizons. A typical example is the
aggregate production planning and smoothing model of Holt et al [4]. Omn
the other hand, the model in this paper involves an uncertain time horizon.
The present model is however restricted because the costs are not assumed
to be functions of the state of the system and the state of the system is
assumed to be a scalar quantity.

In section 2, the activity control system design problem is described.
Section 3 analyzes problems where the decision stages are discrete and
Section 4 analyzes a similar model in which it is assumed that the actions
can be adjusted continuously over time. The optimal solution for the con-
tinuous case has a very simple and convenient form. The results for the
discrete case approximate those for the continuous case for activities of
long expected duration. Section 5 states solutions of the activity control
problem for some commonly used cost and production functions. Section 6
uses the results of the previous sections to discuss the general problem

of designing control systems for activities of random duration.



2. The Activity Control System Problem

Knowledge of the technology of the activity will be described by a
sequence of cost functions, ct(at) and production functions, ft(at)’
t =0,1,2,... 1In general, undertainty will exist concerning these functions.
For example, uncertainty about future factor prices will prevent exact speci-

fication of the function, c¢ and uncertainty with respect to such factors

£
as the quality of the work force, quality of material inputs, and future
weather conditions will prevent exact specification of the production function,
ft' These uncertainties are modelled by including additive random distur-
bance terms, ' and §t, in the cost and production functions as shown in
(1) below. The functions . and ft are themselves assumed to be deterministic
and continuous., Uncertainty will also exist with respect to the total quan-
tity of work, xO, involved in the task. 1In a construction context this un-
certainty occurs for example, because estimates of the quantity of work in-
volved are obtained from blueprints which may be based on only approximate
data concerning actual topological and geological conditions. 1In a pro-
duction setting, xO might represent the total orders outstanding for a
product at the beginning of the production run. Uncertainty here might be
due to inaccuracies or delays in the information system. Although in general
the states X, cannot be observed exactly, an assumption of perfect observa-
tion will be made throughout this paper. It will be shown that this assump-
tion is not of great importance in that the expected value of perfect infor-
mation will usually be small for the problems analyzed.

The objective of the activity manager is to choose actions, a, € At’
t = 0,1,2,..., which will minimize the expected cost of the activity. The

m - , .
action possibility set, At(E R+ , defines a constraint on the actions



avaijilable at time t. It is assumed that ft(at) +-§t, a_ € A_, is always

t t
non-negative, or in other words, that the amount of work remaining to be
completed decreases monotonically over time. Information, concerning the
current level of Xt, becomes available at time t and an action, at € At’ is
selected according to a decision rule, @, The decision rules can be
functions of the history of prior observations, xt = (XO’XI""’xt) and

t-1

actions, a = (aO,al,...,a Thus the period t action is given,

t-l)'

-1
in general, by a, =<yt(xt,at ). A policy, w, is a collection of decision

rules, QYO*YI’QZ"")' The state of the system is a random variable with a
probability distribution which depends on the policy, , chosen. Sometimes
this dependence on ¢ will be recognized explicitly by denoting the state

at time t by ﬁi. The activity model can now be stated as follows. Find the

policy, ¢, which solves

T-2 (e (@ DHo )%
(1) V@) =min § T (c (a) +y,) + Tf}a T ; +g 1 53
t=0 T-1 T-1
Subject to:
. s 0
(a) Initial condition: Xy = X
(b) Dynamics: x ., =x - (f(a) + %t), t =0,1,2,...

(¢) Final condition: 0< Xr_q < fT-l(aT-l) +-€T—1

(d) Admissible actions: a, =‘at(xt,at-1), t =0,1,2,...

In (1) the expectation is taken with respect to Xo’go’gl""’YO’Yl"" The

time of the last decision, T-1, is a random variable. It is assumed that
the output, ft(at) + §t, and cost, Ct(at) +-Yt, occur uniformly over time.

The random variable defined by the ratio, *r-1 , in the objective

fr1 @ %0

function is therefore the fraction of the last time period in which work



takes place and the term, (CT-l(aT-1)+YT—1) , in (1) is the cost
fr1 @)y T

incurred in the last time period. In the following discussion the activity
model (1) will be specialized to the time-invariant case where c.=Cs ft=f’
A=A, t=0,1,2,... and {Yt, t=0,1,2,...} and {it, t=0,1,2,...} are each
assumed to be identically distributed sequences of random variables. It

is also assumed that xO, 50,51,...,Y0,Y1,... are independent.

As stated above, the possibility of imperfect information concerning
the states of the system is not considered in this model. However it is
worth noting that the general problem of activity control system design
would modify (1) to allow for imperfect observation and would explicitly
take into account the cost of generating information concerning the system
states. The modified model would then be solved to find the expected cost
of completing the activity for each available information system and finally,

the optimal information system would be chosen (see [6]).

3. Free-End Time Problems With Discrete Decision Stages

A deterministic time-invariant free-end time problem can be obtained

from (1) by omitting the random disturbance terms:
T-2 c(a

(2) V@) =min { T c(a)) +—-—Lll
a €A (t=0 t f(a’r-l) -1

subject to:

(a) 1Initial condition: ﬁé = x0 > 0

(b) Dynamics: x°é+1 = xoé - £@a), t=0,1,2,...

(c) Final condition: 0< ¥ ;s f(a, )

(d) Admissible actions: a_ =0, (x), t=0,1,2,...



Note that the time, T-1, of the last decision is determined implicitly by
the chosen policy and the constraint (2c). Define the time worked during

the last period under policy o by

)%(a)-l

f(aT(a)-l(}%(a)-l))

(3) m) =

where the dependence of T on ¢ has been made explicit. Let ¢ be the con-

stant policy, o = a, t=0,1,... From (2¢) and (3) and the assumption that
X

work is completed at a uniform pace during each time period: T(a)-l—fm(a)=¥-(—27 .

Hence: T)-2

V) = ( Zc(@) ) +mi)c(a)
t=0
- - - (@)
(TQ) - 1 +m@)e@) = £55 %
Let & ¢ R" be a solution to & = c_(g.)_ = min ca) . The cost of the optimal
£(a) f(a)
acA
constant policy, §, = d; t = 0, is given by V@) = ¢x Let B be any other

0
admissible policy, bt the action taken at time t, and T(B) - 1 + m(B) the

t

activity duration. The cost of policy, B, is

T@®)-2
ve) = = c(bt) +m(s)c(bT_1)
t=0

c (@)

Now, c(bt) = £(3)

f(bt)’ tz 0, so
. T@®)-2
V@) = c( tio £(b,) +m(8)f(bT_1))

= EXO = V@) .

Hence ¢ is the optimal policy, the minimum cost of completing the activity

0
X

£(a)

" . 0 -
is V@) = ¢x and the optimal completion is T =



These results are similar to those which will be obtained in Section 4
for the stochastic continuous time problem. However, the stochastic discrete
stages problem is not quite sc¢ straightforward even uunder the time invariance
assumption. In this problem, the time, T-1, at which the last decision is
made is a random variable with a probability distribution which depends
on the chosen policy. The final condition, (lc), is equivalent to the

definition of the last decision stage:

s-1 ~
T-min{ s=1] £ (f@a) +5) =z x
t t
t=0
. . 0 & . . .
Now a, is a function of x ,50,51,... and the event { T < i} is equi-
i-1 B
valent to the event { & (f(at) +-5t) > x% . Hence T is a stopping time
t=0

for the dynamic process defined by (1b). It follows from the Wald identity

[ 7, p.38] that:
(4) E[Zét]=E[T]-E[§0]

The constant action case will be considered first. Let ¢ be any con-

stant policy, o, = a, t=0,1,2,... By definition:
T-1 0
tio(f(a) +8) - (f(a) +€T_1) +x. g =X

Taking expectations and using (4):

B LTI (@) +E(E)) - £) - E[5,_] +Elx,_ ] =E[x],
or . _ :
E [T-1] (f(a) +E[§O]) + f(a) + E [SO] - f@a) - E [sT_lj + E [xr_lj = E [xo].
Rearranging, and defining i, =E [xo]:

U'O - E [xT-].] - E [goj + E [éT-l:]
£(a) + E (5]

(5) E[T-1] =



-8 -

From (1) the expected cost of policy ¢ is given by

T-2 (c(@) +vy )
T-1"%r-1
V) = E T (c(a) +—Yt) + TORE
t=0 T-1
Now, T-1 is determined by xO and éo,gl,...,iT_l and by assumption,
YO’YI’YZ"" are independent of xo,io,gl,... Hence it follows that T-2 is

independent of YO’Yl""’YT-Z’ that Yoo1 is independent of gT-l and Xr_q

and that E [YT-IJ =E [Yo]. Therefore from (5):

(6) Vi) I-1 ]

E[T-1](c(a) +E[yyl) + (c(@) +E Ly DE [%f§$—17§—__
T-1
c(a) +E [YOJ
“Ho F@) FE[E,

*r-1 E LSy 4]
+ (c(@) +ELYJ)AE [——————-f(a) YE . t @ TE N

E Ly ] E LS,
T f(a) +E[§0] T f(a) +E [éoj :

Let a be the solution to

c(ax) + E [YO] c(a) + E [YOJ
7 c = - = min
f(a*) + E ffoj A f(a) + E [50]
and az = ax, t=0,1,... The policy an is the 'certainty equivalent' policy

obtained from the optimal deterministic policy by replacing the random
disturbance terms by their expectations. Let as be the optimal constant
policy, ai = as, t 2 0. This policy must minimize the value of V(y) given
by (6). Because of the last term in (6), aS depends on the distributions
of xo,io,gl,... and not just on their mean values.

Following the approach adopted for the deterministic problem, let g be

any admissible policy and bt € R" the action actually taken at time t.



Since the action can be any function of the past history of the process,
bt is a random vector. Let S - 1 be the random variable denoting the last

time at which a decision is made. The duration of the activity under this

*3.1

policy is the random variable, S - 1 + f(bs_l) " 53-1 .

The expected cost

is given by:

—

52 (c(bg_y) +Yg_q)
V@) = E ht§0(°<bt) YO s Tl ) FEg )
52 (c(bg_y) +E [y
SE| E () +E Crgh) + %54 £bg_y) +Eg_;

where the second line follows since S-2 depends only on xo,go,gl,...,

Yg_q 1S independent of X 1 and E [Ys_l] = E [yO]. Now for t=0,1,...,

c() +E[yy] 2 c*(f(bt) +E[ED, so:

. [s-2 x., . (£(b +E

(8) V@) 2 ¢ E tzzzo(f(bt) +E[E]) + s-1;(58?;;)+_§s—i§o])

= <K,
By definition, x_ = SéZ(f(bt) +E) +x, . Taking expectations and using

t=
(4) and (8):

5-2 (£(bg_) +E[E5])
K-u,=E[S-1]JE[g ] - E [tioét] +E % Fo, ) 7T, Xg 1

xg_y (Ebg_ ) +E[£,])
Elggy] - ELEy) +F £(b : o

]

s-1) t8s.1
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=Bl S| - E[5] - E %51 B ELEGD)
Blbg 1) * 55

> 0 with probability 1.

where the inequality follows since, from equation, (1lb), and the

definition of S, 0 £ ——= =1 with probability 1 and

therefore

| g | %s-1Gs.1 - ELEQD
f(bg ) + 7

<| B Lgg_, - Elg,] |
S-1

with probability 1.

Hence V() > CTJO for any admissible policy B. Evidently, the certainty

equivalent policy, ¢ , the optimal constant policy, ¢« , and the optimal

admissible policy, ¢, satisfy:
* S "
(9 Ve ) > Ve = V@) 2 ey,

Temporarily, let x0 be a known constant. For a constant action the
dynamics of the time invariant random duration control problem with the
stated independence assumptions define a renewal process (in the "amount
of work completed" rather than in "time'" as in the usual interpretation of
renewal processes). In fact, the problem reduces to the usual definition
of a "renewal reward process,' [ 7], except for the terminating condition

(lc) and the assumption that costs are incurred, and progress of work is
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achieved, uniformly over time.

From (6) V@) = E [T-1] (c@@) +E Yo + (c@) +E [yO])li%;gl—] ,
T-1

hence using (7):
0 *r-1

x *
F@ +E(E] T ET@ +8,, 0 @) TELvD.

(10) V@) - ¢ x0 ={E[T-1] -

Now E [ T-1] can be regarded as a function of x0 (the ''renewal function'")

and has the following property [ 2,p.366]:
0 EL(f@) +£,7]
E[T-1] - s -+ ¥ O - 1 as ¥ s e,
£@™) +E[gy] 7 2(£(@) +ELE D)

*r-1

Using the '"Key Renewal Theorem" [ 7,p.42] it can be shown that E Ez;;;:g;j; + 35

0
as x -+ «o. Hence substituting in (10):

- . var [§ (c(a*) +E[ )
(11) Vi ) - chO) + L = 0] TZO] as x0 4@,
2(£(a) +E[g])

From (9) and (11) it is clear that 0< V(@ ) - V@) < L if L, is suitably

large. This gives some measure of the expected loss incurred by following

the 'certainty equivalent' policy, a“, rather than the true optimal policy &.
It can be seen from (6) that a 1is the optimal constant action if the

contribution of the final term in the objective of (1) is neglected. Further-

S
Yy

s . 3
more, a - a as Mg ™ @ since the last terms in the expression for V(y)

Al

have finite limits. In order to compare al with the optimal policy, &, it
will be necessary to introduce some more terminology. For simplicity it

will be assumed that the random variables, & t 2 0, may have any non-

t’
negative value and that A ={a ¢ R" | a=za . =20}. Let A(x) =

faja

guarantee completion of the task before time t+l. From the assumption about

i S 5 f(a) = . A(Xt) is the set of feasible actions which will
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A, A(x) is non-empty for all x= 0. If ac¢ Ac(x), then under the above
assumptions the activity may or may not be completed before t + 1, Let
v(xt) be the expected cost of completing the project given that the state

is Xt at time t. Then:

(12) v(x,) = min {g;(x,),8,(x)}
where:
(13) gl(xt) = min . { c(at + E [YO] + E [v(xt - f(at) - §t)]F(xt-f(at))
a, € A (xt)
c(at) +Yt
+x E |———5] (1 - F(x, - £(a.)))
t f(at) +§t t t

(14) (x,) { fe0 T
1 g, (x = X_ min El| ———————

2%t tate AGx) fa) +§&,

and F is the probability distribution function for §),§1,...
*
From the previous analysis the optimal action, as for large values
c(a) +E Lyy]

of X, will approximate the action, a , which minimizes f(a) + E [g&] .

ever, if xt:> 0 is small enough and the decision is made to complete the

How-

activity during the next time period then, from (14) and the independence

assumption, the optimal action §t= a', where a' minimizes (c(a) + E [Yo])

1 . e e e . . .
E %qzs—:fg—] . (It is assumed that the minimizing action is finite and non-
t
negative in both of these cases). Evidently, there exists x' > 0 such that
if X, > x' then a < §t < a' and if X, $ x' then ét =a',

The formulation (12) to (14) provides insight both for the activity

problem considered here and for renewal reward processes in general. For

large Xes v(xt) = gl(xt) > c"xt. Also, the first two terms in (13) will

predominate so that:
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gl(xt) = minC {c(at) + E [YO] + C*(Xt - f(at) - E [Eo]ﬂ
a, € A (xt)

This functional equation is obviously solved by a* as defined in (7). This
confirms that the optimizing action for large X, approximately minimizes
the ratio of the expected cost to the expected output in each period (rather
than the expectation of the ratio of the cost to output in each period -
which seems, at first sight, to be an equally intuitive result).

The results for the discrete stages time-invariant random duration

control problem can be summarized as follows:

Theorem 1:

S o
iy

a , t= 0 defined by (7), the

The constant policy, o, s

1M

optimal constant policy, as, and the optimal policy, &,

satisfy:
Ve ) > Ve > vE) > Ciio

If;JO is large enough, the opportunity cost involved in
using a "certainty equivalent" policy, ¢ , rather than
the true optimal policy, &, satisfies:

var [§](c@@) +E [y,
2(£() + E [5,)°

at.
0< V@ ) - V@) <
As X, o the optimal action ﬁt + a ., TFurthermore, there
exists x' > 0 such that if X, > x' then a < at < a' and if
1

X, S x' then at = a' where a' minimizes the right-hand side

of (14).



4, Continuous-Time Random Duration Model

In this section it will be assumed that the level of resources applied
to the task can be adjusted continuously. 1In other words, the set of pos-
sible times at which a decision can be made is the positive real line Ri
=[0,0). Let x € Ri be the amount of work left at time t. A continuous,
time-invariant version of the dynamic equation, (1b), is dxt = -f(at) dt - d§
where f: R - Ri is the production function and gt is a continuous martin-
gale with constant mean, g. Let gt =g + U, where u, is a continuous mar-

tingale with a zero mean. The system equation becomes:
15 dx = -f(a dt - t - du, .
(15) . (a,) g d du
Similarly, a continuous, time-invariant version of the cost equation in (1) is
= +
dct c(at) dt dyt,

m 1. . . . .
where c: R - R+ is the cost function and Y, is a continuous martingale
with constant mean h. Let Ye © h + Voo where v, is a continuous martingale

with a zero mean. The instantaneous cost is therefore:

(16) dct = c(at) dt + h dt + dwt.

The initial condition, x,, will be a random variable with mean i . The

O)

random variables, Xy Ups Vs t 2 0 will be assumed to be independent of

one another. For t= 0, letF, be the g-algebra generated by {xO,uS,wS, s< t).

Let (© 3£,pt) be the probability space of the dynamic process defined

t,

by (15) at time t. Let AC Rﬁ be a compact set of feasible actions. The

admissible decision functions ot ﬂt-4 A at time t will be measurable with
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respect to‘?t. The objective of the system will be to finish the task

(drive x  to zero) at minimum cost. Let T = inf {t]xt = 0} . Then the

?

objective is to find the admissible policy, ax, which solves

T T
min (E[ [ (c(a) +h) de+ [ aw )
o4

f

(17) V)

o H O

min {E [ [

(c(ay) +h) de]}
: !

since wt is continuous with zero mean.

Il

Now consider a constant policy a, = a, t 2 0 and let x, be given. Then,

0

T
(18) Xp = 0 = XO - IO (f(a) + g) dt - U

From the independence assumption, and since U, t 2 0 is a zero-mean

X

. _ _ _ 0
martingale, E [uTlxo] =E [uT] = 0. So, from (18), E [T\xoj HOETE

From (17) the cost of the constant policy is therefore

VQy,XO) = (c(a) + h)E [Tlxoj

_ (c(a) +h)
T f@) + g *0°

% ) A c(a) + h * * . .
Let a be a solution of min sa = a, t 2 0 is an optimal

aca \F(@) g
constant strategy. Let ¢ = %%gwgfz—g and define a function v:R1 - R1 by
_ gcgafz + h) _
(19) v (x) (£(2°) + g) X = ¢ X, x = 0.

Theorem 2:

Given x the optimal strategy for the continuous-time

0 3
* %

problem is the constant policy a;

W
[
Ia
N
o
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Proof. Let g be any other admissible strategy, bt the action taken at

time t, T the random-activity completion time using policy B, and xi,

B

t =2 0, the corresponding trajectory.

By the Ito differential rule, [ 9],

dV()éat)

v d +1v_dR
X XX t

X %
cT-f(bt) - g] dt - c'du,

where th is the incremental covariance of gt and the second equality
follows from (15) and (19), since Ve = 0. Taking the stochastic integral

of the last equation and then taking expectations gives

v oL
(20) -v(xo) + E [v(xge)] =-E[c JOB (f(bt) + g) dt],

where, again, use has been made of the fact that u is a zero-mean martin-
T

gale so that E [ r P utdt] = 0. Now, v(x% ) = 0 by definition of TB since
uo B

%, = 0 a.e. and by definition of ¢, c(b) +hz cx(f(bt) +g), t= 0. So,
B

using these facts in (20):

o

(21) v(xo) = clcx0

T
<E[ J B(c(bt) +h) dt] = V@,x,).
0

On the other hand, if bt = an, t 2 0, equality is obtained in (21), since

v(xg) = V@ %)

0

Corollary. The optimal policy for the continuous-time problem, de-
k3

fined by (15) to (17) is the constant action: a: = ax, t = 0, where a is

c(a) +h

a solution of min fla) + g

acA



«) _fc(@a ) +h) _ C*
= 7F Ho = Mg~

The minimum expected cost is VKQy\ %) T g

The expected completion time using the optimal policy is given by

Ho
ELT «] = T + 8

Proof. The proof of the corollary follows immediately from the theorem
after taking expectations with respect to Xy

The optimal solution of the continuous-time problem depends on the
distributions of gt and Ye only through the means of h and g. Hence, theorem
2 is an example of a '"'certainty equivalent" result. Furthermore, the ex-
pected cost due to the uncertainty in xO and gt’ tz 0 is zero. Since the

optimal policy is a constant independent of x , t 2 0 there is no advantage
t

to be gained from making observations of the system state.

5. Optimal Solutions for Some Particular Technologies

*
The optimal (or nearly optimal) action, a , for the time-invariant free

end time problems discussed in the previous sections is the solution to a

c(a) +d

f(a) +g ° where d and g are constants repre-

problem of the form, min
acA

senting the means of the additive disturbance terms in the cost and produc-
tion functions. Since it has been assumed that ¢ and f are continuous and
that A is compact this problem always has a solution. Some simple examples
are now stated, however the computational task involved in solving this

problem is not always trivial.

Let the cost and production functions be given by:
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c(at) +d = 9 + €12, + czat , t=2 0
f(at) +g = ea , £t=2 0
\ % _ B
where €32€12S € R' and CO’CZ’e > 0. Then a ‘/C07C2 if amin < /c0702 < amax

and the optimal solution does not depend on any parameters of the production
equation, However, this is a very special case. 1If a non-zero constant
term is present in the production function, an optimal solution to this
problem is the solution to a quadratic equation involving parameters from
both the cost and production functions. If ¢, = 0 in the preceding example
the solution would be unbounded except for the constraint on the actions.
The optimal action is then:

.amin if €18 = che1

amax if CleO < cOe1

As another example, let the cost function be linear and the production func-

tion be of the Cobb-Douglas type:

c(at) +d = ¢ t ciat , t=2 0
m bi
f(a) +g=>b_ [ a. , 20
t Oi=1l

1 m 1
. < 1.
where c.,c. > 0, y € R7, ¢y € R, bi > 0, bi € R7, 0< i< mand X bi

0
Also let A ={a ¢ Rm\a = 0}. Then the optimal action is given by:

1

COb'

_ i . .

a, = ?T—:—EETTET ; 1< i< m,
i’ i

If ©b., = 1 the Cobb-Douglas production function gives constant returns
i

to scale and if ¥b, > 1 it gives increasing returns to scale. In both of
i



these cases the solution would be unbounded if the action were not con-
strained.

For more general cases it will be necessary to use numerical approxi-
mation or specially devised algorithms in order to solve this problem.
For the case of multidimensional linear cost and production functions for

example, the algorithm given in [ 3] might be adopted.

6. The Design of Control Systems for Economic Activities of Random Duration

The significance of the results obtained for the time-invariant, free-
end time activity models analyzed in the previous sections will now be
ot
discussed. 1t has been shown that a constant policy, a , is optimal for

the continuous random duration and deterministic versions of this problem

and that a constant policy is approximately optimal for the discrete random

At
w

duration version. 1Intuitively, the action, a , minimizes the cost per unit
output in each time period. This is also the action which minimizes the
long-run average cost per unit of time in the corresponding infinite-horizon
problem [ 7].

The fact that the optimal action is approximately constant, independent
of the state, X s of the system, is quite surprising. This means that the
choice of the optimal action is never affected by chance events. 1In a
construction context for example, the action taken after two weeks of heavy
rain and poor production should be the same as the action taken after two
weeks of fine weather and good production. Of course, this result depends
on the time invariance assumption. Tt is no longer true, for example,
when additional penalties are incurred, if the activity is not finished be-

forc some given target date. The solutions for free-end time and fixed



duration activity models can be very different. For the fixed-duratiom
problem, where the production functions are linear and the cost functions
are quadratic, the optimal action is linear and expected cost is quadratic
in the state of the system, [ 1]. 1In the time invariant free-end time
problem, however, the optimal (or near optimal) action is a constant and
the expected cost is a linear function of the state of the system.

Perhaps the most interesting property of this activity model is that
information systems which report the state of the system (amount of work
remaining) have little or no value. The additional freedom of a "free-end
time' makes the optimal actions less dependent on the state of the system
and more a function of the particular technology. The benefits to be de-
rived from the traditional information system which produces periodic
‘progress reports' may not, therefore, be very significant. Again, this
conclusion is dependent on the time invariance assumption. However, it
does at least indicate the need for a careful economic analysis of the

value and cost of this type of information in real problems.



