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Abstract

A class of pure exchange economies is considered in which some agents
are informed of private information and others are uninformed. Existence of

a partially-revealing rational expectations equilibrium is proved--without

restricting attention to particular functional forms for utiiity functions
and probability distributions, without introducing "noise" into the model,
and without departing from the standard definition of REE. The equilibrium
is robust in the sense that if the primitives of the economy are slightly
perturbed, the economy continues to have a qualitatively-similar REE. With
somewhat stronger assumptions placed on the economy, the eguilibrium is also

the unique measurable REE.



1. Introduction

Private information influences public actions and so, conversely,
public actions tell something about private information. Hence, when
asymmetricaliy-informed economic agents interact in a competitive market,
the common terms of trade reveal some of the participants' knowledge. This
leads to the key insight which underlies the microeconomic rational
expectations literature: an equilibrium concept which requires agents to
exhaust ail opportunities to improve their utilities or profits in a market
environment should aiso permit them to take advantage of all information
which is contained in price.

Such reasoning is absolutely essential in economic models of asymmetric
information, but this reasoning must also be exercised with absolute
caution. The rational expectations inference process makes possible
circumstances where egquilibrium prices reveal all existing knowledge to
market participants with asymmetric private information. Such fully-
revealing equilibria are valuable in the study of the aggregation of
information by markets, and in the formal modeling of situations where we
have reason to think that agents possess symmetric information at the time
they make their market decisions. However, many real-world economic
phenomena appear to hinge critically on the presence of asymmetric

information in equilibrium. A fully-revealing rational expectations

equilibrium suppresses any such effects; we need a well-developed theory of
partially-revealing rational expectations equilibrium to further explore the
consequences of asymmetric information in large markets.1

The theory of fully-revealing rational expectations equilibrium {(REE)

is largely complete. There generically exist fully-revealing REE's in



2
competitive economies where the state space is finite (Radner, 1979).2
Generic existence also holds when, for every agent, the number of dimensions
of unknown information is less than the number of prices (Alilen, 1981a and
1982). Nongeneric examples of nonexistence of equilibrium have also been
provided in the "lower dimensional case" (e.g., Green, i977; Kreps, 1977).
There generically do not exist fully-revealing REE's in competitive
economies where the number of dimensions of information unknown to an agent
exceeds the number of prices {(Jordan, 1983).3 However, there do genericailly
exist REE's where price "almost fully reveals" private information in the
higher dimensional case {Jordan, 1982).

Unfortunately, results concerning partially-revealing rational

expectations equilibria have been much more elusive. The following,

fundamental question has long been an open problem:

Is there an economy such that the existence of a partially-
revealing REE is robust? To be precise, does there exist an
economy possessing an REE with each of two properties: (a) agents
possess (nontrivially) asymmetiric information in equilibrium; and
{b) if the primitives of the economy are slightly perturbed
{possibly changing the functional forms), the economy continues to

have a quaiitatively-similar REE?

For that matter, mere examples of economies with partialiy-revealing REE's
have been few and far between. A much simpler problem, thus, has also
remained unanswered: Is there an example of an economy that does not

utilize normaliy-distributed random variables but which, using the standard
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definition of REE, possesses a partially-revealing equilibrium?

The reason for difficulties in obtaining positive results in this
literature is that partial revelation opens a Pandora's box of potential
informational discontinuities which thwart traditional fixed-point
arguments. We will now briefly review the literature on partially-reveaiing
REE's.

Allen (1981b) constructed a class of economies with two dimensions of
information pbut just one price. The full-information price function is
monotone in each coordinate of information. Hence, each of the two agents,
privately informed of just one coordinate, can infer the remaining
coordinate. Price by itself is partially revealing, but price together with
private information is fully revealing. Thus, we have symmetric information
in equiiibrium. Other articles have achieved asymmetric information, but
only at the cost of altering the definition of REE or introducing special
features into the model.

These articles can be broadly divided into two subsets. The first line
preserves the general framework of the exchange economy, with general
utility functions and many consumption goods, but slightliy departs from a
strict definition of REE. For example, in Allen (1983), Anderson and
Sonnenschein (1982, 1985), and Ausubel (1984), agents form "irrational
inferences" which come arbitrarily close to the rational expectations
inference. 1In Allen (i985), markets do not clear, but they come arbitrarily
close to fully clearing. The noise present in the above devices provides
the requisite smoothness to enable proofs of existence via fixed point
theorems.

The second line of literature preserves the strict definition of REE,
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but restricts attention to a special type of securities model where agents
value a variety of "assets" only because they are convertible to a single
consumption good at a future date. More importantly, utility functions are
usually restricted to be exponential, and random variables are aiways
required to be normalily distributed. Diamond and Verrecchia (1981},
Grossman (1977), Grossman and Stiglitz (1980), Heilwig (1980), Laffont
(1985), and Verrecchia (1982) make one or both of these restrictions, and
are then able to find closed-form solutions for partially-revealing noisy
REE's.?

The current articie affirmatively answers the open problems posed five
paragraphs above. A class of pure exchange economies is constructed for
which one can prove the existence of partially-revealing REE's, without
imposing specific functional forms on the primitives. The REE price
function is comparatively simple,5 yet leaves agents with nontrivial
asymmetric information in equilibrium. For a subclass of the constructed
pure exchange economies, uniqueness of the eqguiilibrium among measurable
REE's is also demonstrated. Thus, this paper presents a class of economies
which are potentially valuable for future modeling purposes.

However, the article makes no pretense of having "solved the rational
expectations existence problem."” Existence is established for a class of
economies, and just that. The assumptions used here are much stronger than
the standard conditions for showing existence of a competitive equilibrium
in a symmetric information economy. Certainly, future research in this area
will yield considerably more general results than are contained in the
current paper.

This article consciously avoids "excess baggage" which is unnecessary
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for partial revelation. In particular, "noise" (i.e., symmetricaily-
incompiete information) is somewhat peripheral to a modei of asymmetric
information and is therefore banished from this paper. Instead, models are
studied where every piece of information is known by at least one agent.
Special functional forms, such as exponential utility or normal
distributions, are also shunned. Indeed, this paper takes a "minimalist”
approach to model-buiiding: it uses the smallest state space (a pair of
intervals), the smaliest degree of uncertainty in equilibrium by uninformed
agents (the state is one of a pair of points), and the smaliest number of
goods (two) which make an affirmative answer to the fundamental problem
possible. Of course, analogous constructions can be used in larger modeis.

The paper is structured as follows. 1In Section 2, we specify the model
and define REE. 1In Section 3, we solve for equilibria in a set of exampies.
In Section 4, we prove the main existence result for a class of economies
where informed agents possess fuil information. (Existence and uniqueness
of a solution to the fundamental differential equation is shown in the
Appendix.) In Section 5, we discuss the robustness of partiaily-revealing
REE. 1In Section 6, we extend existence to economies where informed agents
have only partial private information. 1In Section 7, we characterize all
REE's for a subclass of the economies. 1In Section 8, we prove the main

uniqueness result for this subclass. We conclude in Section 9.

2. The Modei: A Noiseless Pure Exchange Economy

We consider a pure exchange economy with asymmetric information but
without noise. The state of the world is determined by: a continuous

random variable, E, which is distributed on the unit interval I = [0,1}]; and
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a dichotomous random variabie, ?, which‘takes on eiements of " = {H,T}
("heads" or "tails"). The realization, (8,7), is payoff relevant to agents
because it enters into their (state-dependent) utility functions. (E,;) is
assumed to possess a joint density function. Let h(B) and t(B) denote the
densities at (B,H) and (B8,T), respectively; h(e) and t(e) are assumed to be
continuous positive functions on I. We normalize jé [h(B) + t(B)ldB = 1.
Finally, probabilities are described using the triple (I x ', F, u), where ¥F
is the o-field of subsets whose intersections with I x {H} and I x {T}
{projected onto I} are each Borel measurable, and g is Lebesgue measure.

Agents are divided into two classes, according to their private
information. There are J1 "informed" agents {whose signals, utilities,
endowments and demands are subscripted by 1) and J2 "uninformed" agents
(subscripted by 2). Every agent ij (i = 1,2; 1 £ j £ Ji) is exogenousiy
conferred with a private signal sij(s,y) of the state of the world, before

the time of trade. 1Informed agents receive one of three types of signais:

(@) s;,(87) = (8.7);
(®) 5,87 = 8
or
= 7.

(c) s.,(8,7)
Uninformed agents receive a null signal:

(@) s,,(8,7) =0,
which confers no information, and is normally suppressed from our notation.
In different sections of the paper, we will vary among (a), (b) and (c) the
signals which informed agents receive. However, throughout, we assume that
some agent is informed of the true realization of § and some agent is

informed of Y. That is what we mean when we say the economy is "noiseless":
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if all agents in the economy could pool their information before the time of
trade, they would possess complete information.

Unfortunately, agents lack the technology to acquire information
directly from other agentis (e.g., the possibility of markets for information
is excluded). However, agents are permitted to observe equilibrium prices
in the commodity market before they trade, and are able to draw appropriate
inferences. Moreover, the probability density functions, h(e) and t(e), and
the remaining specifications of the model, are common knowledge to all
agents in the economy.

There are two commodities, denoted x and y, respectively. Prices are
assumed to be nonnegative, and are normalized to sum to one. We usually
only explicitly mention the price of the first good, and refer to this by p
or ¢. Agent ij's endowment is denoted by (iij'§ij) € Ri+ and agent ij's
consumption is denoted by (xij’yij) € Ri+, for all i =1,2 and 1 £ j £ Ji.6

Agents have (state-dependent) utility functions, Uij(x,y;s,y):

2 -

R++ X I x " - K, which are assumed to satisfy:

Assumption (Al): Uij are twice continuously differentiable in (x,y,8), for
all i (i = 1,2) and all j (1 £ j £ J'). For every fixed (8,%) € (0,1) x T,
Uij(-,-;B,y) is strictly monotone and strictly concave in (x,y), and

satisfies the boundary condition. Furthermore:

(anj/ax)(x,y;ﬁ,y) is monotone increasing in 8 and
(BUij/ax)(x,v;O.‘Y) =0,
and

(BUij/ay)(x,y;B,y) is monotone decreasing in B8 and



(BUij/ay)(X.y;l.V) =0,
for all (x,y) € Rf+ and for all ¥ € T.

The above conditions require that agents "increasingly enjoy good x
(relative to good y)" as B increases.

in the face of incomplete information, agents maximize their expected
utilities conditional on their private information and the market price,

subject to the budget constraint. That is, agent ij solves:

Max(xij,yij) n[Uij(xij,yij:B.V)!sij(B.V).p(B,V)]

subject to p(B,V)xij + {1 - D(B,V)inj

S p(B,Y)xy; + [1 - p(B,M]y, ;-

E{U. .is,.,p] is well defined because U, _( V..;*,Y) is continuous, and
13 1) 1) 1)
hence bounded, on the compact set I. Furthermore, E[Uijlsij

continuously differentiable, strictiy monotone, and strictly concave in

X. .
ij’

p] is

(x,v) because each Uij has these properties (except when 8 = 0 or 1i).
Hence, the maximization yvields differentiable demand functions xij(o) for
any (fixed) conditional beliefs by agent ij. Finally, all agents are
assumed to be price takers.7

Let us now define our concept of competitive equilibrium. Let p(e,e)

denote a price function, which associates states of the world (B8,Y) with

prices p(8,Y) of the first good. (The price of the second good is
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i - p(B,Y).) Let E. [olp(B Y), S5 (B 7)1 denote agent ij's (correct)
conditional expectation operator, conditioning on the observations
p(B.%) = p(B.,Y) and S5 (B y) = ij(B.'}'), and using the joint density

functions h(e) and t(e).

Definition 1: A rational expectations equilibrium (REE) is a Borel-

measurabie price function p: I X I" - I and a vector of demand functions

IXT-R (i=1,2;i23j¢2 J') such that:

X, .3
1]
(1) xij(B,V) maximizes Eij[Uij(xij’y 8, 7)Ip(8,Y), S5 (B )i
subject to:
_ < % i -
p(BY)x; 5 + [1 - p(BY) Iy, < p(BY)x;,; + 11 - (B, )1y, ij’
for almost all (B,7) € I x T, alli i = 1,2, and all j (1 £ j < JV),
and
i i
2 J 2 J =
(2) Eiog Ljog X358 = Ly Iy %55
for almost ail (8,Y) € I x T

In some economies, the REE price function reveals all reievant, unknown
information to agents. Such a situation, and the associated demands, are

now defined:

Definition 2: The fully-informed demand function, xfj: I xXI X[ - R+, of

*
an agent is given by: xij(¢;B,7) = arg maxxij {Uij(xij,yij;s,y)}isubJect to
- - . *® J *
- < — = i =
¢xij + §1 ¢)yij < ¢xij + (1 ¢)yij =Wy Also define Xy 2j=1 xij and
J

wi = Zj=1 wij'

If, in an REE, X, [B Yi = xfj[p(B.V):B,V] aimost everywhere for all i
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and j, we refer to this as a fully-reveaiing rational expectations

equilibrium.

"
Thus, x1(¢;5,7) denotes the aggregate demand of informed agents for the
first good, when the market price is ¢ and informed agents believe that the

state of the world is (B8,¥) with probability one, etc.

3. A Set of Examples

in this section, we will exhibit a set of pure exchange economies which
satisfy the assumptions of Section 2 (and additional assumptions which will
be stated in Section 4), and we will solve explicitly for a partialily-
revealing rational expectations equilibrium. We will aiso assert that for a
particuiar subset of these economies, the constructed equilibrium is the
unique REE, deferring the proof of uniqueness until Section 8.

Two intellectual debts should be acknowledged at this juncture. First,
the class of examples below is related to examples analyzed in Radner (1979,
pp. 661-665) and Allen (1981a, pp. 1175-1176) to discuss nonexistence of
fully-revealing REE. The ciass of exampies is also a somewhat more distant
descendant of the nonexistence example of Kreps (1977). Second, the
modeling device of two-to-one price functions was first utilized in Jordan
(1982), although there it was used to construct REE's which were arbitrarily
close to fulily revealing.

Consider the foliowing set of examples with one informed agent and one
uninformed agent. The informed agent is privately informed of 8 and 7V,
i.e., sl(B,V) = (8,%Y). He possesses positive endowments (§1,§1) of the two

goods and uses the state-dependent utility function U1 given by:



i1

]
a5y

o(B) log x + {1 -~ «(B)] log vy, if ¥
(3) Ul(x.y;s,'y) = {

1l
L |

g log x + {1 -~ B] log vy, if ¥

The uninformed agent receives no private information, i.e., 82(8,7) = 0. He

possesses positive endowment (§2,§2) and uses the utiiity function U2 given

by:

(4) Uz(x,y;B,'Y) =g logx+ [1-p8] logy, for ¥ =H,T.

(e} is assumed to be a strictly monotone, continuously differentiable

function which satisfies a(0) = 0, &¢(1) = 1, and «(B) # 8 for all 8 € (0,1).
We immediately have the foliiowing proposition, which assures that these

examples are interesting.

Proposition 1: There does not exist a fully-revealing REE of these

economies.

Proof: Suppose, to the contrary, that there does exist one. As in
Definition 2, let w, = pii + (1 - p)s—ri denote the wealth of agent i. The

demand function of the informed agent is given by:

% a(B)W1/¢, if ¥ = H,
(5) X1(¢;B,7) = {

T.

Bw. /0, if ¥

Meanwhile the fully-informed demand function of the uninformed agent is:
x;(¢;8,7) = Bw2/¢, for ¥ = H or T. For any state (8,H), where 8 € (0,1),

equilibrium requires x; + xz = ;1 + iz. Hence, (1 - p)/p = (1 - a(B))il +
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(1 - B)ﬁz]/[a(s)§i + B§2] yields an explicit, unique value for p(g8,H).

Now define g8' = [wl/(w1 + wz)]a(B) + {wz/(w1 + wz)]B, where w, and W,
are evaiuated using p(g8,H). Observe that g' € (0,1) and 8' # B. As above,
it is easy to see that markets clear in state (B',T) if and only if p(g',6T)
= p(8,H).

But then the uninformed agent displays different demands in states

(8,H) and (8',T), despite observing equali prices, yielding a

contradiction. i1.

Knowing that there is no fully-revealing REE, we will now construct a

"pairwise revealing" REE: the price function will be a two-to-one mapping

from states of the worlid to prices. The uninformed agent, upon observing
the equilibrium price, infers that (B,¥Y) is one of two possible states of
the world; the informed agent obviously still uses his fully-informed demand
function. Observe from (5) that x:(¢;B,H) = x:(¢;a(B),T) for all ¢,8 € 1.
Thus it is natural to seek a pairwise-revealing REE where p(8,H) = p(a(B),T)
for all g € I; then x:(p(B,H);B,H) = xI(p(a(B),T);a(B),T) for all g € I, and
the uninformed agent cannot distinguish between (8,H) and («(8),T) by either
price or by his own demands. (In Section 7, we will establish conditions
guaranteeing that any pairwise-revealing REE associates (8,H) and (x(B),T).)
Suppose an equilibrium of the posited form. We will next derive an
expression for the probability which the uninformed agent attaches to heads,

given that the state is either (g,H) or (a(B),T):

(6) n(B) = Probability [(B,¥) = (B,H) | p(B.¥) = p(B,H)].
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Let us say it was known that ¢0 < p(B,Y) < ¢1, where ¢0 p(BO-H) and

¢, = p(g,.H). It could be inferred that (B,7) € Q. (8,) = ((B.H): By S B <

B} or (B.%) e (8) = {(8.T): «(By) S B S &(B,)}. Then:

B1
fB h(g)ds
Probi (8,)] 0
0
B, 48, Probi,(8,)] + ProbiQ.(8,)1 B, !B, jBl R fa(Bl) t@)de

Using 1'Hopital's rule, differentiating the integrals with respect to 31,

and evaluating at BO gives:

h(8)
(7) n(g) =

h(B) + t(a(B))a (8)

Ceteris paribus, w(B) is inverseliy related to «'(B); this observation, and

equation (7) generally, are aiso apparent from Figure 1.

(INSERT FIGURE 1 ABOUT HERE)

Let us now define generally the uninformed agent's demand function,

given a market price ¢ and given he believes that the state is either (B8,H)

or (B',T), attaching'a probability w to the former state.

Definition 3: The pairwise-informed demand function is given by:

*%
xzj(¢;B,B ,M) = arg max {mu, .(

. _ 3 .ol
2J _ _ %%
s N < _ - . -
subject to ¢X2j + (1 ¢)y2j < ¢x2j + (1 ¢)y2j = W2j' Also define x2
__‘Jz xK ok
Bi=1 *2j

If, in an REE, uninformed agents' demands equal pairwise-informed



x(P)

Figure 1
Inference by uninformed agents when p(g8,H) = p(a(g).,T).

(As o' (B) increases, the conditional probability of T increases.)
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demand functions aimost everywhere, we refer to this as a pairwise-revealing

rational expectations equilibrium.

Iin this set of examples, B' = o(8) and m is given by (7); conseguently,

the uninformed agent's demand in state (B,¥) is given by:

. %%k * ¥k

(8) X, (¢:8,H) = (W2/¢){H(B)B + {1 - w(B)la(B)} = X, (¢;a(B),T).
% £33 - -

Substituting (5) and (8) into x1 + x2 = x1 + x2 yields a transformed

version of the pairwise-revealing price function p*¥(g,H):

1 - p**(g,H)
(9) P*(QH) § — =
p¥*(B,H)

x {1 - a(@)} + x,{1 - W(B)B - (1 - m(p)]o(B)}

v {(B)} + y,im(B)B + [1 - m(B)Ia(B)}

Proposition 2: 1If *%(B8,H) is strictly monotone in 8, then there exists a

pairwise-revealing REE of this economy. 1In this event:

1/11 + &¥*(g,H)], ity

1]
=2}

p**(B,¥) = {

it
~

1/01 + ¢%*(o T (g) H)], if ¥

Proof: 1If ®**(e,H) is strictly monotone, then price reveals the state to be

Kk
(8,H) or (x(B),T). The uninformed agent thus optimizes via X, («). [1

Example 1: Let a(8) = sn, where 0 < n <wand n # 1. (If n = 1, there

=X, = §2 = 1, and let

exists a fully-revealing REE.) Let il = §1 5
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n{p) = 1/2 = t(8) for all B € I. (§ and ¥ are independent random variables,

~

8 is uniformly distributed, and Prob(? = H) = 1/2 = Prob(; = T).)

Proposition 3: There exist n and n (0 < n < i < n < ») such that, in

Example 1, if n £ n < n, then there exists an REE with the price function:

e n 2n-1
| (1/2)B + (1/2) + nB

|

{

{

—-— , if ¥ = H,
(10) p**(8,%) = !
I -
| (28 + (1/2)p + g
L 1+ nB(n—l)/n ' :

If n<norn?> n, then p** given by (10) is not strictly monotone in B.

nsn

1A

Remark 1: Numerical calculations yieild n = .107 and n="7.3. Ifn

and n # 1, the price function of (10) is (strictiy) partially revealing.

Proof of Proposition 3: (9) specializes to (10). The price function (10)

yields a consistent REE if and oniy if p*#*(Bg,H) is strictly monotone in B.

Differentiating (10) vields:

2 2 .
(11) (8p**/38) (B,H) = [1 + (-n° + sn)u + (4n° - n)ff + 20"k’ 1/[2(1 + )],
where u = Bn_l. By inspection, n < i/4 and n > 3; numerical calculations
expand the interval where p** is strictly monotone. (]

{INSERT FIGURE 2 ABGUT HERE)



Figure 2
Graph of the REE price function in Example 1, when n = 1/2.
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Uniqueness will not be seriously addressed until Section 8. However,

let us foreshadow the results of that section with a special case.

Proposition 4: 1In the economies of Example 1, p** given by (10) is the only

possible (measurabie) REE price function. Hence:
(a) If n<n <n, then p¥*(+) is the unique REE price function; and

(b) If n < norn>n, there does not exist any REE.

Proof: An application of Theorem 5 in Section 8.

4. Existence of REE When Informed Agents Possess Full Private Information

Thus far in the paper, we have shown that a set of examples satisfying
the assumptions of Section 2 possess partially-revealing rational
expectations equilibria. 1In this section, we will show by more general
means that a much larger class of economies, which includes Example 1,
possesses partially-revealing REE's as well. We will no ionger be able to
write explicit formulae for the price functions, but the existence proof
suggests a way in which solutions can be numerically approximated.

Suppose that informed agents' utility functions satisfy Assumption
{(A1). We will first show that, in general, there exists a function A(8,9¢)
which is analogous to the a(B) of the previous section: for any price ¢ and
state (8,H), there exists g' = A(B,®) such that aggregate full-information
demands of informed agents (defined in Definition 2) are equal in states

{g8,H) and (B',T). We proceed as foliows.
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Definition 4: Given Assumption (A1), define the function A: I x I =1

implicitly by:

% *
(12) x,(9:A(B,¢),T) = x,(®;8,H), for all (B.¢) € I X I,
and define A': I X I = 1 implicitly by:

(12')  x (®:A'(8",0),H) = x ($:8',T), for all (8',0) € I x I.

Observe that it foliows from Assumption (A1) that A(e,e) and A'(e,es) are
well defined and monotone increasing in the first argument. Moreover, both
functions are continuousliy differentiable on (0,1) x (0,1); A1(3,¢) > 0 and
Ai(s,¢) > 0 whenever B € (0,1) and ¢ € (0,1).

Now let p(e,¢) be any function mapping I X [" into " which is
differentiable almost everywhere in the first coordinate. Let z(B) = p(B,H)
denote the function p(e) projected on the "heads branch," and let w(B) =

p(B8,T). We will cali p(e) a candidate pairwise-reveaiing price function if

z(+) and w(e) are each strictly monotone and the range of z(e) and w(e) are
both 1. 1In this section, we will be able to write differential equations in
z and w which any candidate pairwise-revealing price function must satisfy
in order to be a rational expectations equilibrium. Under additionai
assumptions, we can further guarantee that there exist unique solutions to
the differential eguations.

Assume that p(e,e) is a candidate pairwise-revealing price function.

- -1
Observe that z 1(.) and w “(») are weli-defined functions mapping 1 - I.
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Let ¢ be any price in I. If p(e,e) is an REE price function, then
uninformed agents cannot distinguish between states (z—1(¢),H) and
(w—1(¢),T); thus their demands are equal in the two states. Since total
endowments are also equal in the two states, market clearance condition (2)

implies: x?(¢;z_1(¢),H) = x§(¢;w_1(¢),T). Using (12) and (12'), we obtain:
(13) z(B) = wiA(B8,z(8))1, for almost all B € 1, and
(13') w(g') = zfa'(B',w(B'))1, for almost alil B' € I.

Let E(o) and ﬁ(-) denote the derivatives of z(e) and w(e), respectively.

Differentiating (13) and (13') yields:

1/w(g') = A (B.2(B))/2(B) + A,(B.2(8))

(14)

1/2(8) = Aj(B',W(B'))/W(B') + AN (B',W(B')),

for almost all B € 1 and g' = w—i(z(s)).

Next, iet us derive a general expression analogous to equation (7),
where 1(B) (defined in (6)) denotes the probability attached by uninformed
agents to heads, given that the state is known to be either (8,H) or (8',T)
(since the observed price is z(B) = w(B')). Note that w_l(z(B)) takes the

role of o(B8) in (7), so by identical reasoning we obtain:

h(g) h(g)/z(8)
(15) n(g) = ] . 3 = - - .
h(g) + t(w “(z(B)))z(B)/w(w “(z(8))) h(B)/z(B) + t(B')/w(B')
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The above work, in combination with the market clearance condition (2},
will yield us a single differential equation in one variable. We have the
choice whether to suppress all the w's, yielding a differential equation in
Zz only, or to suppress all the z's, yielding a differential equation in w
only. It is illuminating, and useful for the subsequent proof, to pursue

both options. Define the function [I1(»,»,*)}) on I X I x [0,=] by:

h(g)
(16) I(e,z,v) =

h(g) + tIA(B.2)]A (B,2) + tIA(B,2)1A,(B,2)V

and let D be the subset of I X I X [0,»] where 0 < T[i(B,z,v) < 1. On the

domain D, we can define an excess demand function F by:

(17) F(B,z,v) = x¥(z;8,H) + x3*(2;8,A(8,2) II(B,2,v)) - x, - X,.
Alternatively, we can write a probability function wholly in terms of w;

define the function IT'(e,e,s) on I X I X {0,o] by:

h[A' (B',w) 1A} (8',w) + hIA'(8',w)1AL(8' ,W)u
(16') (8 .wu) = :
£(8') + h[A'(8',w)]A] (B',W) + hIA'(8',W)]AL(B' ,W)u

and let D' be the subset of I X I X [0,o] where O < [T'(B',w,u) < 1. On the

domain D', we can define an excess demand function G by:

(17") G(B',w,u) = x¥(w;B',T) + xE*(w;A'(8",w),8',II'(B',W,u)) - ’-‘1 - ;22.

Rational expectations equilibrium requires that excess demands equal
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zero in equilibrium; Assumption (Al) yields the boundary conditions

z(0) = 0 = w(0) and z(1)

i = w(i). Together, these give a differential

equation in z:

(18) F(B,Z(B),E(B)) 0 for almost all B € I, z(0) = 0 and z(1i) = 1,

and an equivaient differential equation in w:
(18') G(g',w(B'),w(B')) = 0 for aimost ail 8' € I, w(0) = 0 and w(1) = i.

It is convenient to observe that every solution z(e) to (18) yields a
solution w(e) to (18'), via w_1(¢) = A(z—1(¢),¢); also, every solution w(e)
to (18') yields a solution z(e) to (18), via z-1(¢) = A'(w_1(¢),¢). For
some subintervals of I, it will be simpler to examine (18); for others it
will be simpler to look at (i8').

To guarantee the existence and uniqueness of solutions to (18) and

(i8'), we make two additional assumptions:

Assumption (A2): F(B,z,v) is continuousliy differentiable almost everywhere

= 8F/08 > 0, and F, = 6F/3z < 0. f‘urthermore,8 F is

on domain D, F 2

1

monotone increasing in 8 and monotone decreasing in z.

Assumption (A3): ax;*(¢;B,A(B,¢),n)/an < 0, for 8,¢,me (0,1).

Roughly speaking, F, > 0 means that excess demand for the first good

1

increases as the state of the world improves, and F2 < 0 means that excess
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demand decreases as the price goes up. Since these are statements about F,
they are only statements about the heads branch of state space. However, it
is evident that they will equally apply to the tails branch; in fact, it is
easy to show that (A2) implies that G is continuously differentiabie, G1 >0
and G2 < 01

Assumption (A3) means that, given the true state is either (g,H) or
(A(B,¢),T), uninformed agents demand more of the first good as they believe
the true state is more likely (B,H). The following results can be

established equally well if (A3) is replaced by:

Assumption (A3')}: 8x§*(¢;B,A(B,¢),n)/8n > ¢, for B,9,w € (0,1).

We are now ready to prove:

Theorem 1: Given Assumptions (A1}, (A2) and (A3), there exist unique
solutions z: I - I and w: I - I to differential equations (18) and (18').
Furthermore, z(e) and w{e) are strictly monotone increasing, continuous, and

piecewise continuously differentiable.

Proof: See the Appendix.

Finally, let us define a condition on informed agents' information:

Full Private Information (FPI): For all j (1 £ j £ Jl), slj(s,v) = (B,7).

Theorem 1 immediately implies our first existence theorem on REE's.



22

Theorem 2: Given an economy satisfying assumptions (Al), (A2) and (A3) in

which informed agents possess full private information, there exists a

unique pairwise-revealing rational expectations equilibrium.

Proof: Using Theorem 1, define the price function:

r
iz(B)! if'y: H;
i

(19) p(B,7) =
|
lw(g), if ¥ = T.
L

Theorem 1 assures that z~1(o) and w_l(o) are well-defined functions on I, so
uninformed agents can perform almost everywhere the calcuiations set forth
earlier in this section. We conclude that the equilibrium conditions (1)

and (2) are satisfied almost everywhere. [

5. Notes on the Robustness of Partially-Revealing REE

Theorem 2, above, proved the existence of rational expectations
equilibrium under Assumptions (A1), (A2) and (A3). 1In this section, we will
briefly clarify what Theorem 2 telis us about one of our original motivating
questions: Do there exist economies where the existence of partially-
reveaiing REE is robust?

First, Example 1 demonstrates that the theorem is nonvacuous. Observe
that Example 1, with n < n < 1, satisfies (A1), (A2) and (A3). Simiiariy,
with 1 < n < n, Example 1 satisfies (A1), (A2) and (A3').

Second, Theorem 2, whiie literally oniy guaranteeing the existence of
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"pairwise-revealing" REE's, typically provides us with strictly partialiy-

revealing (almost everywhere) REE's. Whenever, in equation (19),

z(B) # w(B) almost everywhere for 8 € I, uninformed agents fail with
probability one to attain full information. Moreover, this property--

z(B) # w(B) a.e.——may be thought of as a generic property of economies
satisfying (A1), (A2) and (A3). For example, when n £ n < nand n # 1 in
Example 1, z(B) # w(B) except at 8 = 0 and 8 = 1. Moreover, the failure to
attain full information is meaningful: for 8 € (0,1), uninformed agents
would alter their demands if they were provided with full information.
Meanwhile, the case n = 1 is the nongeneric case of full revelation.

Third, Theorem 2 further provides us with a class of economies where
existence of partially-revealing REE is robust. Select any economy (e.g.,
Example 1 with n < n < 1) satisfying (A1), (A2) and (A3). Now perturb the
utility functions, endowments and probability distributions in such a way
that (A1), (A2) and (A3) continue to be satisfied: this is possible because
the inequalities required by (A2) and (A3) are strict, so we are never
situated at the boundary of the permissibie region of economies.9
(Importantly, the perturbation argument enables us to depart from any
specific functional form in the primitives of the economy.) Then Theorem 2
equally establishes existence of a pairwise-revealing REE in the perturbed
economy. As noted in the previous paragraph, this REE is typicaily
partially revealing (almost everywhere).

Fourth and last, Theorem 2 only establishes existence and uniqueness
within the set of "pairwise-revealing REE's.” This obviously also
establishes existence within the superset of all REE's, but does not

establish uniqueness within the superset. Given Theorem 2, it remains a
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logical possibility that there exist other REE's in which the set of states
associated with a given price has a cardinality other than two. We postpone
this defect in the results until Sections 7 and 8: there we make additional
assumptions above and beyond (Ai), (A2) and (A3), but we are then able to

establish uniqueness within the set of alil REE's.

6. Existence of REE When Informed Agents Possess Partial Private

information

The standard technique for showing the existence of fully-revealing
rational expectations equilibrium is to consider the "artificial economy
where each trader has all the economy's information" (Grossman, 1978). One
produces an equilibrium price function of this artificial economy and then
demonstrates that every trader can infer full information from price in this
equilibrium. Finally, one reinterprets this price function as an REE of the
actual economy. 1In this section, we use an analogous method to construct
partially-revealing rational expectations equilibria in our model, when the
informed agents are conferred with only partial private information.

Our technique here is merely to consider the artificial economy where
informed agents have full private information. In Theorem 2, we proved the
existence of rational expectations equilibrium for the artificial economy,
provided that certain conditions were met. It will be easy to see that this
equilibrium can be reinterpreted as an REE of the actual economy with
partial private information.

Suppose a private information structure where every informed agent
possesses some private information, and every piece of information is known

by some informed agent. That is, when the true state is (B,7Y), every
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informed agent privately knows at least that § = B or & = ¥; and B and ¥ are
each privately known by at least one informed agent. 1In the notation of
previous sections, we define:

Partial Private Information (PPI): (a) For all j (1'5 Jj = Jl), slj(s,y) =B

or slj(B,V) = Y or slj(B,V) = (B,Y); (b) there exists j (1 £ j ¢ jl) such

that slj(e,y) g or slj(B,y) (B,Y); (c) there exists j (1 £ j £ Jl) such

that Slj(B.V) Y or slj(B.V) (8,7).

We immediately have:

Theorem 3: Consider any economy which satisfies (A1), (A2) and (A3), and in
which informed agents possess partial private information (PPI). Let p(e,s)
be given by (19), for the economy which is identical except that informed
agents possess full private information (FPI).

1t p(B,H) # p(B,T) for aimost every B € I, then p(e,+) from the FPI
economy is also a strictly partially-revealing REE price function for the

PPI economy.

Proof: Suppose that agent 1j (1 £ j & Jl) of the PPI economy is privately
informed of §. Since p(B,H) # p(B,T) a.e., he can infer ; in almost all
states of the world. Suppose that agent 1k (1 £ k £ Jl) of the PPI economy

is privately informed of ;. Since Theorem 1 assured that z(e) and w(e) of

(19) are strictly monotone, he can infer § in all states of the worid. {1

Observe that we do not use parts (b) and (c) of the Partial Private
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Information assumption in our proof. However, if § or ? is not privately
known by any agent, the constructed REE is somewhat nonsensical-~-the
information appeared in the price function from nowhere! Also recall that
"p(g,H) # p(B,T) a.e." may be thought of as a generic property of economies
satisfying (A1), (A2), (A3) and (FPI). In particular, it was satisfied by

Example 1 for n # 1, suggesting a second exampie:

Example 2: Modify Example 1 solely by replacing the one (fully) informed
agent with two (strictly partially) informed agents (subscripted "11" and
"12"). The first informed agent receives a private signal 511(8,7) = 8 and

a positive endowment (x ). The second informed agent receives a

117 Y11

private signal 812(8.7) = ¥ and a positive endowment (x ), where

12' Y12

x11 + x12 = 1 = y11 + ylz. Each uses the utility function (3) with

a(B) = Bn-

Proposition 5: For the same n and n of Proposition 3 and n<n=< n, each

economy of Example 2 has an REE with the price function (10).

7. Characterization of REE When the Pairing is Independent of Price

In this and the next section, we will impose an intermediate
restriction on economies which allows us to characterize all equilibria and
sometimes establish uniqueness. It is "intermediate” in the sense that it
is a stronger restriction than Assumptions (A1)-(A3), but a weaker
restriction than the functional forms (3) and (4) which were imposed on
utility functions in the economies of Section 3.

As we recall, Assumption (Al) led to the derivation of a function
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A(8,9) such that for any g € I and ¢ € I, informed agents had identical
aggregate demands in states (g,H) and (A(B.,¢),T), when the price was ¢. The

examples, however, satisfied the stronger property that A(8,¢) only depended

on _B; we could then replace A(B,$) by a function, denoted (), of the

single variable g. We make this property the basis for a new assumption:

Price-Independent Pairing (PIP)

There exists a strictly monotone C1 function a: I - I such that

a(0) = 0, af(l1) = 1, af(g8) # 8 for almost every g € (0,1), and:
F3 *
(20) X, (9:B,H) = x (¢;0(B),T), for all ¢ € I and B € I.

*
In addition, it is assumed that for fixed ¢ € I, x1(¢;B,H) is a continuous

and strictiy monotone function of 8.

Throughout this and the next section we also revert to assuming Full
Private Information (FPI). We now proceed to characterize rational

expectations equilibrium under these two assumptions.

Lemma 1: Assume (PIP) and (FPI). Let p(e,+) be any REE price function.

Then for almost all B .8, € I and ¥ € T', p(B,,¥) = p(B,.,¥) only if B, = B,.

Proof: Suppose p(Bl.Y) = p(Bz,Y) = ¢. Observe that uninformed agents
cannot distinguish between the two states (Bl,y) and (32,7); therefore
x2(¢;81,7) = x2(¢;92,7). By market clearance eguation (2) and the fact that

aggregate endowments are equal in the two states, informed agents must also
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* £
have equal demands. Using (FPI), this implies x1(¢;91,7) = x1(¢;92,7),

contradicting (PIP) unless Bl = 92. I

Lemma 2: Assume (PIP) and (FPI). Let p(e,e) be any REE price function.

Then for almost all B 1By €1, p(Bl,H) = D(BZ,T) only if B, = a(Bl).

Proof: Suppose p(Bl,H) = p(Bz,T) = ¢. As in the proof of Lemma 1,

£ ES
x1(¢;91.H) = x1(¢;Bz,T), contradicting (PIP) unless 32 = a(Bl). i1

Lemmas 1 and 2 suggest that not more than two states can be associated
with any price. We make this precise in Lemma 3. For every ¢ € Range p,

let #p_1(¢) denote the number of elements of p—1(¢). We also introduce:

Notation 1: For any (B,¥) € 1 x I', define:

(a(B).T), if ¥y

]
o o]

twin(g,¥) =

il
=3

(o 1(p),H), if ¥

= — e ——

Lemma 3: Assume (PIP) and (FPI). Let p(e,e) be any price function. Then,
for almost every ¢ € Range p, #p-1(¢) < 2.

If #p 1(¢) = 2, there exists B € I such that p(B.H) = ® = p(twin(g,H)).
If #p 1(¢) = 1, define (8,7) = p *(¢) and ¢' = p(twin(g.¥)). Then #p (¢')

also equals 1.

Proof: Let p(Bl,yl) = 9(32'72) = p(83,?é) = ¢, where (31,71) Z (32,72) #
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(83,73). By Lemma 1, 71 # 72 F 73. Since I' has only two elements,
and again by Lemma 1, Bl = B3. We conclude that #p_1(¢) < 2.

Y=Y

3
Suppose #p—1(¢) = 1 and #pu1(¢') = 2, Then there exists (B',¥') € 1 x
" such that (B',¥') # twin(g,Y) and p(B',¥Y') = ¢'. Lemma 1 implies ¥' = ¥.
Lemma 2 then implies that (8',¥') = twin(twin(g,¥)) = (B,¥), since twin
composed with itself is the identity. Therefore, ¢' = p(twin(g,¥)) = ¢,

contradicting #p—l(¢) = 1. We conclude that #p~1(¢') also equals 1. ]

Definition 5: We define the fully-revealing price correspondence by:

P (B.Y) = (0 € It X (9:8,7) + X,(0iB,¥) = X, + K},

and the pairwise-reveaiing price correspondence by:

¥k b E3 - —
p (B.Y) = {$ € I: x1(¢;B,‘¥) t X, (¢:8,7) = X, * X b

2

* kk
where xi was defined in Definition 2. x2 (¢;8,H) is shorthand for
Aok *
X, (¢;8,a(B),m(B)) of Definition 3, using equation (7), and X, (¢$;8,T) =

£33
X, (¢;twin(B,T)).

Observe that, under (Ai) and the assumption that o is C1 (contained in
PIP), p* and p**¥ can be shown to be nonempty-valued for all (B8,yY) € I x I,
Alternate conditions may also be used to assure nonemptiness of these price

correspondences. We now state and prove the characterization theorem:
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Theorem 4 (Characterization of REE): Let informed agents possess full
private information, and make the price-independent pairing assumption.
Then Borel measurable p(e,+) is a rational expectations equilibrium price

function if and only if:

(i) #p~1(p(B,7)) < 2 for almost every (B,Y) € I X I';

(ii) #p—l(p(B.'Y)) 1 implies p(B.,¥) € p*(B,7Y), a.e.;

and

it

(iii) #p 1(p(B,¥)) = 2 implies p(g.¥) = p(twin(g.¥)) and

p(B8,Y) € p**(B,Y), a.e. (Lebesgue measure) in I x I'.

Proof: Let p(e,+) be any (Borel measurable) REE price function. Let
(B,Y) € I xT and define ¢ = p(B,¥Y). By Lemma 3, #p—1(¢) < 2 almost
everywhere. Suppose that #p—1(¢) = 1. Then an uninformed agent can infer
that the state of the world is (B,¥), and so all agents demand x:j(Q;B,T).
In order for market clearance equation (2) to be satisfied, we must have
¢ € p*(B,Y) a.e.

Suppose that #p_1(¢) = 2. Without loss of generality, let ¥ = H. By
Lemma 3, uninformed agents infer that the state of the world is either (8,H)
or (a(B),T). We shall now argue that uninformed agents assign the

conditional probability on (B8,H) given by equation (7).

Define QH = {(B,H): p(B,H) p(ct(B).T)} and define QT = {(a(8),T):

[

(B,H) € G%} = {(a(B),T): p(B,H) p(a(B),T)}. Recall that p and o were

defined to be Borel measurable. Hence, f(g8,H) = p(B,H) - p(a(B),T) is Borel
measurable; consequently, QH (= f_l(o)) and Q& are Borel sets.
Using the change-of-variables formula (see Rudin, 1974, pp. 185-186):
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Probability () = IQT t(p)dg = IQH t(a(B))a' (B)dB,
whereas Probability (QH) = IQH h(g)dg. Consequently, the conditional
probability of (g,H), given (g,H) or (x(B),T), equals the right side of
equation (7), for almost every (B,H) € QH'

Hence, the uninformed agent demands x::(p(s,y);s,y) for almost every
(B,Y) such that #pﬂl(p(B,V)) = 2. Again, the informed agent (by FPI)
demands x:j(p(s,y);s,y). In order for market clearance (2) to be satisfied,
we must have p{(B,¥) € p**(8,Y) almost everywhere.

Conversely, let p(8,¥) be any Borel measurable function satisfying (i),
(ii) and (iii). Assign xlj(B,y) = x:j[p(B,y);B,V], for all (B,Y) € I xT
and all j (1 £ j £ Jl). Let R = {(B,Y): #p_l(p(B,Y)) = 1}. Assign xzj(s,y)
- x,,[p(B.¥):8,7], for all (8,7) € R, and x,,(8,7) = x,.[p(8.¥):B,¥], for
all (8,¥) € R (but € T x T'), for all j (1 € j < J%). Then p coupled with

{xij} constitutes an REE. il

8. Uniqueness of REE When the Pairing is independent of Price

Multiplicity of equilibrium always provides us with conceptual
difficulties in general equilibrium and game theory. Most obvious is the
predictive question of which equiiibrium agents play; more subtle is the
issue of how agents coordinate on a singie egquilibrium when multiple
possibilities are available. These problems become especially acute when
our equilibrium notion requires agents to form inferences from the
equilibrium outcome. For example, if there exist two different REE price
functions, p1 and P, observation of a market price ¢ leads to two possible

inferences (p;1(¢) and p;1(¢)) which are typically different.
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Theorem 2 guaranteed the existence of a rational expectations
equilibrium, and Theorem 4 characterized all REE's under the additional
assumption of price-independent pairings. Unfortunately, neither theorem
ensured uniqueness of REE. 1In this section, we tighten our assumptions
further and obtain a unigueness theorem. First, we requirebthat the
correspondences p* and p** of Definition 5 are single-valued, in order to
eliminate an obvious source of nonuniqueness apparent in the statement of
Theorem 4. However, a second possibility for nonuniqueness remains in our
characterization of REE--for every B € I, the set of price(s) associated
with states (B,H) and («(B),T) may be either the singleton {p**(g8,H)} or the
doubleton {p*(B,H), p*(a(B),T)}. We eradicate the second potential source
of nonuniqueness with a novel argument. Suppose that it can be shown that

the doubleton "takes up more space" than the singleton, for all sets of g8's.

1f the range of p* is contained in the range of p**, then p** is the unigque
REE price function, since values from p* "cannot fit" in the price space.

We have:

Theorem 5 (Uniqueness of REE): Assume (A1), (PIP) and (FP1). Further
suppose that: p* and p** are single-valued, piecewise absolutely continuous

(in B) functions; p**(e,H) is one-to-one on I; range p* € range p*¥; and:
(21) | (dp*/aB) (B,H)| + |(3dp*/0B)(a(B),T)| a'(B) > |(3p**/38)(B,H)|,
for almost every (Lebesgue measure) B8 € I.

Then p(e,») is a (Borel measurable) REE price function if and only if

p = p**¥ for almost every (Lebesgue measure) (B,Y) € I x I.
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Remark 2: Some of the hypotheses of Theorem 5 are stronger than necessary,
in order to facilitate readability. For example, we do not really need p*
to be single valued; it is sufficient for inequality (21) to hold almost

everywhere on each branch of correspondence p¥*.

Proof of Theorem 5: First observe that if p*(e,H) and p*¥*(e.,H) are

absolutely continuous on [bl'b2] (where b1 <D then their partial

2)'

derivatives with respect to B are defined almost everywhere on that interval

and p*(b,H) = p*(b_,H) + J° (3p*(g,H)/3p)dg for all b € [b ,b,], etc.
1
Analogous statements hold for p*(e,T). Consequently, for any Lebesgue

measurable subset B C I:

(22) m{p*(g,H): B € B} = [, |Op*(p,H)/Op|dp

(23) m{p**(g,H): B € B} = Jy |8p**(B,H)/2p|dB,

and, by the change-of-variables formula (see Rudin, 1974, pp. 185-186):
(24) m{p*(«(B),T): B € B} = Jy I9p*(a(p),T)/3a(p)la’ (B)dS.

Furthermore, if p* is one-to-one on {(8,H): B € B} U {(ax(B),T): B € B}, then

(21), (22), (23) and (24) imply:

(25) m({p*(B8,H): B € B} U {p*(a(B),T): B € B}) > m{p**(B,H): B € B},
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provided m{(B) > O.

Now let p(e,«) be any (Borel measurable) rational expectations
equilibrium price function. Define RH = {g € I: p(B,H) # p**(B,H)} and
RT = {B € I: p(B,T) # p**(8,T)}. Observe that RH and RT are measurable sets
since p** is a measurable function. We will now demonstrate that
m(RH) + m(RT) = 0, proving the "only if" part of the theorem.

Suppose not. Theorem 4 assures us that p(g,¥) = p**(B,¥) or
p(B,Y) = p*(B,¥Y) almost everywhere, and if p(g,H) = p*(B,H) then
p(ax(B8),T) = p*(a(B),T) almost everywhere. Hence, there exist measurable
SH c RH and ST c RT such that m(SH) = m(RH), m(ST) = m(RT), ST = a(SH).

p(B,H) = p*(B,H) for all B € S and p(8,T) = p*(B,T) for all B € S

H’ T
* £ 3
Define QH = {p*(B,H): B € SH} and QT = {p*(B,T): B € ST}. Observe, by
£ S £ 3
Theorem 4, that m(QH n QT) = 0, since at almost every (B,¥) corresponding to
a point g in the intersection, p(g,¥) = p**(B,¥) because #p_l(q) = 2. Also

define Q** = {p**(g,H): B € SH}; inequality (25) implies:
* * e .
(26) m(QH U QT) > m(Q**), whenever m(SH) # 0 # m(sT).

Finaliy, define Q = (Q; U Q;) ~ Q¥* = {q € Q: U Q;: qg € Q*¥*}, Since range
p* € range p**, we have Q C (range p**) ~ Q**_  But then, for every q € Q,
there exists Bl € SH U ST’ 82 € ~ RH’ 83 € ~ RT' and 71 € I" such that:
p(B;,7,) = p(B,.H) = p(B,.T) = q, i.e., #p '(q) = 8 for all q € Q. By (26),
m(Q) > 0 unless m(SH) =0 = m(ST), which we must conclude by part (i) of
Theorem 4. Thus, we have proved that p is an REE price function only if

p = p** almost everywhere.

Conversely, if p**(e,H) is one-to-one on I, then in all states
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(B,Y) € I xT, an uninformed agent infers from observing p**(g,¥Y) that

(§.§) = (B,Y) or twin(g,¥). p** was specified in Definition 5 such that if
* %k

5 markets clear.

*
informed agents demand x, and uninformed agents demand x

1
We conclude that if p = p** almost everywhere, then p is an REE price

function. [

For an example of Theorem 5 in action, see Example 1 and Proposition 4

in Section 3.

9. Conciuding Remarks

Actively pursued in the early 1980s, research on the partially-
revealing rational expectations equilibrium has largely stalled in recent
years. This article has attempted to provide some impetus for the
resumption of work in the area, by establishing a positive answer to the
open problem of whether there exist economies in which the existence of
partially-revealing REE is robust. Admittedly, the assumptions required
here for existence are considerably more restrictive than those we ideally
use in general equilibrium theory. However, the present paper has
successfully dropped the requirement of specific functional forms which had
appeared in all previous articles which preserved the standard definition of
REE. It has also successfully removed noise from the asymmetric information
economy. Finally, the paper has in effect provided a recipe for
constructing relatively simple models with which we may explore the
implications of asymmetric information in competitive economies.

One area ripe for this type of analysis is the issue of insider

trading. The general question of what ensues after an arbitrary number, n,
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of traders comes into private possession of inside information is quite
complex. When n is small, almost any model is likely to lend itself to a
large multiplicity of equilibria.

However, one tractable baseline case stands out: the case where n

I
8

There, informed traders may be "information takers" as well as "price

takers," and then the (partially-revealing) rational expectations
equilibrium, or the game equivalent, becomes an appropriate methodology for
studying insider trading. I will pursue this analysis in future work.

One criticism which could be leveled at the REE literature, generally,
is that price is not the only endogenous market variable observable by
market participants, and hence shoulﬁ not be construed to be the only
conduit (for transmitting information) from informed to uninformed agenté.
Another example of such an endogenous variabie is quantity and, in fact,
aggregate trading volume is typically well known to market participants.
Hence, it is worth observing that in the current model the constructed
outcome remains an equilibrium if rational expectations inference is
permitted via the aggregate quantity x1(¢;8,7) demanded by informed agents,
as well as through price p(g,Y). The explanation of this pleasant fact is
simple: in our construction, xl[p(Bl,yl);Bl,ylj = xl[p(82,72):52.Y2]
whenever p(Bl.yl) = p(Bz,Vz). Thus the aggregate guantity demanded by
informed agents conveys no information not already transmitted by price.

A second criticism which has been leveled at this line of literature is
the possible internal inconsistency of revealing prices and the costly
acquisition of information. Grossman and Stiglitz (1980) observed that

individuals would not invest positive resources into privately producing

information if, in fact, market prices revealed that information costlessly
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to all agents. Thus, it is interesting to note that the "partial private
information" model of Section 6 resolves the alleged paradox in a most
satisfying way. Let us make the acquisition of information (knowledge of
the true value B or 7¥) both costly and endogenous, and occur before the
trading round. If agents expect the equilibrium of Theorem 3 to ensue, then
we can immediately observe that no agent will acquire full private
information (as knowledge of B8, ¥ and p(B,Y) is redundant). However,
acquisition of B or ¥ (compared to no private information) improves
attainable utility in the trading round.

It is fairly natural to think--since different individuals are situated
differently in an economy--that one set of agents would be conveniently
placed to learn B8 relatively inexpensively, a second set of agents could
learn ¥ relatively inexpensively, and a third group of individuals would
find it extremely costly (or not very useful) to acquire any private
information. If information acquisition is endogenous, agents of the first
type choose to learn g, agents of the second type learn ¥, and the remaining
individuals go without private information. Thus, we endogenously obtain
the pre-trade information configuration which was assumed to be exogenous in
Section 6, demonstrating that costly private information and rational
expectations can be consistently incorporated into a fairly simple and

robust model.
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Notes

A fully-revealing equilibrium also eliminates incentives for the
private acquisition of information and, thus, may be viewed as
internally inconsistent when the acquisition of information is costly.
See Grossman and Stiglitz (1980) and the Conclusion.

Provided, of course, that standard conditions for the existence of
competitive equilibrium are satisfied.

When the number of dimensions of unknown information equais the number
of prices, it is possible to construct both examples of open sets of
economies where existence occurs and examples of open sets of economies
where nonexistence occurs (see Jordan and Radner, 1982; Radner, 1982,
pp. 967-970; and infra).

Apart from the lack of generality in these restrictions, the particular
functional forms preclude wealth effects (exponential utilities yield
demands for risky assets which are independent of wealth) and create
bankruptcy difficulties (when returns are at the tails of normal
distributions). This is recognized, for example, by Grossman (1977,
footnote 2) and Laffont (1985, footnote 9).

The price function possesses desirable continuity and monotonicity
properties which make it credible that agents would succeed in carrying
out the rational expectations inference exercise.

Informed agents' endowments could be made state-dependent, but that is
not done in this paper. Uninformed agents' endowments should not be
state—-dependent, as observing one's own endowment would confer information.

The reader may prefer to use the terminology "representative agent"”
instead of "agent."” One can then assume that the economy contains a
continuum of identical nonatomic consumers of each type whose
endowments integrate to (E..,§..). This alternative specification
makes the price-taking assﬁ&ptign natural; inclusion of further details
seems unnecessary.

This does not follow directly from the first sentence of (A2), as D is
not necessariliy a convex set.

In essence, we utilize a C2 norm on utility functions, a difference
norm on endowments, and a supremum norm on the probability density
functions h(e) and t(e).
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Appendix

Proof of Theorem 1

We will partition the set I into subintervals, demonstrating that there
exist unique solutions to differential equations (18) and (i8') on each
subinterval and that the solutions piece together. Claims 1 through 4 will

enable us to define the partition:

Claim 1: sign{F (B,z,v)} = sign{Az(B.Z)}, for all (B,z,v) € D.

Proof of Claim i: Let w =T1i(8,z,v). By (16): dn/av =

~t[A(B,z)]A2(B,z)ﬂ2/h(B). Conseguently, sign{onm/adv} = —sign{Az(B,z)}.
Differentiating (17), we obtain: F3(B,z,v) = (axz*/an)(an/av). Use of (A3)

establishes the claim. ]

Now define Y(B) = {(z,v): (8,z,v) € D and F(8,z,v) = 0} and Z(B) =

{z: (z,v) € Y(B) for some v € [0,o]}.

Claim 2: The function ZO(B) defined implicitly by F(B,ZO(B),O) = 0 is well-
defined and differentiable with positive derivative for all g € I.
Consequently, Z(B) is nonempty for all B8 € I. Furthermore, Z(B) < (0,1)

whenever 8 € (0,1).

Proof of Claim 2: By equation (16), w(g,z,0) = h(B)/{h(B) +

t[A(B,z)]Al(B,z)} for all B8,z € I. Since A1 > 0 from (Al), and h(e) and

t(es) are positive functions, we have 0 < 7m(8,z,0) < 1, implying (8,z,0) € D



for all B,z € 1I.

Using (A1), note that F(B,0,0) 2 0 and F(B,1,0) £ 0. Since the line
segment from (B,0,0) to (B,1,0) is entirely contained in D and F is
continuous in D, there exists ZO(B) € 1 such that F(B,ZO(B),O) = 0. (A2)
requires that F1 > 0 and F2 < 0, so the implicit function theorem guarantees
that z0(~) is a function and azo/BB = —Fl/F2 > 0.

When B € (0,1), (A1) implies F(B,0,0) > 0 > F(B,1,0), completing the

claim. il

Claim 3: Let B € I. There exists z € Z2(B) such that A2(B,z) = 0 if and

only if Z(B) is the singieton {ZO(B)}.

Proof of Claim 3: For any B € I, suppose there exists z € Z(B) such that

AZ(B,Z) 0. Using (16), it foliows that (B,z,v) € D for all v € |0,»].
Since z € Z(B), we have F(B,z,v) = 0 for some v; by Claim 1, F(B,z,v) = 0
for ail v € [0,»]. But then, by the monotonicity condition in (A2),
F(B,z',v) # 0 whenever (B,z',v) € D but z' # z, proving that Z(B) is a
singleton.

Conversely, suppose that Z(B) is a singleton (and by Claim 2, Z(B) =
{ZO(B)}), but AZ[B.ZO(B)] # 0. Then F(B,ZO(B),O) = 0 but, by Claim 1,
F(B,zo(s),v) # 0 for v # 0. Also note, by (16), that 0 < H(B,ZO(B),O) < 1.
Since [i(+,+,+) is continuous whenever the denominator of (16) is nonzero,
there exists 81 > 0 such that 0 < w(B,z,v) < 1 whenever zO(B) - 81 < zZ <

zO(B) + gy and 0 £ v < el. Since A(e,+) is continuously differentiable (by

(A1)), there exists €, > 0 such that AZ(B,Z) # 0 whenever ZO(B) - €, < 2K

2
ZO(B) t g, Let € = m1n{81,92} and define SB = {(B,z,V): zO(B) - € <z <

2
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zO(B) + ¢ and 0 £ v < e}. Observe that F, # 0 (by (A2)) and F,_, # 0 (by

2 3

Claim 1) in SB. By the implicit function theorem, there exists
(B,z',v') € SB such that F(B,z',v') = 0 but z' # zO(B). Then z' € Z(8),

contradicting our hypothesis. {1

Claim 4: Let B € I and AZ(B’ZO(B)) # 0. Then sign {AZ(B,Z)} =

sign{Az(B,zo(B))} for all z € Z(B).

Proof of Claim 4: Suppose not. Then there exist (Zl’vl) € Y(B) and

(zz,vz) € Y(B) such that AZ(B'zl) >0 > Az(B,zz). By (A1), A(e,e) is

continuousiy differentiablie, so there exists z3 between z1 and z2 such that

AZ(B’ZS) = 0. Observe that for ail v € [0,e], (B,za,v) € D; by Claim 1,

F(B,z3,v F(B,z By the monotonicity assumption in (A2),

1) 3'Y2)"
F(B,zl,vl) # b(B,zz,vz). But this contradicts r(B,zl,vl) =0 = F(B,zz,vz),

which is required by (zl,vl) € Y(B) and (z2,v2) € Y(B). [i

Next, for any B' € I, define Y'(B') = {(w,u): (B',w,u) € D' and
G(B',w,u) = 0} and W(B') = {w: (w,u) € Y'(B') for some u € {0,o]}. The

following ciaims can be proved by analogous arguments.

Claim 1': sign{G,(p',w,u)} = -sign{A,(B',w)} for all (B',w,u) € D'.

Claim 2': The function wO(B') defined implicitly by G(B',wO(B'),O) = 0 is

well-defined and differentiabie with positive derivative for all B € I.

Consequently, W(B') is nonempty for ail 8' € I.
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Claim 8': ©Let B' € 1. There exists w € W(B') such that Aé(s',w) = 0 if and

only if W(B') is the singieton {wo(B')}.

Claim 4': Let B' € I and Aé(B‘,wo(B')) # 0. Then sign {Aé(B',w)} =

sign{Aé(B',wo(B’))} for all w € W(B').

We now prove Claim 5, which defines partitions of I into subintervals

with convenient properties.

Claim 5: There exist sequences {8

n N
K k=ms1 20 {Bk}k=m+1 (where m and n are

extended even integers and m < n) which each partition the interval I and

satisfy the following four properties. First: 0 = Bm+1 < Bm+2 < Bm+3 <

1

< ] = ' < ! 1 < ' ' <
B < ... < Bn—l < Bn 1 and O Bm+1 < Bm+2 < Bm+3 < Bm+4 < ... < Bn—l <

Bﬁ = 1. Second, Z(Bk) W(Bé) for all k (m + 1 £ k £ n) and each is the
singleton {zO(Bk)} (which we abbreviate by {zk}). Third, for each even k
(m + 2 £k £n), F3(B,z.v) = 0 for all (B,z,v) € D such that B € [Bk_l,ekj

and z € Z(B8); and Gs(B',w,u) = 0 for all (B',w,u) € D' such that B' €

[Bé_l.Bé] and w € W(B'). Fourth, for each odd k (m + 3 <k < n - 1), one of
two possibilities, (I) or (II), holds. Either:
(1) F3(B,z.v) > 0 for all (B,z,v) € D such that B € (Bk—l’Bk) and
z € Z(B); and G3(B',w,u) > 0 for all (B',w,u) € D' such fhat
B' € (B _4B,) and w € W(p'); or
(I1) F3(B,z,v) < 0 for all (B,z,v) € D such that B € (Bk—l’Bk) and
z € Z(B); and G3(B',w,u) < 0 for all (B',w,u) € D' such that

g' € (Bﬁ—l’Bﬁ) and w € W(B').
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Proof of Claim 5: Consider the function H(B) = A2(B,ZO(B)), where zo(o) was
defined in Claim 2. Since zo(o) is continuous and A(e,s) is continuously
differentiable, H(e) is also continuous. Consequently, Hnl(O) is a
(countable) union of disjoint closed intervals, any of which may be single
points. Thus, we may write H—l(o) = Uk [Bk_l,Bk], where the union is taken
over even k (m + 2 £ k £ n), and Bi < Bj whenever i < j.

For each even k (m + 2 £ k £ n) and all B € [Bk—l’Bk]' observe that
AZ(B'ZO(B)) = 0. Claims 1 and 3 assure that Z(B) is the singleton {zo(B)}
and F3(B,ZO(B),V) = 0 for every v € [0,c].

B € (Bk—l’Bk) (possibility 1), or AZ(B’ZO(B)) < 0 for all B € (Bk_l,Bk)
(possibility II). 1In possibility I, Claims 1 and 4 imply that FS(B,Z,V) >0
for all (B,z,v) € D such that B € (Bk_l,Bk) and z € Z(B) (and similariy for
possibility II).

Consider the identity A'[A(B,z),z] = B. Differentiating yields
Ai[A(B.z),z] = l/Al(B,z) and Aé[A(B,z),z} = —Ai[A(B.z),z]Az(B,z). Let B' =
A[B,ZO(B)], and observe that wo(B') = zo(B). where wo(o) was defined in
Claim 2'. Hence: sign{Aé[B‘,wo(B')]} = sign{Aé[A(B,zo(B)),zO(B)]} =
~sign{A, (B, z,(B)]}.

Define B& = A(Bk,zk) for all k (m + 1 £k £n). Clearly, then, W(B&) =
{zk}. Note that for any B' € (Bﬁ—l'Bﬁ)’ there exists B € (Bk—l'Bk) such
that ' = A[B,ZO(B)]. By the previous paragraph, by the construction of
(Bk};=m+1’ and by Claims 1, 1', 4, and 4', we conclude that sign(G3(B',w,u)}
= sign{Fs(B.z,v)} for all (B',w,u) € D' and (B.,z,v) € D satisfying
B' € (Bi-l’Bﬁ)' B € (Bk—l'Bk)’ w e W(B') and z € Z2(B). Also, G3(B&,zk,u) =

0 = FS(Bk’Zk’V) for all k (m + 1 £k £ n) and all u,v € {0,o], establishing
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the remaining parts of the clainm. {1

Remainder of the Proof: It remains to demonstrate that the differential

equations (18) and (18') have unique solutions on each eiement of the
partitions defined in Claim 5. For all even k (m + 2 £ k £ n), this fact is
trivial: the function zo(-) (wo(-)) is a solution to (18) ((18')) on the
interval [Bk~1’Bk] ([Bé—l’Bé]) since F(B,ZO(B),V) =0 for all v 2 0
(G(B‘,wO(B'),u) = 0 for all u 2 0) on this interval. This solution is
unique since, by Claim 38 (3'), Z(B) (W(B)) is a singleton on this interval.

The proof is more complicated for odd k (m + 3 £ k £ n - 1). Define:

?% = {B € [Bk_l,sk]: k is odd and possibility I holds for (Bk—l’Bk)}’

%II = {B' € [Bk_l,akgz k is odd and possibility II holds for (Bk—l’Bk)}’

and define QII and @i analogously. For every [Bk_l,sk} c %I, we will now
argue that there exists a unique solution z{(.) to differential equation (18)

on [Bk_l,sk] subject to the boundary conditions z(Bk_l) = and Z(Bk) =

k-1
Zk' Since (as observed in the main text after equation (18')) any solution
to (18) induces a solution to (18'), and vice-versa, this equally
establishes the existence and uniqueness of a solution w(e) to (18') on @i
subject to the analogous boundary conditions.

Similarly, for every [Bi-1'3k] c %il, a thoroughly analogous argument
will demonstrate existence and uniqueness of a solution w(es) to differential
equation (18') on [Bi-1'3&1 subject to the boundary conditions w(Bk_l) =

and w(s&) =z and hence existence and unigueness of a solution z(e)

Zr-1 K’

to (1i8) on @II. We proceed by establishing some additional claims.



Claim 6: Let B € ﬁI. Then Z(B) is a convex set. (Similariy, if g' € %iI’

then W(B') is a convex set.)

Proof of Claim 6: Suppose z ,z_ € Z(B) and zy < z

1°%2 By definition, there

x
exist V1’V2

F(B,zz,vz).

such that (B,zl,vl),(B,zz,vz) € D and F(B'Zl'vl) =0 =

Let z3 satisfy z, < Zg < Zg- Since B € @I, AZ(B’ZS) > 0, and so
(Q.zs,v) € D for all v € [0,o}. By the monotonicity condition in (A2},

since F is continuous, there exists v, between

F(B,zs,vl) < 0 < F(B,zZ 3

3,Vz):

v, and v, such that F(8,z

1 0 ) = 0. We conciude z_, € Z(B), establishing

3'Vs 3

convexity.
if g' € %iI. Claim 1' implies that Aé(B',w) > 0 for all w € W(B'), and

so the same argument demonstrates that W(B') is convex. {i

For B € [Bk_l.Bk] < B;, define z _ (8) = sup{z € Z(g)} and z_. (B) =
inf{z € Z(8)}. By Claim 6, Z(8) = [zmin(B),zmax(B)]; and by Claim 5,

Zmax(Bj) = ZO(Bj) = zmin(Bj) for j =k - 1, k.

Claim 7: For all B € [Bk_l,Bk] c %I. zmax(B) and zmin(s) sétisfy
F(B,zmax(B),m) = 0 and F(B,zmin(s),o) = 0, respectively (and so

zmin(s) = ZO(B))' Furthermore, zmax(o) and zmin(o) are differentiable on
(Bk_l,Bk). azmax/aﬁ and azmin/aﬁ each equal —Fl/Fz, evaluated at

(B,zmax(s),m) and (B,zmin(s),O), respectively.

Proof of Claim 7: Since F is continuous, there exist v (B),v_ . (B) €
max min
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[0,0] such that F(B.Zmax(B).vmax(B)) =0 = F(B,zmin(S),vmin(S))- Since
F2 < 0 and F3 >0, vmax(s) = o and vmin(B) = 0, or else zmax(B) and zmin(s)
would not be extreme values. By the implicit function theorem, zmax(o) and
() are differentiable and their derivatives equal -Fl/Fz. ]

Z
min

Claim 8: Let [Bk_l.sk] c %I, and consider the (open) domain Xk of
(extended) phase space defined by Xk = {(B,z): Bk—l < B < Bk and zmin(B) < z
< zmax(B)}. Then the equation F(B8,z,v) = 0 implicitly defines a
continuously differentiable vector field v(B,z) everywhere on Xk' Moreover,
ov/og = —Fl/F3 < 0 and 3v/3z = —Fz/F3 > 0.

Proof of Claim 8: Since F_ # 0 everywhere on X the claim follows directly

3 k’
from the implicit function theorem. [Bk~1’Bk] c %I implies F3 > 0 on Xk and
(A2) implies F1 > 0 and F2 < 0, signing the derivatives. ]

________ K and for a sufficiently small neighborhood of 8,

there exists a unique solution ¢(s) to the differential equation z = v(g,z)

satisfying the initial condition ¢(B8) = z.

For any € > 0, define Xk(e) = {(B,z): B + g <8¢ sk - € and zmin(B)

k-1

~ o~

+ e <z < zmax(B) ~ ¢}, and let € be sufficiently small that (B,z) € Xk(e).
Then the solution ¢(e¢) can be extended forward and backward to the boundary

of Xk(e).

Proof of Claim 9: The claim follows from the existence, unigqueness, and

extension theorems of ordinary differential equations, and the fact that

Xk(e) is compact. (See, for example, Arnold (1973), section 8, corollaries



7, 8 and 11.) (1]

Figures 3a and 3b depict the vector field on X together with

K’
properties assured by the claims. The lens-shaped region, Xk, is convex in
the z direction and has continuous boundaries with slopes strictly between
zero and infinity. The vector field is horizontal at the iower boundary,
vertical at the upper boundary, and monotone increasing in z. Finally, the
vertical strips (Z(B)) collapse to single points only at (Bk—l’zk—l) and
(Bk,zk), and the vector field possesses singularities at only those two

points.
INSERT FIGURE 3 ABOUT HERE

We complete the proof for possibility I as follows. Let B € (Bk—l’Bk)

and let z0 be any point in the interior of Z(B). We take ¢(B) = z0 as our

initial condition and, first, we project (B,zo) forward. Let {en}:=1 {1 0.

By Claim 9, there exists N > 0 such that for every n > N, there exists a
unique solution ¢(e) which can be extended forward to the boundary of

. . 0
Xk(en). The sequence of forward exit points from {Xk(en)}n=N has a
convergent subsequence, whose limit point will be referred to as “the

forward exit point from Xk.” Observe, as in Figure 3a, that if z0 is

~

sufficientiy near Zmax(B)’ then the forward projection of (B,zo) exits Xk on

the upper boundary. Meanwhile, if ZO is sufficiently near zmin(B), then the

forward projection of (B,zo) exits X, on the lower boundary. Since the

k

vector field is continuous and monotone in z, the forward exit point from Xk

moves continuously and monotonically along the boundary as z0 is shifted.
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Figure 3
Forward (Figure 3a) and backward (Figure 3b)

projections from points (B,zo) € Xk, under possibility I.
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Hence, there exists a unique z such that the forward projection of (B,z)

exits Xk at (Bk,zk).

Now for any z0 in the interior of Z(B), we project (B,zo) backward.

Analogously to before, we can define the "backward exit point from Xk."

Observe, as in Figure 3b, that the backward projections of all (é,zo) exit
Xk at (Bk_l,zk_l). Suppose not. Let (B*,z*) be the rightmost point where
the backward projection of (é,zo) exits Xk' If (B*,z*¥) is contained on the
upper (lower) boundary, v(g*,z*) = o (0). But then, in either event, any

forward projection from (g*,z*) goes outside X and therefore must cross

k)

the boundary again before reaching (B,zo). Since v{(e,e) > 0 everywhere in
Xk' this contradicts our hypothesis that (g*,z*) is the rightmost point of

exit, leading to the conclusion that all backward projections exit Xk at

(Bx_1 21

We thus conclude, for arbitrary choice of g € (Bk—l'Bk)' that there

exists a unique z such that the forward projection of (B,z) passes through

~ o~

......... k-1

This establishes existence and unigqueness of a solution z{(s) to (18) on the

).

interval [Bk_l,skj. Finally, v(e.e) is well-defined, continuous and
everywhere positive on Xk' so Z(e) is continuously differentiable on
(Bk_l,Bk) and 2(.) > 0, concluding possibility I.

Possibility II is treated in an anaiogous fashion. We wili only

nighlight the differences. If B' € (Bi—l’Bﬁ) c %iI' then G3 < 0. As

before, G1 > 0 and G2 < 0. Conseguently, wmin(B') is associated with u = =

and wmax(B’) is associated with u = 0. Define Xk = {(B',W): Bk—l < B' < Bk

. ') < < 'J}. in, ti , iti vecto
and wmln(B ) w wmax(B )} Again, we have a continuous, positive r

field on XR, but now it is monotone decreasing in w. The new situation is
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depicted in Figures 4a and 4b.
INSERT FIGURE 4 ABOUT HERE

As usual, we select B' € (Bi—l’Bﬂ) arbitrarily. Because the
monotonicity of the vector field has been reversed, we now find that for all
w0 in the interior of W(B'), the forward projection of (B',wo) exits X& at

0 -
, . . L .
(Bk,zk). However, if w is sufficiently near wmax(B ), the backward
projection of (B',wo) exits Xk on the upper boundary; and if w0 is

sufficiently near wmin(s'), the backward projection of (B',wo) exits X& on

the lower boundary. Again, by the continuity and monotonicity of the vector
field, there exists a unique ; such that the backward projection of (é',;)
exits Xé at (Bk—l’zk—l)' Thus, we obtain existence and uniqueness of a
solution w(e) to the differential equation (18') on the interval [Bk_l,B&].
concluding our treatment of possibility II.

Our overall argument has established existence and uniqueness of
solutions to differential equations (18) and (18') on every element of the
partition. Moreover, for every k (m + 2 £ k £ n), boundary conditions of
Z(Bk_l) = Zk—l = W(Bﬁ—l) and z(Bk) = zk = w(Bé) were imposed, so the unique
solutions on the elements of the partition properly piece together, proving

Theorem 1. [
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Figure 4
Forward (Figure 4a) and backward (Tigure 4b)

projections from points (B',w°) e Xy . under possibility II.



