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Abstract

In this paper, a repeated search model is studied to determine whether
the repeat nature of sales can be used to limit the monopoly power that firms
enjoy when search is costly. To make matters interesting, we assume that
production coasts exhibit decreasing returns to scale. After carefully
characterizing the static game, we consider a dynamic game in which buyers and
sellers are completely informed about their common history. Here, in any
equilibrium that is stable against some randomness in buyers' search
strategies, if buyers use symmetric strategies, then monopoly power is not
limited. Next, we explore a dynamic game in which buyers and sellers have
private histories. Punishment strategies are more difficult to implement
here, and in fact monopoly power is unrestrained in any equilibrium in which
buyers use strongly symmetric strategies. The full force of stability is not
required. Our results give a dynamic equilibrium foundation to Diamond’s
theory of monopoly power, when production costs are rising with output.
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I. INTRODUCTION

In the classical search model pioneered by Stigler (1961) and Rothschild
(1973), buyers of commodities have poor information about the prices charged
by different sellers. They must undertake a costly search process in order to
acquire information about the price distribution and make a partially informed
choice of supplier. These models have proved popular for at least three
reasons. First, as originally argued by Stigler, they offer explanations for
empirical anomalies like price dispersion. Second, they provide a simple
maximizing framework within which markets clear slowly. The models are thus
useful in understanding the nature of unemployment. Finally, and most
fundamentally, the search models give an explanation of the persistence of
monopoly power. This argument was made most forcefully by Diamond (1971). If
it costs an existing buyer K to go and find the price charged by one more
seller, then the current seller can set a price K above what he thinks his
competitors are charging before he loses his customer. Since this is true for
every firm at once, prices must rise to their monopoly level.

Diamond's arguments about monopoly are clearly fundamental and have been
applied in a variety of extended models.l One extension to which the monopoly
arguments do not obviously apply is the extension to a repeated search
framework. Here, it would seem, strategic buyers could force down prices by
threatening to respond to a high current price with a reduction in future

patronage. As such, it is not clear that monopoly pricing would characterize

1 See, for example, Axell (1977), Butters (1977), Reinganum (1979),
Burdett and Judd (1983), Rob (1985), Bagwell (1987), and Diamond (1987). This
work suggests that a significant amount of monopoly power survives the
possibility of heterogeneous buyers and sellers.
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an environment in which sellers and buyers meet repeatedly. The formal
analysis of this problem has not been previously developed, probably for two
reasons. First, a particular equilibrium of a dynamic model is simply the
repeated static equilibrium, and, in this narrow sense, repeated search does
not necessarily rule out monopoly power. The second reason is that when
repeated search does restrict monopoly power, the reasoning is both
conceptually and technically straightforward. Firms that attempt to exercise
monopoly power are punished by buyers, who simply refuse to trade with them in
the future. In a strategic version of Diamond’s model, where sellers select
prices and buyers select sellers simultaneously, such a punishment threat is
clearly credible. A seller threatened with a boycott expects that no buyers
will see his price, and thus may set his price equal to (or higher than) the
price of rivals, making credible his own punishment. This possibility is
particularly sensible in the case of constant returns to scale, where pricing
incentives are independent of scale. In any case, it is easily understood
that strategic consumers can restrict monopoly power in a repeated search
framework.

The purpose of this paper is to show that this simple reasoning is not
always compelling, as such punishment strategies are not in fact credible when
production costs exhibit decreasing returns to scale and buyers’ search
strategies involve some exogenous or endogenous randomness. Consequently,
when returns to scale are decreasing, there is a strong sense in which the
possibility of repeated interaction is insufficient to restrict monopoly

power.
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The argument runs as follows. Suppose a seller exercises monopoly power
and a group of buyers decides to punish the firm by withdrawing their future
patronage. Of course, this threat is credible only if buyers expect to pay at
least as high of price at the seller’s store as they would at any of their
other options. Now, the deviating seller may be happy to set a higher price
if he does not expect to get any customers. But, if he perceives a small
chance that some buyers will return to his store, then the price the seller
sets, and therefore the price buyers expect to pay, is determined by the
returns to scale exhibited by the seller’s cost function. If costs rise with
output and the seller expects few buyers as consequence of his punishment,
then he will set a low price, undermining the very credibility of his
punishment,

The key issue is whether the seller perceives a chance that he will
receive any buyers, following a deviation. This perception is of course
appropriate if buyers' search strategies are affected by non-price random
factors. It is quite natural to consider the role of such factors. A buyer
might expect to find the commodity at a low price at one store, but he may
nevertheless pick a different store which stocks an alternative item he
desires, for example. Now we do not really wish to study these randomized
models directly, since the equilibrium behavior of buyers and sellers might
be sensitive to the particular randomization chosen. However, it does seem
reasonable to restrict attention to equilibria which are stable against a
slight impact of exogenous randomness.

Using this notion of stability, we carefully analyze a static game and
find that all stable equilibria in which buyers use symmetric strategies are

characterized by identical, positive profits for firms, when costs exhibit
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decreasing returns to scale. The role of stability is crucial here; a
plethora of non-stable equilibria exist with asymmetric firm profits.

Next, we repeat the static game over two periods, assuming that sellers
and buyers begin period two completely informed about their common history of
period one play. This dynamic game allows for the punishment possibilities
discussed above. Yet, in any stable equilibrium with symmetric buyer
strategies, if costs exhibit decreasing returns to scale, then in any period a
seller chooses his price to maximize his current period expected profit,
disregarding completely the possibility that his future profit might be
affected by his current price. Monopoly pricing occurs in each period.

Finally, we analyze a two period game in which buyers and sellers observe
only their respective private histories. In such an environment, punishment
strategies are difficult to implement, because only those buyers who
initially visit a particular firm have the opportunity to observe a deviation
by that firm. Focusing on equilibria in which buyer strategies are strongly
symmetric, we show that firms with decreasing returns to scale must
necessarily receive buyers in period two who "cross over" from other firms.
This crossing over occurs as part of a mixed strategy for buyers, and so the
second period of the dynamic game is characterized by an endogenous form of
randomness. Accordingly, in any strongly symmetric equilibrium when costs
exhibit decreasing returns to scale, firms again monopoly price in each
period, disregarding completely threats associated with the future. An
exogenous notion of stability is not required for monopoly pricing, when
history is private and correspondingly punishment is difficult.

The paper is organized in five sections. We begin in section two with an

extended discussion of the static version of Diamond’s search game. Our
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notion of stability is introduced here. The static model is also interesting,
because it involves finite numbers of buyers and sellers. This case is
unusual in the literature, and therefore the arguments may be somewhat novel.
Next, in section three, we display the various equilibrium possibilities for
the dynamic game with common history. Stability is then employed to select a
unique equilibrium. Section four contains an analogous study of the private
history model, though the full force of stability is no longer required. We

conclude in section five by exploring various extensions of the model.

IT. THE STATIC MODEL

We begin with consideration of a one time search game. The model is
closest in spirit to Diamond's. There are assumed to be a finite number J of
sellers and a finite number I of buyers, with I and J exceeding one. Each
seller produces the same homogenous output according to a common
differentiable cost function C(q). Buyers search out one and only one seller
during the day and then buy a quantity q(p) that depends on the price charged
at the firm that they visit. Buyers are not informed about the prices charged
by each of the firms at the beginning of the day, and they can only acquire
information about the prices that are actually charged by visiting the firm

and getting a price quote.2

2 This strict interpretation of costly search, that buyers can acquire
only one price quotation in a given period, is somewhat unusual in the search
literature. As we will see, nothing is gained for the purposes of this paper
in making the search technology more complex, and indeed much is lost in that
the notation becomes very complicated. Hence it seems sensible to adopt this
restrictive approach.
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The search problem is modelled as an extensive form game. The first player
to move will be nature. For every buyer i and seller j, nature assigns i to j
with some small probability e. After each of the sellers has been given a
chance to capture buyers in this way, those buyers who have not been assigned
are allowed to choose the respective sellers that they intend to visit. The
idea behind this portion of the tree is to capture the notion the there will
be exogenous random forces that impinge on buyers’ search decisions.3 For
example, some of buyer i’s other activities may bring i to exactly j's
location at the point where the commodity is required. Alternative, i may
require some other commodity that can only be acquired at j's store. There
could be any host of random factors that induce i to buy from j’s store even
when i believes that somewhat lower prices could be acquired by going
elsewhere. For simplicity, we have assumed that nature’s assignment
probability is independent of i and j. In general, one should imagine some
random factor affecting the search cost function faced by a particular buyer.
These random factors might make it considerably cheaper for buyer i to go to
one particular store.

Now in this simpler version, nature assigns the buyer arbitrarily with
probability e€J. With probability 1-eJ, the buyer is free to choose a store
according to his beliefs about the prices being offered at various stores. At
this set of nodes in the game tree, buyer i chooses a search strategy sieSJ,

J.J

J . _
where § = {xeR+.Zj=lxj—

that buyer i selects seller j conditional on his being allowed to choose.

1}. In this sjj is interpreted as the probability

Recalling that each buyer gets to select one store per period, we see that i's

3 Nature can be thought of as inducing trembles into the buyers
strategies. See Selten (1975)
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complete search strategy for a particular period is characterized by the
vector sj.

At the beginning of each period, every store selects a price to post on
its output for that period. Once posted, this price is fixed throughout the
period. Naturally the price will be posted in accordance with the seller’s
belief about the number of buyers who will visit his store.

Thus the search game is a game of incomplete information. Sellers do not
know buyer’'s search choices when they post their price, and buyers do not know
seller's prices at the point where they must make their initial search
decision. It may be simplest to think of this game as a simultaneous move
game between buyers and sellers which is preceded by some moves of nature.
However, since sellers do not observe nature’s assignment, it is inessential
whether sellers are thought to move before or after nature.

Associated with the buyers common demand curve q(p), is an indirect
utility function u(p). It is convenient to assume that q is differentiable,
and that both q and u are decreasing in price. A seller who receives n buyers

will then get profits

v(p,n) = q(p)pn-C[q(p)n]

when he charges a price p, independent of the identity of the buyers who
actually visit the firm. Buyers who select firm j and pay p will receive
utility u(p). These payoffs, along with the tree described earlier, will be
referred to as the game G(e). Our main interest will of course be in the game
G(0), which in the case of constant costs is essentially Diamond’s version of

the search problem. One way to view the discussion here is as an attempt to
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understand the way that more general assumptions about production costs will
affect Diamond’s analysis.
The equilibria of these games are straightforward. A strategy for firm j
is just a price, PjeRy, while a strategy for buyer i is just a vector sieSJ.
If a buyer is assigned by nature in G[e] to firm j, his payoff is just u(pj),

while if a buyer gets to choose the firm that he will patronize, his payoff is

equal to
Ulp,s.] = 5 .s..u(ps)
P:8y 3=1%13%'P]
Given the set of buyers search strategies s=[s7, ...s7], the probability

that each of the buyers in the set K selects firm j in the game G{e] 1is
K
Qj€ (s)=Hk€K[e+(l-e)skj ]HkﬁlK[l-e-(l-e)skj]

From this formula the firm’s payoff can be written in one of two ways.
Letting P(I) be the power set of I (i.e., the set of all subsets of I plus the

null set), we have

K
Vie[Py,s]=) Qie(s) v (P4, K]
Jer) KeP(I)Je J

where |K| represents the cardinality of the set K. Alternately we can define

for G[e] the probability that firm j gets n buyers as

afe(s)-] Qe ()
KeP(I): |K|=n



and write the payoff function as
I

Vielpj,sl=L aje(s)v(Pj,n)
n=0

An equilibrium for the game Gf{e] can now be defined as a pair of strategies p*

and s* satisfying
¥ J
U[p*,si]2U[p*,s;] for all sjeS

and

*
Vje[pj,s*]ZVje[pj,s*] for all pjeR+ and jeJ

UILIBRTA OF G

Our focus is on the game G[0O]. Many of its properties are immediate.
For example, it is clear that all firms that acquire buyers in equilibrium
must charge the same price. This is because the buyers know the firm's
pricing strategies in the usual game theoretic sense, and because the utility
that a buyer gets at any particular firm does not depend on the number of
other buyers who visit. Price dispersion is therefore not a property of the
game G[0], except in the sense that non-active firms may charge high prices.
Nevertheless, the game G[O] can admit a tremendous variety of equilibria, as
we will see below.

To begin, it is useful to consider the case in which firms have constant

costs of production. Let ¢® be the production cost and let p° be the price
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that maximizes [p-c®]q(p). As all buyers are identical in this model, any
firm acting as a monopolist would charge the price p° no matter how many
buyers he expected at his firm. We can thus refer to p° as the monopoly
price. Now, since buyers cannot condition their strategies on prices, it must
be that p° is charged by every firm receiving a positive flow of buyers in
equilibrium.4 This result is essentially Diamond’s result with strategic
consumers. Notice, however, that the distribution of buyers over sellers is
not unique. There are equilibria in which all sellers receive buyers and in
which only strict subsets of sellers attract buyers. The latter equilibria
are characterized by active sellers charging p® and non-active sellers setting
a price in excess of p°.

Before proceeding, it is important to note that the price at which
transactions occur is not unique when firms have different constant cost
technologies. To see why, suppose that all but one of the firms have common
cost c© while there is a single firm with cost c°®°>c®. Then the monopoly
price of this higher cost firm should strictly exceed the monopoly price of
the other firms. There is clearly an equilibrium where each of the lower cost
firms sells at its appropriate monopoly price. However, there is another
equilibrium where the high cost firm sells to the entire market at its
monopoly price, and each of the lower cost firms sets a price that is strictly
higher than the high cost firm’s monopoly price. Thus, there are two
potential equilibrium prices for this model. The trouble with the latter
equilibrium is that it is unstable in a very strong sense. If we move from

this (appropriately modified since cost functions differ) version of G[O] to a

4 As Diamond has argued, this result continues to hold when a buyer can
visit more than one store per period, so long as each visit is costly.
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game G [e], where € could be arbitrarily small, then it will no longer be a
best reply for the low cost firms to set very high prices. If there is the
smallest chance a buyer will come, they will set prices below the high cost
firm and the equilibrium will break down. The difficulty is that some of the
equilibria of G[0O] are not close in any sense to any of the equilibria in
G[e]. We have a failure of lower semicontinuity in the equilibrium
correspondence.

With non constant productions cost, we get a variety of equilibria for
very different reasons. Assume that the production costs are such that the
price that any firm will charge when it gets n buyers for sure is an
increasing function of n. Now it is possible to allocate the buyers over the
sellers in a variety of different ways to create different equilibria. For
example, all the buyers could choose a search strategy that sends them with

probability 1 to one particular firm. This firm would charge

argmaxpv(p,l)

and all the other firms would be happy to charge high prices, knowing that
they will not be receiving any buyers anyway. On the other hand, the buyers
could be spread evenly over the firms, assuming I is an integer multiple of J,

so that each firm charges

argmaxpv(p,I/J)

Every firm is active in this event, so we do not have to worry about setting

higher prices for non active firms. As a final example, consider the buyer
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strategy sij=1/J, for all i and j. Here, buyers adopt a symmetric and

completely mixed strategy, and sellers each choose price to maximize

I [1] I-n
Y o) (/H® (1-123) v (p,n)

n=0

This assignment will be considered in more detail later. As these examples
illustrate, a wide variety of equilibrium behavior is possible Moreover, the
allocation of buyers over sellers as well as the market price are non-unique
when costs are not constant.

This large set of equilibria for G[0O] admits a simple characterization.
First, recall that buyers are behaving optimally only if all sellers who
receive buyers with positive probability charge the same price. Second,
notice that sellers are optimizing only if this common price maximizes the
expected profit of each of the firms who charges it, given the probability
distribution over number buyers that is generated by the buyers’ search
strategies. We thus have:

LEMMA 1 A set of search strategies s* = {si, ceey s?} and prices p¥* = {pi,
.,pj} is an equilibrium for the search game G[0] if and only if
i) p§=p° for each k such that s§k>0 for some 1
ii) piz p® for each k such that S§k=0 for all i
iii) p° maximizes®
I
T aj(s*) v(p,n)
n=0

for each j=1,...,J.

5 In this and all subsequent work, we write a?o = a? to save notation.
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STABLE EQUILIBRIA OF G[O]

Lemma 1 pertains to the entire set of equilibria for the game G[O].
However, as mentioned above, our fundamental interest is in equilibria of G[O]
which are "close" to equilibria of G[e], for small e.

DEFINITION 1: An equilibrium [p*,s*] of G[0O] is said to be gtable if and only

if there exists some sequence {p(e), s(e)} such that {p(e),s(e)) is an
equilibrium for Gle] and lim e,g {p (€),s(e))={p*,s*).
Thus, stable equilibria of G[0] are simply equilibria which are limit points
of equilibria of G[e].

With some extra assumptions, we will see that the set of stable
equilibria of G[0] is easily characterized. Henceforth, it is assumed that:

Assumption 1:

i) v(p,n) is strictly concave in p for all n.
ii) for every a? with a? »# 1, there exists p® such that ZniO a? v(p®,n)>0.
iii) v(p,0)=0.

The implication of Assumption 1 is that the profit maximizing price is always
unique, with positive maximized profits, for any probability distribution over
the number of visiting sellers that satisfies a?#l. Observe that Assumption
1, part ii, will hold if demand is sufficiently high relative to cost. The
following lemma will prove useful in characterizing stable equilibria of

G[O].

LEMMA 2 In any equilibrium of the game G[e] there can be at most two distinct
prices.

PROOF Consider an equilibrium {p?, ...,pg} consisting of an array containing

more than one price. Without loss of generality, let p% be the lowest price.

Consider any firm j whose price exceeds pg. Buyers left free to choose will
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select such a firm j with probability O since they can assure themselves a
strictly higher utility or lower price by going to firm 1. The probability
that any buyer i selects j must therefore be e¢. Hence for j’s price to be

optimal, it must maximize

I [I] I-k
Y KJek@a-e) vip,k)
=0

Since Assumption 1 assures that the solution to this maximization is unique,
all firms charging prices strictly above the minimum must charge this price,
and the result follows. QED

With this lemma established, we can now state our first result for stable

equilibria of G [0].

Proposition 1: Let (p*, s*) be a stable equilibrium for G[0]. Then
* 1 *
Pj=Pp=argmaxy v(p,l) whenever Sij=0 for all i=1,...,I.

Proof: Suppose that lim.>, sij(e)=0 for all i for some firm j. The price

that this firm j charges must maximize

zKeP(I)erK[€+(1-€)Sk.j(f)lﬂk/Kll-e-(l-e)sk,j(e)] v(p, [K])

Now consider the probability that exactly one buyer visits. This is

I

) [e+(L-e)sj5(€)]Mes[L-e-(1-€)sykj(e)]=Q1(e)
i=1

*
For any firm pj must maximize
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2ReP (1) (Mgcerle+(1-€)syj(e) Mg [1-€-(L-e)sij(e)]Iv(p, |K|)/Q(e)

Now this expression is jointly continuous in e¢ and in the sj, whence by the
maximum theorem pj(e) is a continuous function of e, where pj(e) is the price
that maximizes the above function for any given value of ¢. It follows that

*
pj must maximize

lim (Meerle+(1-e)spj(e) Megr[1-e-(1-€)spj(e)) v(p, [K|)/Qu(e)
e->0 KeP(I)

Since the probability that two buyers visit is of smaller order than the
probability that one buyer visits, this limit is equal to v(p,l) and the
result is proved. QED

This proposition makes it easy to rule out stability in certain
instances. If there are multiple prices, the highest prices must all be pi,
the monopoly price for the firm expecting one buyer. If all the prices are
the same, but some sellers get no buyers, then all prices must be p%. To say
more, we will need to restrict attention to a somewhat smaller class of
equilibrium.

DEFINITION 2 An equilibrium for G[0] is said to be allocation-symmetric if

a?(s)=aﬁ(s) for all k and j such that aﬁ#l.

Thus, in any allocation-symmetric equilibrium, buyers are distributed
symmetrically over sellers who might receive buyers. This is a very
specialized definition of symmetry in two ways. First, it does not require
that the buyers use symmetric strategies. Consider the pure strategy
equilibrium. Symmetry is strategies will be considered further below.
Secondly, it does not literally require symmetric outcomes for sellers, since

some sellers might get no buyers.
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Now we have the following set of sufficient conditions for stability.

PROPOSITION 2 Let (p*,s*) be an allocation-symmetric equilibrium for G[O}.

Then {p*,s*) is a stable equilibrium of G[0] if either
* % *
i)pj=pk for all j and k and si}>0 for at least one i, for every k=1,...J
or
Loox 1 * * * .
il)pj=pm for pj>mingpk, and sijx>0 for at least one i, for every k such

* R *6
that Pk=minjps°.

PROOF: This merely requires the construction of the appropriate sequences.

If (i) holds define p(e¢) to equal

argmaxp)  Mpeglet(l-e) sy IMrll-c- (1-€)spi] v(p, [K])
PRep(1) . .

Since {p¥*,s*} is an allocation-symmetric equilibrium, and nature’s assignment
rule is also symmetric, it is straightforward to see that the strategies
{p(e),s*} constitute an equilibrium for G[e], and that this strategy
converges appropriately. If (ii) holds, define p(e) as above for each k such

* *
that pk=minjpj. For each of the other sellers define p’(e) to equal

I (1 I-k
argmax, 3, (kJe¥(1-e) v(P,k)
k=0

6 Allocation-symmetry does not imply stability in general. For example,
there exist allocation-s etric equilibria in which sellers not receiving
buyers set price above pp. By proposition 1, such an equilibrium can not be
stable.
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. . * 1 s .
Now since these sequences converge to minjpj and pp respectively, we will have
p'(e)>p(€e) for all e small enough, and the strategies constructed by using
these two prices along with the original search strategies will constitute an
equilibrium for G[e]. QED

STABLE SYMMETRIC EQUILIBRIA OF GJ[O]
UNDER DECREASING RETURNS TO SCALE

Having established some general properties of stable equilibria of G[O],
we turn now to our topic of interest‘gnd explore the effects of returns to
scale on the stability of equilibria. Our results here are not completely
general; however, we are able to make extremely strong predictions when buyers
adopt symmetric strategies. Specifically, in the remainder of this section,
we will argue that all firms must be active and make identical positive profit
in any stable equilibrium of G[0], when buyers use symmetric strategies and
returns to scale are decreasing. As we show in the next section, this result
is particularly important when placed in the context of a repeated game, since
it suggests that buyers have limited credibility in threatening future
punishment in response to high current prices.

To begin, we offer the following definition.

DEFINITION 3 A symmetric equilibrium for the game G[0] is a set of
equilibrium strategies {p*,s*) such that s?j=sﬁjss§, for every buyer pair
{i,k) and for every seller j.

Notice that this definition requires symmetry in search strategies only,
and does not require that all firms set the same price. Moreover, there do
exist symmetric equilibria in which some firms receive no visitors and charge
high prices. Symmetry does not itself rule out punishment.

We must also define a notion of scale economies.
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DEFINITION 4 A cost function C(q) is said to exhibit decreasing returns to

scale over some interval if the marginal cost function is monotonically
increasing over that interval.

We now have:

LEMMA 3 Let pﬁsargmaxp v(p,n). The sequence pg is monotonically increasing
in n if C(q) exhibits decreasing returns to scale.

PROOF The first order condition is

q'(p)p + q(p) - C'[q(p)n]q'(p) =0

Implicitly differentiating this condition and exploiting the concavity of

v(p,n), it is straightforward to verify that the lemma holds. QED

Lemma 3 establishes that a firm expecting exactly n buyers will charge a
higher price than a firm expecting exactly n-1 buyers, when marginal cost is
rising over the relevant region. This result accords naturally with simple
economic reasoning.

Now, in a symmetric equilibrium, firm j will be visited by any buyer i

*
with probability sj. Thus, firm j picks its price to maximize

I (I
) [n](s_’{)n (1-s)) 1D v(2,n)
n=0

which is expected profit under the binomial distribution implied by symmetric

buyer strategies. For every se(o,l] it is therefore useful to define py(s) as

I (I
Pp(s) = argmax, Y [g] sD (1-s)ID v(P,n)
n=0
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and to investigate the possible monotonicity of the sequence ppy(s).

Many observations are immediate. For example, pp(l) is clearly pé.
Also, it 1s straightforward to see that, in the case of constant returns to
scale, pp(s) is independent of s. Reasoning as in Lemma 3, it seems natural
to conjecture that pp(s) is increasing in s when costs exhibit decreasing
returns to scale. Though we believe the relationship to be true quite
generally, it is difficult to verify, except in particularly tractable
examples.7
EXAMPIE General demand, quadratic costs
Suppose C(gqn) = bgn + a(qn)z. The first order condition is then
I
[n} sT(1-s)I"P (Pq’ (P)+q(P) - (b+2anq(P))q’ (P)}n=0

I
2

n=0

Using

I [I] .
sI=), (n) sP (1-s)*°0,
n=0

and

I (I
sI[sI+l-s]=y. [n] sD (1-s)1-mp2,

n=0

which come by differentiation of the binomial equation, the condition

simplifies to

7 A sufficient condition would seem to be that vpn(p,n)= p(p,n)/n-nq’qc"
>0. Then, shifting more weight to higher n's would surely require a raise in
price. But, for p>pp, vp(p,n)<0 and so vpn(p,n)<0 is possible. Notice that a
very convex cost function would suffice.
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Pq’'(p) + q(p) - bq'(p) - 2aq'(p)q(p) (sI + 1-s) =0

Implicitly differentiating and exploiting the concavity of v(p,n) in p, it is

straightforward to show that

s 0

if and only if I>1 and o>0. Thus, pp(s) is increasing in s exactly when costs
exhibit decreasing returns to scale.

Rather than explore other particular structures, we instead propose to
define a (possibly) stronger notion of decreasing returns to scale directly in

terms of the sequence pp(s).

DEFINITION 5 v(p,n) exhibits stochastic decreasing returns to scale if C(q)

exhibits decreasing returns to scale and the sequence py(s) is monotonically
increasing in s, for se¢(0,1].

Thus, when stochastic decreasing returns to scale exist, if two firms
receive buyers in a symmetric equilibrium of G[0], then the firms will charge
the same price if and only if buyers adopt the same search strategies for the
two firms. Since all active firms must charge the same price, it follow that
all active firms face the same distribution of buyers in a symmetric
equilibrium. Consequently, under stochastic decreasing returns to scale, in
any symmetric equilibrium of G[0], all active firms earn the same expected
profit.

Symmetry does not eliminate the possibility of inactive firms. However,
if in addition one focuses on stable equilibria of G[0], then it must be that
all firms are active. Intuitively, if firm j were inactive in G[e], with ¢

small, then by Proposition 1 j would charge pi. But, under stochastic
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decreasing returns to scale, active firms must price higher than p%, so it
cannot be that j receives no visitors in a stable equilibrium of G[0]. Thus,
if returns to scale are stochastically decreasing, then in any stable,
symmetric equilibrium of G[0], all firms are active and all firms earn the
same expected profit. This result is now stated as Proposition 3, which is
followed by a formal proof.

PROPOSITION 3 Suppose v(p,n) exhibits stochastic decreasing returns to

scale. If (p*,s*} is a stable, symmetric equilibrium of G[0], then for every

* *
firm j, pj=pm(l/J), Sj=l/J, and thus

I (I
Vj[p§,s*]:§0[n] (L/H™ (1-1/H) 10 v(py(1/3) ,n)

PROOF Let (p*,s*} be a stable, symmetric equilibrium of G[0], and let
{p(e),s(e)) be a convergent sequence of equilibrium strategies. Suppose to

the contrary that p§>p§, with s§>0=s§. By Proposition 1, it must then be that
1 * % *

Pm=Pj>Pk=Pm(sk) -

Now, since the equilibrium is stable, there must exist ¢, with O<e<s§,
such that pj(e)>pk(e), which implies that pj(e)=pm(e). But then, by
stochastic decreasing returns to scale, pj(e)=pm(e)<pm(s§). Since ¢ can be
arbitrarily close to 0, stability implies p§<pm(s§)=p§, a contradiction.

Suppose next that p? = pi for all pairs (j,k) but that s? = 0. Then, by
Proposition 1, p§=p§=pi. For all active firms k, it follows that

* *
pk=pm(sk)=p$. But, from the concavity of v(p,n) and the monotonicity of pg

implied by decreasing scale economies, it is clear that
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1 0, if n=1
dv(Pp.n) =
ap f(n)>0, if n>1

Thus, since I>1, pi certainly does not satisfy

I [1 N N
Y o) (sp)B(l-sp)I® gv(P.n) =0
- a,P

Yet this equation defines pm(si). p$=pm(s§) is thus contradictory.

It follows that, for every pair (j,k),p;=p§ and s§=s§>0. Hence, Js§=l or
s§=l/J. p§=pm (1/J) must then be the equilibrium price. QED

Proposition 3 is important, as it establishes conditions under which
expected profit is independent of firm identity and the choice of equilibrium.
If attention is restricted to stable, symmetric equilibria when v(p,n)
exhibits stochastic decreasing returns to scale, then profit is uniquely
defined. This result will, of course, have very strong implications for the
possibility of punishment in a repeated game.8

We conclude this section with the following corollary, which states that
the conditions of Proposition 3 are sufficient for stability.
COROLIARY 1 Suppose {p¥*,s*} is a symmetric equilibrium of G[0], in which, for
every pair (j,k),p§=p§ and s§=s§>0. Then {p%*,s¥*) is a stable equilibrium of
G[O0].

PROOF The proof follows directly from Proposition 2 and the observation that

symmetry in strategies implies symmetry in allocation. QED

8 In particular, it rules out punishments in finite horizon games based
upon the existence of multiple equilibria, as discussed by Benoit-Krishna
(1985).
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3. THE_DYNAMIC MODEL WITH COMMON HISTORY

We now extend the analysis into a two period model. The game proceeds as
follows. At the beginning of the first period, sellers simultaneously select
prices that will be posted on their output for the period. Without knowing
the prices that sellers have set, buyers then select sellers with whom to
trade. To keep the discussion concise, we will ignore any random assignment
by nature in the first period. At the close of the first period, we assume
that all first period selections are commonly observed. Thus, all second
period strategies draw off a common history.9 The game G[e] is then played in
period two, with the modification that strategies condition on history. The
extended two period game that arises with this extensive form will be
referred to as G'[e].

The assumption of common history is made for three reasons. First, it
presumably approximates a market in which word-of-mouth communication is wvery
efficient, or in which trade journals publish past pricing records. Second,
it reduces the notational complexity required to illustrate our basic point.
Finally, and most importantly, the assumption makes easier the implementation
of buyer punishment strategies. When buyers have a common history, all buyers
can potentially punish a particular seller who priced high in period one by
refusing to visit that seller in period two. The assumption thus "stacks the

odds" against monopoly pricing by making punishment easy. Hence, if

9 For the proposition that we establish, it is not important that buyer
choices are observed. We adopt this assumption solely for notational
simplicity.
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Diamond’s conclusion survives in the common history setting, then it 1is a
very strong conclusion indeed.

We turn now to a formal definition of the game G’'[e¢]). A seller’s first
period strategy consists of a point in R;, while a buyer’s first period
selection is again a probability distribution over the set of firm indices.
We use p and s to represent these respective strategies. At the end of the
first period, all players observe all first period choices. Let {p’,s’)
represent this history of choice, where primes are used to denote the
possibility of disequilibrium selections. Independent of {p’,s’}, nature then
assigns buyer i1 to seller j with probability €. Observing {p’',s')but not
nature’s assignment, firms and buyers simultaneously make their respective
second period selections. Firms each choose a second period price from Ej,
and we represent these choices with the vector o. Those buyers not assigned
by nature select a second period distribution over firms, which we write as
the vector t. Strategies for the game G'[¢] can thus be summarized as {s,t}=
{(s1,t1),...,(s1,t1)} and {p,o}={(p1,01),..-(PJ,05)}.

To define an equilibrium for the game G’'[e], we begin by considering the

second period of the game. A firm j has a payoff of form

I
n
Zajev(r,n)
n=0

where r is the price j charges in period two and a?e is the probability that
exactly n buyers visit j. Letting tij [p',s’'] be the probability that

consumer i visits firm j following history (p’,s’}, it follows that

alelp’,s',t] = ) I [er(l-e)tgj(p’,s") M [1-e-(1-e)tyj(p’,s")]

:IBj=n  keB k¢B

w
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Firm j's second period payoff is thus

1

2

Vielr,p’,s’,t]= Zg?e[p',s',t’] v(r,n)
n=

A seller’'s second period strategy is then a best reply to other strategies if

and only if

2 2
Vje[aj(p’,s'),p’,s’,t] > Vje[r,p’,s’,t]

for all r=0 and for each history (p’,s’').
Consider next buyers' second period outcomes. If a buyer i is assigned
by nature to firm j, his payoff is just u(aj), whereas if the buyer gets to

choose, his payoff is

U2[ts,p',s',0] =

tijlp',s"Juloy)
]

1

I o~

Buyer i’s second period strategy is then a best reply if and only if
U2[t5(p',s"),p",s",0] = U2[r,p',s",0]
for all reSY and for each history (p',s').

Consider now the first period. Given the buyer search strategy s, the

probability that each of the buyers in the set K select firm in period one is

k
Qjls]=Mkerskjlke(1-k)[1-5kj]
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Firm j's expected game payoff can now be written as

l ! K ! 2
Vielps,p,s,0,t] = Z Q-[s]v(p-,lKI) + 6 Vi [o5(p',s),p',s,t]
J J J J J
KeP(I

where § is a discount factor. Likewise, buyer i’s expected game payoff is

' ' J
vlisi,p,s,0,t]= Sij {U(PJ‘) + 6 ) tiklp,s’] U2[ti(P,S’),P,S’,0]}
k=1

j

I b1

1

With these definitions in place, we say that the set of strategies
{p¥,s¥,o%,t¥) is an equilibrium for the repeated search game G'[e] if and only
if second period strategies are best replies and

\7-1[1;-k p*,s%,0% t*] > V-l[ ! p¥ g% g% t*]

Je Jy ’ ’ ’ - Je P ;P ] ’ ’
for all p'eRy and for every j=1,...,J; and

I
Ul[sy®,px,s%,0%,t%] = Ul[s;,p*, 0%, t*]

'
for all sieSJ and for every i=1,...,I.
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EQUILTBRTIA OF G'[O

As before, our fundamental interest lies in the game G’'[0]. We note
first that, in either period one or period two, all firms who might receive
buyers must charge the same price. Otherwise, buyers’ strategies would be
suboptimal. Not surprisingly, there are nevertheless an immense number of
equilibria in G’ {0].

The immensity of the equilibrium set, and in particular the variety of
equilibrium prices, is perhaps best illustrated with the following example.
Let buyers adopt a completely mixed and symmetric strategy by setting s§j=l/J
for every i and j. Suppose further that buyers adopt the following symmetric
second period rule:
1/(J-}K|) for all je J-K

*
tij (p,s) =
0 for all jeK,

where K = {jeJij#E}. In other words, if firms in J-K charge p in period one
while firms in K do not, then buyers mix evenly over the firms in J-K in
period two. Against such a strategy, firms clearly have an incentive to
select P in period one and pp (1/(J-|K])) in period two.

Two questions remain. First, can the strategy t?j (p,s) be a best reply?
In the game G[0], the answer is clearly "yes." To see why, suppose lK|e (0,J)
firms "cheated" in period one and charged a price different from p. Since all
buyers observe the deviations, these firms expect no visitors in period two
and are in fact willing to set a very high second period price. But given

this pricing strategy, t*ij (p,s) is indeed a best reply.
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Second, what restriction must be placed on p for there to exist an

* *
equilibrium for G'[0] in which Pj=P for all j and aj(p*,s*)=pm (1/3)? Given

the above buyer strategies, the condition is straightforward. Any p such that

j would rather set p today and be active tomorrow at the price pp(1/J) as

opposed to maximizing at the price py (1/J) and being inactive tomorrow is

supportable as an equilibrium for G’[0]. That is, p must only satisfy

I-n

I (I
) [n] (L/HP (1-1/3) v (P,n)

n=0

I

I-n

I
> (1-5) ) [n] (/D™ (1-1/3) v (By(1/3),n)

n=0

Of course, if §=0, then p =pp (1/J). However, for larger, more realistic §,

first period prices can be driven well below pp(1l/J), the price which

maximizes period one profit given the buyer strategy s*. This is clearly

contrary to the Diamond conclusion.

In addition to the
which one firm receives
period one lest he lose

distributions of buyers

example above, equilibria can also be supported in
all buyers in each period, but must price low in
all buyers in period two. Clearly, a variety of other

is also consistent with equilibrium behavior. The key

point is, regardless of scale economics, the game G'[0] admits a vast number

of equilibria, in many of which low first period prices are supported by the

credible threat of the withdrawal of future purchases. There is absolutely no

sense in which Diamond’s conclusion holds for equilibria of the game G’[0].
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STABLE SYMMETRIC EQUILIBRIA OF G'[0]
UNDER DECREASTING RETURNS TO SCALE

We now proceed to refine the equilibrium set of G'[0] by proposing a
notion of stability. Then, as in the previous section, we show that very
strong predictions can be made about the stable equilibria of G'[0], when
buyers use symmetric strategies and v(p,n) exhibits stochastic decreasing
returns to scale.

We begin with the following definition.

DEFINITION 6 An equilibrium (p¥%,s*,o%,t*} of G'[0] is said to be stable if

and only if there exists some sequence (p(e),s(e),o(e),t(e)} such that
{p(e),s(e),0(e)t(e)) is an equilibrium for G’ [e], lim.,qg {p(e),s(e)}={p*,s*}
and {o(e€),t(e)} converge pointwise to functions {o*,t*}.
This is simply the natural extension of the notion of stability to the game
G'[0].

We also require a definition of symmetry.

DEFINITION 7 A symmetric_equilibrium for the game G’'[0] is a set of

equilibrium strategies {p¥,s¥*,o%,t*} such that tij(p’,s’)=t§j(p’,s’)s
t;(p’,s’) for every buyer pair (i,k}, for every seller j, and for every
history (p’',s’).

This is a very weak concept of symmetry, in that we do not require buyers to
adopt symmetric first period strategies or sellers to adopt symmetric
strategies in either period. As the above example illustrates, even a
stronger notion of symmetry is insufficient to eliminate the possibility of
low early prices supported by punishment threats. Symmetry is clearly

consistent with punishment in the game G’'[O0].
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The combination of stability, symmetry, and stochastic decreasing returns
to scale 1s sufficient to eliminate the credibility of all future threats,
however, as the following proposition shows.

PROPOSITION 4 Suppose v(p,n) exhibits stochastic decreasing returns to scale.

If {p*,s*,o%,t*} is a stable, symmetric equilibrium of G’[0], then for every

*
i, Pj maximizes

Y QfIs*] v (py. [KD

KeP(I) :
PROOF Fix (p’,s’). The notions of stability and symmetry required for the
second period of G'[0] are then formally equivalent to those established above
for G{0]. But, by Proposition 3, second period profit is then uniquely
defined. Since (p’,s') is payoff irrelevant for the period two game, second

period profit is

I [1] I-n
L n) (/9™ (1-1/3) v (Py(1/J),n)

n=0

for all firms and all (p’,s’). The optimal p§ is therefore selected without
regard to the future. QED

This proposition is easily understood. When v(p,n) exhibits stochastic
decreasing returns to scale, there is but one profit level possible in any
stable symmetric equilibrium of the static game. Replacing the last period of
the dynamic game with the static game, then, yields the conclusion that firms
maximize game expected profit by maximizing first period expected profit.
Thus, in both the first and the second periods, firms choose price to maximize

current period profit. In the second period, the common price is pyp(1l/J) and
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4 * ’ ’ 2 4 3 ’ ’
buyer strategies are tj (p',s')=1/J, for all j and histories (p’,s’). To
know the exact first period price, we would need to place restrictions on
first period buyer strategies, such as symmetry. Nevertheless, we do know
that each firm’'s first period price is selected so as to maximize first period
profit. Given buyers' first period strategies, firms are thus selecting the
corresponding monopoly price. Diamond’'s conclusion of monopoly pricing is

given a dynamic equilibrium foundation.

4. THE DYNAMIC MODEL WITH PRIVATE HISTORY

In the previous section, we assumed that first period selections were
commonly known upon the beginning of the second period. This assumption was
defended as an approximation of a communicatively efficient market and as a
polar case designed to "stack the odds" against monopoly pricing by making
punishment easy. We now consider the opposite case of a communicatively
inefficient market, in which buyers and sellers observe only their respective
private histories. Thus, buyer i begins period two knowing only the price at
the store which he visited in period one, and firm j likewise begins the
second period knowing only his first period price and the identity of the
buyers to whom he sold. In this setting, it is more difficult to punish a
deviant firm j, since the buyers who initially visited a firm other than j
cannot be influenced by j's deviation. In particular, these buyers may
choose j in period two, unaware that j deviated in period one. The
observation that punishment is more difficult in a private history setting is
consistent with this section's fundamental result. Specifically, after

defining a notion of scale diseconomies, we show that a strong form of
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symmetry alone is often sufficient to rule out punishment and to give monopoly
pricing. The full force of stability is not required.

The formal game proceeds much as before, except that histories are now
private and nature is no longer given a move. To minimize notation, we will
continue to use the symbols developed above. Now, the main conceptual
difficulty with the private history model is the fact that we must explicitly
deal with the beliefs held by each player at each information set. That is,
we must look at sequential equilibria, as defined by Kreps and Wilson (1982).
In the second period, a buyer i’'s belief will consist of a probability
distribution over the space B} x P(I-{i}) for every seller in the game. Each
seller will similarly have beliefs about the prices and buyers at every
seller's store. It is, however, tedious and really unnecessary to pursue this
analysis formally. We instead take a shortcut that exploits the natural
belief structure that is imposed during the course of play in the game.
Specifically, we assume that every player expects each of the players whose
first period play he did not observe to have abided by the initial equilibrium
agreement. This seems a natural requirement to place on beliefs, though it is
not required by the rules of sequential equilibrium.10
We now define strategies for the game G’'[0]. A seller j's first period

strategy consists of a point, Pj> in B;. At the end of the first period, the

101f 4 buyer, for example, sees a play that does not correspond with the
equilibrium agreement in the first period, he is, by the rules of sequential
equilibrium, allowed to revise his beliefs in almost any way. The problem is
what he will believe about the future actions of all firms whose prices he has
not observed. These beliefs could be essentially anything, and by choosing
beliefs appropriately virtually any type of second period behavior could be a
sensible response to an off-equilibrium play in the first period. These
possibilities seem to implicitly rest on a view of correlated deviations,
which we feel is inappropriate for our purposes.
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seller observes his price as well as the identity of the buyers who visited
his firm. A seller j's second period strategy is then a mapping o] from
B, x P(I) » B;. Buyer i selects, in the first period, a probability
distribution sieSJ. At the end of the first period, the seller observes his
price as well as the identity of the buyers who visited his firm. A seller
j's second period strategy is then a mapping 0] from By x P(I) » Ry. Buyer i
selects, in the first period, a probability distribution sieSJ. At the end
of the first period, i observes the price charged by one firm. Hence, a buyer

i’'s second period strategy is a mapping tji: JxR+*SJ.' We can now represent

seller and buyer strategies, respectively, with {p,o) = {(p1.,07),..., (PJ,03))
and {s,t} = {s71,t1), ...,(s1,t1)).
We next define payoffs for G'[O]. To begin, consider the second period

of the game. Firm j has a payoff of form

where r is j's second period price, and a? is the probability that n buyers
visit j in period two. It is this latter number that we characterize now.

The firm begins the period with an observation {K,pj}, where primes again
denote the possibility of disequilibrium behavior. The firm knows that each
buyer in K observed pj, and will respond by choosing j with probability
tij[j,pé] in the second period. The firm believes that each buyer in I-K
observed some equilibrium play py. But j is not exactly certain as to the
observation made by these buyers, since j does not know exactly which sellers

they have visited. From knowledge of equilibrium buyer strategies, j can
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compute a probability distribution. Conditional on not visiting j, the
probability that i visits firm k is
[sik/Ysiz] -
27
Hence, the probability that i visits j in period two is

t35151,P)=L [sik/T sip)tijlk,pk]
k] A7

We now have

tgj(j.pj) I tﬁj[Sk,p] X

aj[{X,pj),s,p,t]= I
B:[Bl=n  keKnB ke (I-K)NB

I [1-tij(j,pj)]) T [1-85 [sk,p])
keKN(I-B) ke{I-K}N{I-B})

and so the firm's second period payoff is

—

Vz[r,{K,P:},p,s,t] =Y a%[{K,p;},s,p,t] v(r,n)
j j 2,5 j

Note that the second period payoff depends on the firms’, and all other
buyers’, first period strategies, even if the firm does not play its
equilibrium strategy in the first period. A seller j's second period

strategy is then a best reply if and only if
V5 [050(K,pj)], (K,p5),P,5,t] = V3 [r,{K,pj},p,s,t
J [UJ !pJ H 1PJ 1P;S, ] = J [r’ 1PJ ,p,S, ]

for all r=0 and for each history {K,pj} eP(I) x By,
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Now consider buyer i's second period outcome. Buyer i enters period two
with the observation {j’Pi}’ but he is not sure what strategy any seller,
including j, will play in the final period, since seller histories are not
observed by buyers. However, i does know that seller j has observed a K
containing i, while each of the other sellers has observed a K not containing
i. Thus, the probability that j has been visited by each of the buyers in the

set KeP (I-{i}) is given by

=K
Qjls] =T sgj I [1-s%5]
keK ke{I-K-1i}

This gives the second period payoff to i from visiting firm 1 to be

v2e[(3,p}),5,0] = J Qls] uloplKU(1),pj]] if £-3
ReP(I-{1i})
~K . R
) Qpls] ulogl[K,ppl] if £#]
ReP(I-{i})

Notice that i believes firm £ to have charged py in period one when i
initially visits some other firm j, no matter what j charges in period one.
Buyer i’s second period strategy t; is then a best reply if and only if
2 . ! 2 . !
Y tigUipl(i.p3).s,0] = Uikl(j,pj),s,0]
Led
’
for each keJ, and for each history {j.pjl}.

It is now straightforward to write the game payoff. First, for the

seller, the expected payoff is
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[ K [ 2 [ [
V}[Pj,p,s,a,t] =) Q}(S)V(pj,|K|) + 6 Vj [o50{K,pj)],(K,pj),P,s,t]
KeP(I)

while for the buyer, the payoff for the game is

J J
1 ' 2
Ui[si,p,s,0,t]= ) sij [u(By) + & ) tik(i,pj) Uik[{j,Pj),s,0]]
k=1

j=1

The set of strategies (p*,s¥*,o%,t*} is an equilibrium for the repeated
search game G'[0] if and only if each of the second period strategies is a

best reply and

1. * 1.
Vilpj,p*,s*,0%,t*] 2 Vy[pj,p¥*,s*,0%,t¥]

for all pjeRy and for every j=1,...,J; and

1. = 1 '
Uilsi,p*,s¥,0%,t*] > U; [s;i,p¥*,s¥*,o%,t¥]

’
for all sieSJ and for every i=1,...,I.

EQUILIBRIA OF G'[0]

The equilibria of G'[0] under private history are potentially quite
different from those that arise under common history. For example, it is no
longer clear that all active firms set the same second period price, and

there is thus a possibility of price dispersion. The equilibria with private
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history are similar to those of the last section, however, in that the
credible threat of second period punishment can drive down first period
prices, contrary to Diamond’'s conclusion.
To illustrate this effect, consider the following example. Suppose
there exists K C J such that I/K is an integer. Let buyers employ pure
strategies, with the I buyers dividing evenly over some K firms. Give buyers

the following second period rule:

. ' 1, for £=j if pj = p
tig [J.P5] = -,
1, for some f=j if Pj * P

Thus, buyer i returns to j with probability one if p3=2; however, if pé #P,
then i goes with certainty to some alternative firm £.

Notice first that this boycott threat is credible: if indeed pé =P, then
j will expect no second period visitors and so j will be indifferent about
setting a high second period price. Second, observe that any P satisfying

v (p,1/K) = (1-8) v (Bg/<,1/K)

can be sustained as a first period price of K active firms in an equilibrium
of G'[0]. Thus, is 6>0, p can be pushed significantly below py(I/K), the
static monopoly price given buyer strategies. As before, this boycott

equilibrium of G’[0] is independent of scale economies.
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SYMMETRIC EQUILTBRTA OF G’'[0]
UNDER DECREASTNG RETURNS TO SCALE

Reasoning as in the previous sections, one can show that stability would
require a boycotted firm to set a second period price of pi, which would of
course destroy the equilibrium illustrated above. Our goal in this section is
to show that all punishment equilibria are inconsistent with a strong
definition of symmetry, even when the full force of stability is not applied.

Now, in the above example, buyers adopt asymmetric strategies.
Furthermore, unless I is an integral multiple of J, these strategies treat
sellers asymmetrically in the first period. We are thus led to explore the
possibility of punishment when buyers use symmetric strategies and these
strategies initially treat firms symmetrically.

DEFINITION 8 A strongly symmetric equilibrium for the game G’'[0] is a set of

equilibrium strategies {p¥%,s¥*,o0%,t*} such that

*
i) sgj = skyp for all buyers i,k and sellers j,Z

* '
tg[j,pj] for all buyers i,k, sellers j,4

. o * . ! * - !
ii.) tip [3.p3] = tkeld.pj]

'

and histories {j,PJ}.

Note that this definition requires sgj = 1/J for all buyers i and
sellers j. Thus, in a strongly symmetric equilibrium, buyers mix evenly over
all sellers. We do not, however, go so far as to require symmetric treatment
of sellers in period two. While buyers’ second period strategies are
symmetric, they are allowed asymmetric distributions over firms following a

history {j,p }. A boycott, for example, is not ruled out by strong symmetry.
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We now seek a notion of decreasing returns to scale. Recall in the
common history setting, we defined a notion of scale diseconomics which
directly ensured that a firm expecting buyers to arrive with a higher
probability charged a higher price. We now propose an analogous definition
for the private history case. From firm j’s perspective, private history
buyers fall into two groups. Those who visited j in period one will return to
j with probability t?[j,p'], while those who did not begin with j will "cross-
over" to j with probability t?[s*,p*]. (Strong symmetry removes the buyer
indices.) The latter group of buyers cannot respond to j's first period
price; however, the "return buyers" do observe this price, and the notion of
scale diseconomies we propose simply requires j’s second period price to rise
with the probability t?[j,p'] of return patronage.

To be more precise, if j initially received buyers from the set KCI, then
j chooses his second period price to maximize

|1-K| [|I-K| |1-K]|-m

m ] [€5(s%,p%) 1™ [1-tJ(s%,p%)] X
m=0

K] [IKI] £ N L
ZO m J[t5(5,p)1™ [1-t5(,p)]  v(p,m)
n=

For every K € I, it is thus useful to define

plKl

IIiKl [II-KI] [I-K|-m

(£9, %) argmaxp m J(£9)T® (1-t°) X

m=0

Ikl (1x] |K|-n
Y n J(ex)? (1-t*) v(p,m + n)
n=0
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Again, apart from simple examples, it is very difficult to formally relate the

. . K . .
monotonicity of p ml(to,t*) to the assumption of decreasing returns to scale.

Noting that p ﬁ'(to, t*) is independent of t°® and t* when returns to scale are
constant, however, it is natural to assume directly that plﬁl(to,t¥) is
increasing in t*. That is, holding fixed the probability of cross-orders, 1if
] expects more repeat patronage, then j charges a higher price. This
assumption is of course consistent with decreasing returns to scale in
tractable examples. It also implies the assumption of stochastic decreasing

returns (put K=I and t°=0).

DEFINITION 9 +v(p,n) exhibits strong stochastic decreasing returns to scale if

C(q) exhibits decreasing returns to scale and plﬁl (t%,t*)is monotonically
increasing in t¥*, for all KCI with |K|=0 and for all (t°,t*) such that
t*e[0,1], t%[0,1] and t* and t° are not both zero.

Having discussed symmetry and scale effects, we turn now to the issue of
stability. As shown in the previous section, when history is common, strongly
symmetric equilibria can be constructed in which early prices are pushed down
by the threat of future punishment. These equilibria do not exist, however,
if boycotted firms set price equal to pi, as would be required under
stability. We find here that a significantly weaker restriction can be placed
on the price of inactive firms when history is private.

DEFINITION 10 Let {p¥*,s*,o%,t*} be an equilibrium of G'[0]. The equilibrium
is weakly stable if, for any history that leads a firm j to expect no second

. . . . . . o P
period visitors, j's second period price, pp, satisfies
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I-1 [1-1

w@) >upl) + ¥ Ln ](1/J)n (1-1/0) 0 [uelyupdy)
n=1

and

I (I-1
w(pd) >u(pm(0,t%)) + 3 [n ](1/J>n (1-1/3) P [up* (o0, t%)) ~u(pl(o, t)) ]
n=1

It is straightforward that this restriction is weaker than stability, since
p; > p$=p$ (0,t*) is allowed. (Under strong decreasing returns to scale, the
summed expressions are negative.) Notice also that, if I is very large, then
weak stability may actually place no restriction on pg. To see why, observe
that pg is allowed to be higher as I gets larger. Thus, if there is a
reservation price associated with the buyer demand function q(p), then for
sufficiently large I weak stability does not restrict Q; at all.

Weak stability is analogous to stability in that it generates randomness
in the second period. However, the randomness is now endogenous.
Specifically, we find that buyers’ second period strategies must necessarily
be characterized by mixing (crossing-over). It is this endogenous randomness
in buyers’ strategies that ensures that each firm is active in period two, and
thus that punishments cannot be rationalized by arbitrary prices. 1In fact,
when returns to scale are strongly decreasing, we show that every firm chooses
it first period price to maximize its first period profit in any weakly
stable, strongly symmetric equilibrium of G’ [0]. Under sufficiently strong
assumptions about symmetry and scale diseconomies, Diamond’s result holds in a

repeated game with private history, without invoking stability.
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PROPOSITION 5 Suppose v(p,n) exhibits strong stochastic decreasing returns to

scale. If {p*,s¥*,o%,t*) is a weakly stable, strongly symmetric equilibrium of

*
G'[0], then for every j, pj maximizes

% Qfis*l v (pj. KD
KeP(I)

PROOF Suppose not. Let p° maximize

% Qf [s*1 v (4, ]KD
KeP(I)

and consider what happens to firm j's second period price if he changes his

*
first period price from Pj to Po-

* * * *
Exploiting strong symmetry, let tij [k,pk] tj [k,px] and t?[s*,p*] =

o * o ..
tj [s*,p*]. Then aj[{K,p }] maximizes

|IiK| [|I-K|] [I-K|-m

m ) [€5(s*,p*) 1™ [1-t5(s*,p¥) ] X
m=0
|K] [IKI] . % k] -n
2 Un ) [5G, 1" [1-t5(3,p*)] v(p,mtn)

n=0

* * * *
That is, a,j [K’pO}] — plﬁl(tg(s*’p*)’tj (j,po)) and similarly Uj [{K,Pj}] =
IK|,. 0 * . % * o * *
P'm (t5(s*,p*),ty (§,pj)). Put o5 [{&,p°)] = o5 [{L,pj)].
Having characterized second period prices, consider now t; (s*,p*), which
we will establish to be positive. To begin, we argue that there must exist

* *
some firm pair {£,k)} such that ty [k,px] >0. If not, each buyer would stay
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with probability one with the seller with whom he began. Equilibrium would
K]

* *
then require o [{K,px)] = p'y - But the expected utility of a buyer

*
remaining with k after seeing py would then be

I-1 I-1-n
5 [151] (1/3)™ (1-1/7) u (Dt

n=0
while if he selected a different firm £, his expected utility would be
I-1 [1_1] I-1-n

n

Y (1/H™ (1-1/3)  u(Pp)

n=0
which is strictly better by weak stability. This same logic establishes that
there can be at most one firm for whom return patronage occurs with
probability one.

* . % . o

Now, assume tj [J,pj] > 0. We will show tj (s*,p*) > 0. For suppose

not. Then if j receives |K| visitors in period one, he must charge
Ko &% i 0%y g : : : . s
P'm (O,tj (J,pj)) in period two. Let ieK have history {J,pj} and i’e I-K
*
have history {k,pyx}. From above, we know that k can be picked such that a
* *

firm £ exists with ty [k,pyr] > 0. Thus, i’ chooses £, but not j, with
positive probability. Since neither i nor i’ begin with £, it must be that i

and i’ get the same expected utility from visiting £. As i' does not choose

j, his expected utility from £ must be at least as large as

I-1 [1-1] I-1-n 0 % "
L An) @Q/H" Q-1/9) u(pn(0,t§(J,Pj))
n=0
I-1 {I-1 I-1-n

) [ n ] (1/HP (1-1/3) u(pnt (0,5 (G.p]))
n=0
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under weak stability, where the last sum is the expected utility to 1 of
staying with j. But then i should choose £, not j. Hence, t? (s*,p¥*) >0.
Next, suppose t?[j,p§]=0. Then a direct contradiction to p?#po is had if
t] (s*,p*)=0. Thus, tj (s*,p*) > O.
We now use strong stochastic decreasing returns to scale to arrive at a

* * *
contradiction. Suppose tj [j,pj] > tj [j,p°]. Since tg (s*,p*) > 0, j is

* * * *
active in period two (even if tj [j,p°] = 0), and so oj [{K,pj}] >oj [{K,p°],
*
contradicting the proposed strategies. Suppose then that tj [j,p°] >
* . % * * * . . .
tj [J,pj]. It must be that 0] [{K,p°}] > j [(K,pj}], again a contradiction.
* * * *

Finally, if tj [j,pj] = tj [j, p°], then Pj * p® is immediately contradictory.
QED

5. CONCLUSION

The essential message of this paper is that whether or not monopoly power
is diminished in repeated trading situations depends rather critically on the
existence of returns to scale in production. If costs are declining, repeated
trade situations can lead to outcomes where monopoly power is diminished,
whereas when production costs are rising, monopoly power tends to be
unaffected by repeat trades. The paper also develops a framework within which
the strategic role of buyers with search costs is examined. We hope this
effort will inspire more work on the strategic role of searching buyers.

The model suggests a number of important extensions. The two period
nature of our game does not appear especially important. Even in this
setting, a multitude of equilibria arise, and so a selection technique such as

stability has purpose. Moreover, our results for the common history case



45
extend directly to any finite horizon. We do not, however, have results for
the infinite horizon game.

The model can also be extended to allow for more general costs. What is
important is that the monopoly price associated with one buyer be lower than
the price selected along the equilibrium path. Thus, our theory extends
immediately to the possibility of U-shaped costs, for example, if buyers are
individually large enough so that the monopoly quantity associated with one
buyer is on the rising portion of the marginal cost curve. More generally,
the possibility of U-shape costs invites an endogenous analysis of the number
of firms, with the number being selected so as to keep the equilibrium price
above the one buyer monopoly price.

We have not characterized asymmetric equilibria. These equilibria are
somewhat unattractive, in that they implicitly require buyers to resolve the
large coordination difficulty of assigning strategies to buyers.11
Nevertheless, asymmetric equilibria are intriguing, and are potentially quite
different from symmetric equilibria. We plan to analyze this possibility in
future work.

Finally, an important extension would have buyers engaging in repeated
search experiments within a period of purchase. We believe this extension can
be made, as in Diamond’s original model, if buyers have common search costs.
However, if, for example, some buyers have no search costs, then a
distribution of prices would presumable arise. One wonders if zero search
cost buyers might then exert a negative externality by playing the same role

as randomness and making punishment noncredible.

11 gee Dixit-Shapiro (1985) for an analogous defense of symmetric
equilibria in the context of an entry game.



46

REFERENCES
Axell, B., "Search Market Equilibrium," Scandinavian Journal of Economics,
LXXIX (1977), 20-40.
Bagwell, K., "Introductory Price as a Signal of Cost in a Model of Repeat

Business," The Review of Economic Studies, LIV (1987), 365-384.

Benoit, J.P. and V. Krishna, "Finitely Repeated Games," Econometrica, LIII
(1985), 905-922.

Burdett, K. and K. Judd, "Equilibrium Price Dispersion," Econometrica, LI
(1983), 955-969.

Diamond, P., "A Model of Price Adjustment," Journal of Economic Theory, III
(1971), 156-168.

Dixit, A. and C. Shapiro, "Entry Dynamics with Mixed Strategies," in L.G.
Thomas, ed, The Economics of Strategic Planning, Lexington, Lexington
Books (1985).

Kreps, D. and R. Wilson, "Sequential Equilibria," Econometrica, L (1982),
863- 894,

Reinganum, J., "A Simple Model of Equilibrium Price," Journal of Political
Economy, LXXXVII (1979), 851-858.

Rob, R., "Equilibrium Price Distribution," The Review of Economic Studies, LII
(1985), 487-504,

Rothschild, M., "Models of Market Organization with Imperfect Information: a
Survey," Journal of Political Economy, LXXI, 1283-1308.

Selten, R., "Re-examination of the Perfectness Concept for Equilibrium Points
of Extensive Games," International Journal of Game Theory, IV (1975),
25-55,

Stigler, G., "The Economics of Information," Journal of Political Economy, LIX

(1961), 213-225.



