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SUSTAINABLE MATCHING PLANS WITH ADVERSE SELECTION

1. Introduction.

Rothschild and Stiglitz [1976] and Spence [1973] showed that fundamental
difficulties may arise when we try to extend traditional notions of market
equilibrium to economies in which individuals have private information that
is relevant but unobservable to their trading partners. 1In such economies,
adverse selection or informational incentive constraints may hinder
individuals' efforts to identify mutually beneficial opportunities to trade
with each other. Rothschild and Stiglitz showed simple examples of such
economies in which no market equilibrium seemed to exist. The difficulty seems
to be that, in an economy with informational incentive constraints, the
stabilizing factors that sustain equilibria in free markets may be different
from those that had been studied before the seminal work of Rothschild and
Stiglitz and Spence. The goal of this paper is to systematically explore some
factors that may play a role in sustaining equilibria of economic systems with
informational incentive constraints.

Since general existence theorems are known for Nash equilibria of
noncooperative games, some work in response to the Rothschild-Stiglitz paradox
has naturally focused on modelling the market as a noncooperative game.
Dasgupta and Maskin [1986] have shown that Nash equilibria in randomized
strategies exist for a simple game that naturally corresponds to the rules
of the market that Rothschild and Stiglitz studied. However, Hellwig [1986a]
has shown that there are many different game models that can be just as
naturally studied, as models of markets with adverse selection, and that the
equilibria (or stable equilibria) of these various game models may be very

different. The details of who makes offers and when, after what observations,



can significantly alter the solution to the game. Such sensitivity is not
be a bad thing when the details in guestion correspond to measurable parameters
of the real situations that we want to study. But in the real world where
time is continuous and potentially infinite, agents often have an enormous
richness of bargaining and marketing options that may go beyond the scope of
any tractable game model. Such considerations may motivate the approach of
this paper, in which we to try to work with models of markets that abstract
away from the noncooperative-game structure of bargaining between agents.
Wilson [1977}, Riley [1979]}, and Miyazaki [1977] have studied equilibrium
concepts for markets with adverse selection that rely on general market
responses to any deviation from the given equilibrium. Certainly, the ability
of established firms to respond to entrants or deviants (and to directly or
indirectly punish them for deviating) can be an important stabilizing factor
in a market. However, there are many situations in which small-scale entry
or deviation may be undetectable. 1In such situations, the temptation to make
unpunished entries or deviations from an established market system may erode
and ultimately destroy it, if it requires such responsiveness to be supported
as an equilibrium. Thus, in this paper we try to develop solution concepts
that are based on the opposite assumption: that alternatives to an established
or incumbent market system may be costlessly offered at any time, and that
the established market system is truly sustainable only if it can inhibit such
alternatives without threatening to actively change in response to them. This

assumption has been called contestability by Baumol, Panzar, and Willig

[1986]. A contestable free-market economy, even if centralized, is different
from a Soviet-style economy in which alternative market systems are forcibly

prohibited or restricted. The use of the term sustainability in this paper




may be viewed as an extension of Baumol, Panzar, and Willig's use of the same
term.

The essential problem in any economy is to match suppliers of goods and
services with their potential users and consumers. A market can be viewed
as a system for matching individuals and arranging trades among them. Thus,
the basic conceptual approach of this paper is to view an economy as a dynamic
matching problem. We consider an abstract model in which individuals of
various types arrive or are born into the economy at some given rates. Each
individual's private information is his own type, which he knows from birth.
After arriving in the economy, each individual waits to be matched for some
period of time, and finally exits from the economy in some exit configuration.

An exit configuration may be interpreted as a description of a set of
individuals who are trading with each other and of all the net trades between
these individuals. We assume that an exit configuration includes a description
of all the trades that are made by all the individuals belonging to it. In
this sense, the term "exit" is indeed appropriate, because an individual has
no further economic activities to be determined once he is assigned to an exit
configuration.

Part of the difficulty of thinking about economies with adverse selection
is that the concept of a commodity becomes more complicated and less
analytically fruitful when individuals care about with whom they trade, as
well as what they trade. When an insurance company sells some number of
identical insurance policies, we cannot determine the impact of these sales
on its expected profit without specifying how many policies were bought by
low-risk individuals and how many were bought by high-risk individuals.

That is, we cannot simply add up quantities bought or sold, for each commodity,



and assume that the total net trade is all that matters. For this reason,

we find it simpler here to use a model that abstracts away from the structure
of net trades, subsuming them into the definition of an exit configuration,
and instead emphasizes the way that individuals of various types are matched
for trade with each other.

In this paper, we consider only matching problems in which the birth (or
arrival) rate of individuals of each type is constant over an infinite time
horizon. We assume that individuals have no cost of waiting to be matched,
and use a zero discount rate. Throughout this paper, we consider only matching
plans that are stationary, in the sense that an individual who is born at any
point in time would expect the same treatment as an individual with the same
type who is born at any other point in time.

A feasible matching plan is is defined, in Section 3, to be any plan for
matching or allocating all individuals into exit configurations that does not
require any individual to reveal information that is not in his own best
interest. That is, a feasible matching plan must satisfy the informational
incentive constraints that arise because each individual has an option to lie
about his type. A sustainable matching plan is defined, in Section 6, as a
feasible matching plan that can inhibit defections to alternative matching
systems, when the assumption of contestable markets is added.

There is a wide literature on bargaining in economic models of search and
matching; see, for example, Butters [1984], Diamond [1982], Mortensen [1982],
Rubinstein and Wollinsky [1985], and Gale [1986]. These papers generally
assume that, following some exogenously given search process, individuals meet
each other in pairs and then each pair plays a given bargaining game that

results either in an agreement to trade or an impasse, in which case they



separate and search again for new trading partners. 1In contrast, we do not
here assume any specific rules for search, meeting, and bargaining. Instead,
we assume only that these rules should lead to outcomes that are sustainable.
Our basic concept of sustainability expresses the idea that we should not
expect to observe rules of search and trading from which individual could be
easily persuaded to switch to an alternative market system. Thus, in a
sustainable market system, whenever individuals meet at random, they should
have essentially no latitude for bargaining, in the sense that no bargaining
game could offer them all expected utility payoffs that are higher than what
they expect to get in the market.

To be able to focus clearly on the role of informational incentive
constraints in matching problems, we ignore here all other kinds of incentive
constraints. That is, we assume that the only problematic incentive
constraints are the informational incentive constraints involved in getting
individuals to reveal their private information. To illustrate the kind of
moral hazard or strategic incentive constraints that we are ignoring here,
consider a matching plan that randomly assigns individuals to exit
configurations, some of which offer higher payoffs than others. Then an
individual who is assigned to one exit configuration might have an incentive
to refuse this assignment, if he can, and reenter the matching system in hopes
of getting a better assignment on the second pass. Also, after an individual
has accepted an assignment to an exit configuration that involves him in some
net trades, he might still have an incentive to reenter the market to try to
make additional trades, if he can (as in the model of Gale [1986}, and also
in some of the models studied by Jaynes [1978}). In this paper, we rule out

both of these kinds of manipulation by assuming that, after an individual has



voluntarily entered a matching system, he can be committed to accept the exit

configuration into which it assigns him as mandatory and final. This is

clearly a limiting assumption, which future research should seek to relax.
The Key to understanding the concept of sustainability that is developed

here is contained in the phrase adverse selection. We may use this phrase

in a broad sense to refer to the problem that arises when individuals care
about the types of individual with whom they trade, but cannot trust other
individuals to honestly reveal their types without giving them some incentive
to do so. However, in its original application in the insurance industry,
the phrase has been used more specifically to refer to the fact that anyone
who invites others to trade with him in some new market (e.g., the market for
a new kind of insurance policy)} must take into account the possibility that
most of the individuals who accept his invitation might be bad types with whom
such trades are less profitable or even unprofitable. Adverse selection in
this narrow sense is then a factor that tends to stabilize and sustain
established market systems, because it makes it harder to create alternative
market systems that can guarantee their viability and profitability. Thus,
we shall see that the set of sustainable matching plans for economies with
adverse selection is always nonempty and may be quite large.

In the context of noncooperative games with incomplete information, it
is well known that adverse expectations may sustain a very large set of
sequential equilibria (see, for example, Fudenberg and Maskin [1986]). 1In
effect, people may be deterred from deviating from an equilibrium by the
expectation that other people would believe that anybody who observably
deviates from the equilibrium must have the unobservable characteristics of

the worst possible type of individual (the type with whom nobody would want



to do business). Hellwig [1986b] and Gale [1987] have emphasized the role that
such inhibitive adverse expectations can play in determining the sequential
equilibria of specific noncooperative-game models of markets with adverse
selection. In this paper, we extend this approach by considering a broader
general class of deviations or alternative matching systems, and we prove the
general existence of sustainable plans which can inhibit defections to all
alternatives in this class by expectations of such adverse selection by
alternative markets.

The way that people would behave and the matches that they would get in
an alternative matching system generally depend on the characteristics of the

input population that enters the alternative. The characteristics of the input

population that are relevant here are the relative numbers of each type of
individual in the population that enters the alternative, and the payoffs that
individuals of each type would expect if they returned to the established
matching system. (We assume that individuals who enter an alternative matching
system can costlessly return to the established matching system, if they are
not matched in the alternative.) 1In Section 4, we define the prospectus of
an alternative matching system to be a mapping that specifies the possible
expected gains from entering the alternative and the probability of exiting
through the alternative, for each type of individual, as a function of the
characteristics of the alternative's input population. Viable prospectus
mappings are defined in Section 4, taking into account the fact that an
alternative system must implement an incentive-compatible matching plan, for
any given inputs.

As defined in Section 5, a vector of input-characteristics is inhibitive

if, given such inputs, no alternative matching system with a viable prospectus



can guarantee that it will not simply return to the established system all
individuals who enter it, so that no one would expect to gain by entering the
alternative. We apply this concept of inhibitiveness both to alternatives

that recruit self-selected inputs and to short-term alternatives that get

inputs selected at random from the available population.

Any alternative matching system that operates on the fringe of an
established matching system must, at any point in time, recruit its inputs
from the population that is currently available and waiting to be matched in
the established system. There are two ways that an established system can

influence the characteristics of the waiting population: by waiting-time

differentials across types, and by discrimination between individuals of the

same type. In Section 6, we define a sustainable matching plan to be a

feasible plan that could, in these ways, allow the creation of a waiting
population that is inhibitive to all alternatives, in the sense of Section 5.
In a dynamic economy, the relative numbers of different types of
individuals who are available and waiting to trade at any point in time are
usually considered minor variables, often left undetermined in analysis of
microeconomic models. For example, when we say that there is equilibrium in
the market for suburban homes, we normally mean that the rates of arrival of
buyers and sellers into this market are egual; we do not mean that the number
of sellers who offering their homes for sale is equal to the number of buyers
who are looking for homes at any point in time. (See Rubinstein [1986] for
a recent reexamination of this point.) In markets with adverse selection,
however, these numbers may be important endogenous variables and determinants
of sustainability, as was emphasized in the analysis of Butters [1984]. If

different types have different expected waiting times before they are finally



matched for trading, the relative numbers of each type in the population that
is available for trade at any point in time may differ subétantially from the
relative numbers of each type that exogenously enter the market over any
interval of time. For example, if there are nine high-productivity workers
born for every low-productivity worker in every generation, but
low-productivity workers search nine times longer than good workers to find

a job, then there would be equal numbers of high-productivity and
low-productivity workers offering their labor at any point in time in a
stationary steady state. Thus, intertype waiting-time differentials allow

an established market system to create an adversely selected population of
individuals who are waiting at any point in time, and this adverse selection
may in turn inhibit entry into any alternative market system.

By "discrimination among individuals of the same type," we mean a policy
of the following sort: among the set of individuals who all share some given
type characteristics (say, the low-productivity workers), most may be matched
for trade quickly and given favorable terms of trade, but a few may be offered
less favorable terms of trade and may be asked to wait a long period of time
before accepting these terms. Such discrimination clearly requires a centrally
registered waiting list, to prevent discriminated individuals from reapplying
for the more favorable terms of trade. But with such discrimination, an
established market system can create a queue of waiting individuals in which
the individuals of some types (the low-productivity workers) would be much more
eager to enter an alternative market than the individuals of the same type
who were matched for trade more quickly (and who form a majority within any
generation). Thus, discrimination may make it harder for an alternatives to

select only individuals of some types (high-productivity workers) without
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selecting any individuals of other types (low-productivity workers). That
is, such discrimination may prevent alternative market systems from making a
favorable (opposite of adverse) selection from the available population, at
the expense of the established market system.

We say that a matching plan is competitively sustainable if it can be

sustained using only intertype waiting-time differentials, without any
intratype discrimination (which requires centralization, as we remarked

above). We say that a plan is representatively sustainable if it can be

sustained only using intratype discrimination, without any difference between
the expected waiting times (on arrival into the market) of individuals of
different types, so that the distribution of types in the population at any
point in time is the same of the distribution of types in the generation that
enters the market over any interval of time. The main existence theorems of
this paper are that both competitively sustainable matching plans and
representatively sustainable matching plans always exist.

The main welfare results of this paper are that competitively sustainable
plans may be Pareto-inefficient, but representatively sustainable plans are
always Pareto-efficient within the class of feasible matching plans (subject
to incentive constraints). That is, in economies with adverse selection,
Pareto-efficiency is compatible with free contestability of markets, but

Pareto-efficiency may not be compatible with decentralization.

2. An example.

Let us now consider a specific example, to illustrate the kind of
difficulties that Rothschild and Stiglitz found in defining equilibrium for

markets with informational incentive constraints. There are three types of
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individuals in this economy: high-productivity workers, low-productivity
workers, and employers. In each generation, there are egqual numbers of
low-productivity workers and employers, and there are nine times as many
high-productivity workers as employers. Each employer can hire up to fifty
workers for up to 40 hours each. An employer gets $30 profit per hour from
each high-productivity worker and $20 profit per hour from each
low-productivity worker that he hires. Every worker has 40 hours of labor
to sell, which he can sell to at most one employer. Each high-productivity
worker has a personal reservation price of $25 per hour for his labor, and
each low-productivity worker has a reservation price of $5 per hour for his
labor. Each worker knows his own type, but employers cannot distinguish
between the two types of workers when they are hired (except by offering a
choice of employment terms such that the two types would make different
decisions). Everyone is risk neutral, and money is freely transferable.
There are many possible matching plans that could be implemented in this
economy, but two plans stand out as the most promising candidates for being
equilibria. In both of these plans, the emplovers (who are effectively in
excess supply in this economy) get zero expected profits. In the first of

these plans, which we may call the standard pooling plan, all workers are hired

for 40 hours at a wage of $29 per hour, which is the expected productivity
of a randomly sampled worker in each generation. 1In the second of these plans,

which we may call the standard separating plan, each low-productivity worker

is hired for 40 hours at a wage of $20 per hour, but each high-productivity
worker is hired for 24 hours at a wage of $30 per hour and must have 16 hours
of unemployment. It is straightforward to check that, because the

high-productivity workers value their time more highly than the
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low-productivity workers, neither type of worker could gain by imitating the
other type in this separating plan.

The standard separating plan is obviously very wasteful. In the
Rothschild-Stiglitz theory, it is not an equilibrium because an employer with
excess capacity could offer to hire additional workers full-time wage of $28.50
per hour, which would attract all of the workers in the market and (because
90% of all workers have high productivity) would give the employer an expected
net profit on each worker hired.

On the other hand, the standard pooling plan also fails the test for a
Rothschild-Stiglitz equilibrium, because an employer could offer a wage of
$29.50 per hour for 38 hours, requiring that the remaining 2 hours be
unemployed. Relative to the full-time wage of $29.00 per hour, this offer
would be better for the high-productivity workers, but it would be worse for
the low-productivity workers. Thus, when all other employers are implementing
the standard pooling plan, the employer who makes this offer of $29.50 per hour
for 38 hours would expect to attract only the high-productivity workers and
make a positive profit.

Thus, it seems that the standard pooling plan and the standard separating
plan each create opportunities for employers to gain by deviating from the
supposed plan. In fact, no matching plan can satisfy the criteria for a
Rothschild-Stiglitz equilibrium in this example. However, the general
existence theorems of this paper imply that there must be sustainable plans,
as defined in Section 6, for this economy when it is viewed as a dynamic
matching problem. In fact, the standard pooling plan is the unique
representatively sustainable plan, the standard separating plan is the unique

competitively sustainable plan, and there are many other sustainable plans.
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3. Dynamic matching problems and feasible matching plans.

Consider a large stationary economy into which a new generation of
individuals is born (or arrives) every day. Each individual is born into the
economy with a fixed type which he knows as his private information. Let N
denote the nonempty finite set of different types for the individuals in the
economy. For the example in Section 2, we may let N = {1,2,3}, where type 1
denotes the high-productivity workers, type 2 denotes the low-productivity
workers, and type 3 denotes the employers.

Although each individual in the economy knows his own type, he cannot
necessarily identify the types of others. Thus, an employer may be uncertain
as to which of his potential workers are high-productivity workers and which
are low-productivity workers. We let J be a subset of N x N which represents
the type pairs that may be problematic to verify. That is, (j,i) € J Iiff
i # j and a type-i individual could imitate a type-j individual if he were
given any incentive to do so. For the above example, J might equal
{(1,2), (2,1)}, if the different types of workers can imitate each other but
cannot pretend to be employers (who own factories).

We assume that there is no aggregate uncertainty in the economy, so that
everyone knows the relative number of each type in every generation. For each
i in N, let P; denote the rate at which type-i individuals are born in this
economy, per unit of time. We assume that, for each i, pi is strictly positive
and constant over time. With continuous time, we can always define our unit
of time so that the aggregate birth rate is one; that is

(3.1) r 1.

ieN Pi
For our example, we could let Py = 9/11, Py = 1/11, Py = 1/11. When we

normalize birth rates to sum to one, then p; can also be interpreted as the
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proportion of type-i individuals in the generation that is born during any
interval of time.

In this simple model, an individual may search or wait over a period of
time, and then he exits from the economy as a part of some coalition.
A coalition consists of a specified number of individuals of each type. When
individuals exit together in a coalition, they may also may choose to make some
net trades themselves, and they may perform other nontrade activities. An exit

configuration is a pair consisting of a coalition and a feasible vector of

net trades and other activities for the members of the coalition. For example,
a coalition might consist of nine high-productivity workers, one
low-productivity worker, and one employer. An exit configuration might consist
of this coalition together with a specification that "each high-productivity
worker sells 24 hours of labor to the emplover for a total payment of $720,

and each low-productivity worker sells 40 hours of labor to the employer for

a total of $800."

We let E denote the set of all possible exit configurations. In
developing the technical definitions and results of this paper, we shall assume
that E is a finite set.

For any e in E, and any i in N, we let ri(e) denote the number of type-i
individuals belonging to the coalition in the exit configuration e. Clearly,
we must require

ri(e) >0, VYi eN, VYe e€E.
For the exit configuration described above, we would have rl(e) = 9, rz(e) =1,

1. For every e in E, there must exist at least one type i in N

and r3(e)
such that ri(e) > 0.

An individual's payoff in this economy is completely determined by the
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configuration in which he exits, that is, by the coalition that he joins and

by the trades and activities that are implemented by the members of the
coalition. We do allow that an individual's payoff may depend on the types

and activities of all the members of his coalition, but we assume that there
are no externalities imposed on him by individuals outside of his coalition.

We assume that there are no costs of waiting or searching before an individual
joins a coalition. For any e in E and i in N, we let ui(e) denote the expected
payoff, measured in some von Neumann-Morgenstern utility scale, that a type-i
individual would get from exiting in the configuration e, if all the members

of the coalition in e are honest about their types. For any e in E and any
(J,1i) in J, we let ai(e,j) denote the expected payoff to a type-i individual

if he pretended to be a type-j individual, while everyone else was being honest
about their types, and exited as a part of an ostensible configuration e (which
actually contained rj(e) - 1 type-j individuals and ri(e) + 1 type-i
individuals, because of his misrepresentation).

For each type i, we assume that there exists a solitary exit configuration

e such that ri(ei) =1, ui(ei) = 0, and, for every j # i, rj(ei) =0,

and uj(éi,i) = 0. Here Ei represents the exit configuration in which a type-i

individual must exit alone, without trading with anyone else. 1In effect, we
are normalizing our utility scales so that an individual who exits alone (with
no trading partners) gets a payoff of zero.

To fully represent the example in Section 2 as such a model, it may seem
that we would need an infinite set of exit configurations. This is because,
for any nonnegative integers m, and m, (not both zero) and any real numbers
Ty Ty» 71, and 72 such that

m.+m, £50, 0=<T, £40, 0 =T, £40, 0 =27

< <
1 2 1 2 < 1200, 0 =7

< 1200,



_16._

there should be an exit configuration e representing a coalition containing

one employer, m, high-productivity workers, and m, low-productivity workers,

where each high-productivity is working Tl hours for a total wage bill of 71
dollars, and each low-productivity worker is working T2 hours for a total wage
bill of 72 dollars. For such an exit configuration e, we would have

rl(e) =m, rz(e) =m,, r3(e) = 1,

'}’1 - 25'[‘1, u2(e) = '}’2 - 5'[‘2,

u, (e)

u3(e) m1(30'r1 - 71) + m2(20'r2 - 72),
ul(e,z) = 72 - 25T2, uz(e,l) = 71 - 5T1.

and e_.

In addition, we must include the solitary exit configurations 51, 52, 3

Although this requires an infinite set of exit configurations, it is a compact,
so that this problem can be approximated arbitrarily closely by models with

finite sets of exit configurations. In fact, it would suffice to include exit
configurations for the extreme points of the convex set of (ml,mz,Tl,Tz,yl,yz)

vectors described above, and the three solitary exit configurations.

The structures (N, J, E, (pi, ri» Us, u;, éi)ieN) completely specify

the general model of the dynamic matching problem to be studied in this paper.

Given a dynamic matching problem, we define a matching plan to be any

function u that assigns a nonnegative number u(e) to every exit

configuration e, where u(e) represents the rate at which instances of the exit
configuration e are to occur in the plan . 1In this paper, we consider only
stationary matching plans, in which these rates are constant over time. With
birth rates normalized to sum to 1, u(e) is can be interpreted as the number
of e exit configurations that occur per birth, during any interval of time.
For example, in a marriage matching system, if e denotes a marriage and every

individual exits in a marriage with one other individual, then u(e) must egual
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1/2, since there would be one marriage for every two births. In general, the
set of all matching plans may be denoted by RE.

For any type i and any matching plan u, we define the following functions:
z

Vi) = X

r.(e) u(e)

Ri(#) ecE i

ecp Ui () r,(e) ule)
and, for any type j such that (j,i,) € J, we let

Vi (1.3) = T g Uy(e.d) (o) ule).
Notice that these three functions are all linear in . For any g in M and any
i in N such that Ri(p) > 0, we define
U (1) = Vi (W) /R (4).
Similarly, for any u4 in M and any (j,i) in J such that Rj(p) > 0, we define
Uy (s3) = V3 () /R ().

To interpret these functions, notice first that Ri(p) is the rate at which
type-i individuals are being matched, per unit time, in the matching plan u.
The expected payoff to an individual of type i is Ui(p) if everyone is honest
about their types as they participate in the matching plan . On the other
hand, if a type-i individual pretended that his type was j then his expected
payoff would be Gi(#,j), if everyone else participated honestly in the plan k.
Since Ui(p) and ai(p,j) are nonlinear in u, it will often be more convenient
to work with the functions Vi(p) = Ui(p) Ri(p) and Qi(y,j) = Gi(#,j) Rj(p),

which are linear.

We say that a matching plan g is feasible iff

(3.2) R.(u) =p;, VieNn,
and
(3.3) U () 2 U (u3), Y1) € J.

Notice that, when (3.2) is satisfied, (3.3) is equivalent to
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(8.3") Vi) /p; 2 V(i) /Py, ¥ € T,
so the set of feasible matching plans is defined by a finite collection of
linear inequalities in wu.

Condition (8.2) asserts that g should clear the market, creating exit
opportunities for type-i individuals at the same rate that new type-i

individuals arrive in the economy. Condition (3.3) lists the informational

incentive constraints for this economy, which assert that no individual of any

type i should expect to gain in the plan u by pretending that his type is some
other j that he can imitate. Thus, if u satisfies (3.2) and (3.3), then u
could be implemented by a centralized matching system which asked every
individual to report his type and then assigned each individual to a randomly
determined exit configuration, so that his probability of exiting in
configuration e would be ﬂ(e)ri(e)/Ri(ﬂ) if he reported that his type was i.
Condition (3.3) implies that it would be a Nash equilibrium for all individuals
to report their types honestly in such a matching system, and condition (3.2)
asserts that this matching system would actually match everyone. Conversely,
under weak assumptions about the structure of E, one can guarantee that any
matching plan that could be implemented by any market system‘must satisfy the
constraints (3.3), by standard revelation-principle arguments.

To avoid questions of moral hazard, we assume that, after an individual
enters a matching system, he can be asked to make a commitment to accept, as
mandatory and final, the exit configuration into which the system assigns him.
If there are no alternatives to the given established matching system, then
each type-i individual can be made to choose between making this commitment
and exiting alone in éi' where he gets ui(éi) = 0. Thus, when there are no

alternative matching systems, all individuals would be willing to make the
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commitment to a matching plan u if it satisfies the following

individual-rationality or participation constraints:

(3.4) U;(w) 20, VieN.

Since individuals may be assigned to solitary exit configurations under the
matching plan u as well, the generalized revelation principle also implies
that, without loss of generality, we can assume that everyone does make the
commitment to be matched according to x when it satisfies (3.4). (This
justifies the equality in (83.2)).

We now consider the more difficult problem of characterizing the subset
of the feasible matching plans that are sustainable when markets are freely
contestable. That is, we assume from now on that there is nothing to prevent
an entrepreneur from trying to organize some alternative matching system.
Under this assumption, an established matching system may need to offer
individuals much more than the simple nonnegative expected payoffs stipulated
in (3.4), to prevent them from defecting to an alternative matching system.
Of course, it would be easy to inhibit defections to alternative matching
systems if each individual believed that no one else would ever enter an
alternative matching system (and such beliefs could even be supported in a
noncooperative’Nash equilibrium). So we will rule out such trivial equilibria
by assuming that positive numbers of individuals will always at least enter
any alternative matching systenm,

In Sections 4 and 5, we develop a model to describe alternative matching
systems and how defections to them can be inhibited. Then, in Section 6, we

combine this model with the concept of a feasible matching plans for an

established system, to develop the general definition of sustainability.
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4. Viable alternative matching plans and prospectus mappings.

An alternative matching plan has both an advantage and a disadvantage
relative to the established matching plan. The advantage of an alternative
is that it need not match everyone who enters it, because it can direct some
individuals to return to the established matching plan. By (3.2), the
established matching plan is supposed to be able to match everyone into an
exit configuration (which may, of course, be a solitary configuration Ei).
The disadvantage of an alternative is that it cannot guarantee that everyone
who was born during any given time interval will enter the alternative; the
alternative may get some adverse selection out of a given generation. Thus,
the matching plan that is implemented by an alternative matching system may
have to depend on the characteristics of the population that enters it.

To describe the input population that an alternative matching plan has

to work with, we need two vectors, an allocation vector in RN and a

distribution vector in A(N), where

- N _ .
AN) = {g €R] Ljyq; =1 and q; 20 Vj € N}
If we say that a pair (w,q) in RN X A(N) represents the characteristics of

an alternative's input population, where w = (wi)ieN is the allocation vector

)

and q = (g is the distribution vector, then we mean that, for each i

i’ieN
in N, q is the proportion of type-i individuals in the input population, and
W, is the expected payoff that the type-i individuals in this input population
would get if they were returned by the alternative to the established matching
system. We may refer to any such a pair (w,q) in RN x A(N) as an

input-characteristics vector, or as an input vector for short.

There are some technical difficulties that arise when we consider input

populations in which some types are not represented. If no type-j individuals
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are supposed to be entering an alternative, then it is not clear how to define
the expected payoff that a type-j individual would get if he did enter the
alternative, nor is it clear how to define the expected payoff that a type-i
individual would get if he imitated a type-j individual after entering the
alternative matching system. We solve this technical problem by analyzing
first the case where all type enter in strictly positive proportions, and then
extending our analysis to the case where some proportions are zero by
upper-semicontinuity. Let AP(N) denote the set of all distributions over N

in which every type is has a positive proportion; that is,

o

A°N) = {qgeRY T. . q =1 and a, >0 ¥j €N}

ieN “i
J
Suppose that (w,q) is any input vector in Rb X AO(N), representing the

allocation and distribution vectors of an input population. We say that 7 is

a viable alternative matching plan with the input vector (w,g) iff m € RF,

(4.1) Ri(n)/qi <1, Vi €N,
(4.2) (Vi(m) - R;(m) w,)/q, 20, VieN,
and

Given any such alternative matching plan 7 = (n(e)) each number 7m(e)

e€E’
may be interpreted as ratio of the number of e-configured coalitions that come
out of the alternative to the number of individuals who enter the alternative.
Equivalently, when we think of the alternative as operating over some short
interval of time, mM(e) may be infterpreted the rate at which e-configured
coalitions would exit the alternative system, in a time scale chosen so that
the rate at which individuals enter into the alternative matching system is

one. Notice that the division by 9, and qj in these formulas (essential only

in (4.8)) requires us to assume that the distribution vector g is in AO(N).
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Condition (4.1) represents the requirement that the rate Ri(n) at which
type-i individuals are matched by the alternative matching plan cannot exceed
the rate q; at which they are entering the alternative. To interpret condition
(4.2), notice that

wy + (V;(m) - R;(m) w,)/qy

= Loeg 4y(e) ro(e) mle)/q, + (1 - % r.(e) n(e)/q;) w,.

ee e€E

Thus, (Vi(n) - Ri(n) wi)/qi is the expected gain, over his payoff Wy in the
established matching plan, that a type-i individual would get when he enters
the alternative matching plan, taking into account the probability

(1 - EeeE ri(e) n(e)/qi) that he will be returned to the established matching
system. So condition (4.2) asserts that, when any type-i individual enters
the alternative, he should not expect to lose, relative to the payoff wi that
he could get in the established matching system, because he has the option

of staying in the established matching system. Condition (4.8) asserts the
expected gain over Wy for each type-i individual, when he enters the
alternative, should be not less than the expected gain over W, that he could
get by pretending (in the alternative matching system) to be a different type j
that he can imitate.

We now must distinguish between an alternative matching system and an
alternative matching plan, like 7 above. The alternative matching system is
an institution or game whose outcome may depend on the characteristics of the
individuals who enter it. Thus, the plan m that an alternative system
implements may depend on the input characteristics (w,q). That is, an
alternative matching system may be thought of as a mapping from RN x A(N)
into RE, that always selects viable plans (at least in the case where we have

defined them, when g is in AO(N)). However, for the purposes of individuals'
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decisions about whether to enter an alternative matching system or stay with
the established system, all that matters about an alternative matching plan
is the expected gain and the probability of being matched (that is, the
probability of not being returned to the established system) that it offers,
for all types of individuals. Thus, we may imagine that an alternative
matching system might offer some prospectus that describes how these expected
gains and probabilities might depend on the characteristics of the input
population that the alternative draws.

So we define a prospectus mapping to be any upper-semicontinuous
correspondence from RN X A(N) to nonempty subsets of RN X [0,1]N.
([0,1]N is the set of vectors, indexed on N, whose components are all between
0 and 1.) The requirement that prospectus mappings should be
upper-semicontinuous is a natural technical condition. We say that a
prospectus mapping F:RN X A(N) - RN X [0,1]N is viable iff, for every (w,q)
in RN X AO(N) and every (y,s) in F(w,q), there exists some 7 that is a viable

alternative matching plan with the input vector (w,g), such that

v, = (Vi(n) - Ri(n) wi)/qi, and s, = Ri(n)/qi, ¥i € N.

(Here vy = and s = (Si) } Thus, for any prospectus mapping F,

Vi)ien ieN”
if (y.,s) € F(w,q) then, for every type i, yi could be the expected gain over
w, that a type-i individual would get from entering the alternative, and s,
could be the probability that a type-i individual would be matched (not
returned) by the alternative, if (w,q) were the allocation and distribution
vectors of its input population. For F to be viable, these expected gains

and probabilities of being matched must be actually achievable by some viable

alternative plan, at least with any input-characteristics vector for which

we know how to define viable plans.
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For the example in Section 2, a particularly simple viable prospectus,
of some theoretical interest, can be constructed as follows. Consider an
alternative matching system in which each worker and employer who enters is
asked whether he would accept terms of employment in which every worker works
38 hours at a wage of $29.50 per hour. Suppose that any employer who accepts
these terms and who is assigned a worker is then given priority for getting
more workers until his capacity of 50 workers is reached. Workers and
employers who reject these terms, or who cannot be matched because of excess
supply on their side of the market, are returned to the established matching
plan. Notice that the net payoff for a high-productivity worker under these
terms would be 38 X (29.50 - 25) = 171, and the net payoff for a
low-productivity worker would be 38 X (29.50 - 5) = 931. Under these terms,
an employer would make a net profit of 50 x 38 x (30 - 29.50) = 950 from
hiring 50 high-productivity workers, but 50 X 38 x (20 - 29.50) = -18050
from hiring 50 low-productivity workers. When F denotes the prospectus mapping
for this alternative, for any (w,q) in Rf x AP(N), (v,s) € F(w,q) iff at

least one of the following conditions is satisfied:

(4.4) 171 2 wl' 931 £ Wos 950 2 w3,
sy = min{1, 50q3/q1}, s, = 0, S5 = min{1, q1/50q3},
v, = 51(171 - wl), vy = 0, and Vg = 53(950 - w3);
(4.4) 171 2 wl’ 931 2 w2' (950q1 - 18050q2)/(q1 + qz) > w3,
S, =8, = min{1, 50q3/(q1 + qz)}, S5 = min(1, (q1 + qz)/50q3,

v, = sl(171 - wl), vy = 32(931 - wz), and
Vg = 83((950q1 ~ 18050q2)/(q1 + qz) - w3):
(4.5) 171 < w and s =q = 0;

1 ~
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(4.8) 171 2 w 931 2 w (950q1 - 18050q2)/(q1 + q2) < Wa, and

27

5. Inhibitive allocations and input vectors.

To sustain the established matching system, we need to be able to explain
why no individuals should exit under any alternative matching systems. To
formulate such explanations, we need to distinguish two different assumptions
about how individuals might enter into an alternative matching system.

We may say that an alternative matching system gets random inputs if,

for any individual who is available to be matched at the point in time when
the alternative matching system is offered, the probability of his entering
the alternative is independent of his type. Thus, with random inputs, the
population that enters an alternative matching system must be an unbiased
sample drawn from the overall population that is currently available to be
matched in the established system. For example, in search-and-bargaining
models like that of Gale [1986], the bargaining games that form at any point
in time are assumed to have random inputs from the available population.

On the other hand, we may say that an alternative matching system gets

self-selected inputs iff individuals enter it only after making some positive

decision to do so, and individuals of some types may be more likely to make
this decision than other types. In the model of Gale [1987], for example, all
markets are like specialty stores that have self-selected inputs. With
self-selected inputs, the distribution of types in the population that enters
an alternative system may differ from the dist;ibution of types currently
available in the established system. 1In particular, if an alternative matching

system was expected to offer zero net gains over the established plan to all
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types of individuals, so that all individuals would be indifferent between
entering the alternative and not entering it, then, for each type of individual,
any probability of choosing to enter the alternative could be rationally
Jjustified. That is, any distribution of entering types can be justified with
self-selected inputs, if expected gains from entering are zero for all types.
Let us first analyze the problem of inhibiting alternative matching
systems that get self-selected inputs. The allocation vector w, which
describes the payoffs that available individuals of each type would get in
the established matching system, must be determined by the operation of the
established system before an alternative prospectus is announced. However,
with self-selected inputs, the distribution of types actually entering an
alternative is an endogenous variable to be determined after the alternative

prospectus is announced. Thus, we define an inhibitive allocation vector to

be any w in RN such that, for every viable prospectus mapping F, there exists
some g in A(N) such that
(0,0) € F(w,q).

(Here Q denotes the zero vector in RN.) That is, w is an inhibitive allocation
vector iff, for any alternative matching system, there is some conjecture about
the distribution of types that would choose to enter this alternative such that
its prospectus allows the expectation that no individuals of any type will gain
from entering into the alternative and that everyone who enters it will
ultimately be returned back to the established matching system.

Let us now analyze the problem of inhibiting alternative matching systems
that get random inputs. Notice that random inputs are reasonable to assume
only if entry into the alternative can be guaranteed to be completely costless

to individuals. Intuitively, such an assumption is questionable if an
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alternative requires that individuals who enter must wait for some extended
time before being matched or returned to the established system. Thus, in

this paper we only consider random inputs for alternative matching systems

that operate with a very short time horizon. Such short-term alternatives

must draw their inputs from the overall population of individuals that are

available to be matched at any point in time.

If different types have different expected waiting times in the
established matching system, then the distribution of types in population of
individuals that are available to be matched at any point in time may be any
vector g in A(N), not necessarily equal to p (which is the distribution of
types in the generation born during any interval of time). Even in a marriage
market where males and females have equal birth rates and marry only once,
the numbers of never-married males and females may be unequal. For example,
if all marriages were between forty-year-old males and twenty-year-old females,
then there would be twice as many males as females waiting to be matched at
any point in time, in the steady state. (To achieve this inequality there
would have to be some period of time during which some females never married.
But this could be a purely transient phenomenon restricted to one generation.
Following a long tradition in economics, we ignore here such transient
phenomena and concentrate on the steady state.)

Notice, however, that both the allocation vector w and the distribution
g of types in the population of individuals that are available to be matched
must be determined by the operation of the established matching system before
the prospectus is announced for any alternative matching system with random

inputs. Thus, we say that (w,q) is an inhibitive input vector iff w € RN,

q € A(N), and, for every viable prospectus mapping F,
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(0,9) € F(w,q).
So suppose that the established matching system operates so that, in the
population of individuals who are available to be matched at any point in time,
the allocation of expected payoffs (from the established system) and the
distribution of types form an inhibitive input vector. Then any viable
prospectus for an alternative matching system with random inputs must allow
the expectation that the no individuals of any type will gain by entering the
alternative and that everyone who does enter it will return back to the
established matching system.

As we have remarked, for alternatives that get random inputs, the entire
input characteristics vector {(w,q) must be determined by the established system
before the alternative announces its prospectus. On the other hand, for
alternatives that get self-selected inputs, only w must be determined by the
established system before the prospective is announced, because g may be a
function of the prospectus. Thus, it might seem that random inputs would
induce a stronger definition of inhibitiveness than self-selected inputs.

In fact, Theorem 1 asserts that our two definitions of inhibitiveness are
essentially equivalent. An allocation vector is inhibitive of alternatives
that get self-selected inputs if and only if it is part of some input vector

that is inhibitive of alternatives that get random inputs.

Theorem 1. An allocation w in RN is inhibitive if and only if there

exists some g in A(N) such that (w,q) is an inhibitive input vector.

‘Section 8 contains the proof of all theorems and lemmas in this paper.
We now introduce some technical definitions and lemmas related to these

concepts of inhibitiveness.
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As an alternative matching plan, the zero vector in RE (defined by
O0(e) = 0 for every e in E) represents the plan to match no one and to return
everyone to the established matching system. Notice that the zero vector in

lRE

is always a viable alternative matching plan, satisfying (4.1)-(4.3) for
: RN o . .
any (w,q) in x A (N). We say that the input vector (w,q) is

strongly inhibitive iff q € AP(N) and there is no viable alternative matching

plan with the input vector (w,q), other than the zero vector in RE. It is
straightforward to check that the set of strongly inhibitive input vectors

is a relatively open subset of RN X A(N). 1Its closure is the inhibitive set.

Lemma 1. An input vector (w,q) is inhibitive if and only if there exists
some sequence of strongly inhibitive input vectors {(wk,qk)}';=1 such that
limkﬂw (wk,qk) = (w,q). PFurthermore, if (w,q) is an inhibitive input vector,

then wi > 0 for every type i.

It may be of interest to consider what happens if we drop the assumption
that individuals of different types can have different expected waiting times
in the established matching system. That is, suppose that, in the established
matching system, expected waiting times at birth must be the same for all
types. Then distributions other than p cannot occur in the input vectors for
alternative matching systems with random inputs. That is, the population
entering an alternative matching system with random inputs must be, by type,
representative of the generation that is born in the economy over any interval

of time. So we may say that an allocation vector w in RN is representatively

©

k=1 in RN such that

inhibitive iff there exists some seqguence of vectors {wk}

(wk,p) is strongly inhibitive for every k, and 1lim wk = w. Obviously,

Ko

by Lemma 1, if w is representatively inhibitive then (w,p) is an inhibitive
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input vector.
The following lemma may be useful for identifying strongly inhibitive

input vectors.

Lemma 2. An input vector (w,q) in RN X AP(N) is strongly inhibitive
if and only if there exist numbers XA(i) for all i in N and a(j|i) for all (j,i)
in N X N such that

A(i) 20, Vi €N,

a(jli) 2 0, and if (j,i) ¢ J then «(jli) =0, Vi € N, Vj €N,
and, for every exit configuration e in E,

z

< iy Ty(e) () + Iy

ten T1(®) (OMD) + By (311)) uj(e) - B0 alild) u (e, i))/q;

jeN

a(311)) wy = Lygy (ild) wy)/a;.

The formulas in Lemma 2 can be interpreted in terms of the virtual utility
concept of Myerson [1984a, 1984b]. They assert that a strongly inhibitive
allocation is one which corresponds to an allocation of virtual utility that
could not be blocked by the individuals in any exit configuration, if payoffs
were in transferable virtual utility. With this interpretation of
inhibitiveness, the set of sustainable plans, as defined in Section 6, can
be interpreted as a generalized inner core (see Shubik [1982]) for games with
incomplete information.

In our definition of an input vector, we have implicitly assumed that
all of the type-i individuals who might enter an alternative matching system
would have the same expected payoff (denoted by wi) if they returned to the
established system. The more general case, in which type-i individuals with
a range of expected payoffs from the established system might be expected to

enter an alternative matching system, remains as a problem for future
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research. However, there is a simpler related issue which we can and must
consider now.

Suppose that, among the people entering an alternative matching system,
there is an individual of type i who would have an expected payoff of X; from
returning to the established matching system. Suppose, however, that the
behavior of everyone else in this alternative system is based on the belief
that the population entering the alternative system is as described by the
input-characteristics vector (w,q), and suppose that all the type-i individuals
who have a return payoffs of w, are choosing to return to the established system
with probability 1. If X5 > Wio then the type-i individual whose return
payoff is X; should also return to the established system with probability 1.
To see why this is so, let si denote the probability that this individual will
exit in the alternative (not return to the established system), and let z;
denote his conditionally expected payoff if he exits in the’alternative, when
he uses his optimal strategy for interacting with other individuals in the
alternative matching system. We must have (Zi - xi)si > 0, because this
individual has the option to simply return to the established system and
get X . On the other hand, whatever this individual chooses to do, the other
type~-i individuals with return payoff W, could do it too. Because they are
electing to return to the established system with probability 1, which gives
them no expected gains from the alternative, we must have (zi - wi)si < 0.
These two inequalities imply that (xi - wi)si < 0. So the probability S5 must
equal zero, because X, > W, . On the other hand, without further information
about the structure of the alternative matching system, we could say nothing
about s, if x; were less than W, .

Thus, if all type-i individuals with expected allocation W, in the
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established system would be deterred from exiting through the alternative
system by the belief that its input-characteristics vector would be (w,q),
then all type-i individuals with expected allocations that are higher than
wi in the established system would also be deterred from exiting through the

alternative system by this belief.

6. Sustainable matching plans.

When a new-born individual of type i first enters an established matching
system that is implementing the matching plan u, his expected payoff from
exiting in the established system is Ui(y). However, this fact does not
necessarily imply that every individual of type i who enters an alternative
matching system must have an expected payoff of Ui(y) from returning to the
established system. The established matching system could discriminate between
different individuals of the same type. Suppose that some individuals might

be put into a waiting list or queue after they learn how this discrimination

is to be applied in their particular cases, and individuals in this waiting
list have the option of entering an alternative matching system while they are
waiting. Suppose also that, at any point in time, virtually all of the
individuals of any given type who are available to be matched are in this
waiting list (because the length of time that it takes the established system
to match the individuals who are not put into the waiting list is very short
or infinitesimal in comparison with the waiting time for individuals who are
put in the waiting list), and alternative systems cannot distinguish new-born
individuals from individuals on the waiting list. Then, alternative systems
will recruit their inputs from the established system's waiting list, in which

the type-i individuals might expect a payoff different from Ui(y) in the



_33_

established system.

Now, for each type i, let LA denote the expected payoff for type-i
individuals who are in the waiting list, and let a; denote the proportion of
type-i individuals in the waiting list, at any point in time. Suppose that
(w,qg) is an inhibitive input vector. Then, any alternative matching system
that recruits randomly from the waiting list must allow in its prospectus that
every individual from the waiting list who enters the alternative will, with
probability one, return to the established system. But, at any point in time,
there also must exist at least a small number of new-born individuals, who
have not yet learned how the established system may discriminate in their cases
and have not yet learned whether they will be put in the waiting list (although
they do know their types, of course). Such new type-i individuals must have
an expected payoff Ui(p) in the established matching system, if it is
implementing the matching plan . To guarantee that no one will exit through
the alternative, we must also be able to show that such new-born individuals
would also have no incentive to enter the alternative system and exit through
it. By the result cited at the end of Section 5, new-born individuals would
also be deterred from exiting through the alternative if Ui(p) > Wi for every
type i. That is, if inputs drawn randomly from the waiting list are inhibitive
to alternative matching systems, and if the individuals in the waiting list
do not expect higher payoffs than new-born individuals of the same type, then
all individuals, new-born and wait-listed, can be rationally deterred from
exiting through any alternative matching system.

Thus, we say that a matching plan u is sustainable iff u is a feasible
matching plan (that is, u € RE and u satisfies (3.2) and (3.3)) and there

exists some inhibitive allocation vector w such that
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(6.1) U, () 2w, VYieN.
So a feasible matching plan is sustainable if there is an inhibitive allocation
vector in which individuals of each type get a payoff that is not more than
the expected payoff for new-born individuals of the same type under this plan.

In this definition of sustainability, the inequalities in (6.1) are the
only connection between the sustainable matching plan and the inhibitive
allocation or input vector that sustains it. The weakness of this connection
is due to two assumptions that we have made: (1) different types may have
different expected waiting times before being matched, so that the distribution
vector g in the waiting list is not necessarily equal to p; and (2) the
established system can discriminate between individuals who are put on the
waiting list and those of the same type who are matched immediately, so that
the allocations Wi for individuals in the waiting list are not necessarily
equal to Ui(u). It may be of interest to see how the definition of
sustainability is changed when either of these assumptions is dropped.

If assumption (1) above is dropped, so that all individuals have the same
expected waiting time at birth, then only representatively inhibitive
allocation vectors should be considered, because the distribution vector in

the waiting list must be q = p. So we say that u is a representatively

sustainable plan iff it is a feasible matching plan and there exists some
representatively inhibitive allocation w such that (6.1) is satisfied.

Assumption (2) above only makes sense if the established matching system
can keep some centralized file on all individuals. If, on the other hand,
the established matching system (which we have till now treated as some kind
of black box) is a decentralized competitive market, then there is nothing

to prevent an individual who has been asked to wait from going to another part
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of the market and presenting himself as a new-born individual.

(A decentralized matching system could prevent this only by putting some kind
of indelible mark on an individual when he is asked to wait; but such a mark
could also be used by alternative matching systems to distinguish wait-listed
individuals from new-born individuals of the same type. This would invalidate
the assumption, which we used at the end of Section 5, that all individuals

of a given type have the same strategic options when they enter an alternative
system.) So, in a decentralized competitive matching system, any individual
who is waiting to be matched at a given point in time must have the same
expected payoff as a new-born individual of the same type. Thus, we say that

M is a competitively sustainable plan iff g4 is a feasible matching plan and

there exists some inhibitive allocation vector w such that

(6.2) U (@) =Wy, VieN.

l b
With these definitions, we can now state the main results of this paper:

two existence theorems, a welfare theorem, and an equivalence theorem.
Theorem 2., The set of competitively sustainable plans is nonempty.
Theorem 3. The set of representatively sustainable plans is nonempty.

Theorem 4. Any representatively sustainable plan is weakly

Pareto-efficient within the set of feasible matching plans.

Theorem 5. If J =2 (so that no type can imitate any other) then any

sustainable plan is both competitively and representatively sustainable.

By Theorems 4 and 5, if there are no informational incentive constraints
then all sustainable plans must be Pareto-efficient. Indeed, by Lemma 2, if

J =2 then all sustainable plans are in the inner core.



In the above development of our concept of sustainability, we considered
only alternatives that get random inputs. Of course, if a waiting list deters
individuals from exiting through alternatives that get random imputs, then it
can also deter them from exiting through alternatives that get self-selected
inputs, because a self-selected input population can have the same type
distribution as a random sample from the waiting list. However, if we add
the assumption that all alternatives get self-selected inputs, then the
interpretation of our concept of sustainability can be somewhat simplified.

If the established system is implementing a competitively sustainable
plan x4 and all alternatives get self-selected inputs, then there is no need
to have a manipulated waiting list at all. This is because, for any inhibitive
(w,q) that satisfies (6.2), the distribution of types in the self-selected
population that enters any alternative could equal q.

More generally, if all alternatives get self-selected inputs and the
established system is implementing a sustainable plan u that satisfies (6.1)
for some inhibitive input vector (w,q), then it suffices to suppose that, for
every type i, w, is the lowest payoff that is expected in the established
system by some type-i individuals who are waiting and available at any point
in time. Any alternative can then get an inhibitive self-selected input
population in which q is the distribution of types and, for each type i, the
entering type-i individuals all expect this lowest payoff wi in the established
system. Such individuals would be the most eager (among all type-i
individuals) to consider alternatives to the established system; and if they

do not choose to exit through an alternative then no one will.
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7. Sustainable plans in the example.

Let us see how these solution concepts apply in the context of the example
from Section 2.
The input vector ((120, 600, 0), (5/11, 5/11, 1/11)) is inhibitive
because, for any positive g,
((120 + ¢, 600 + €, €), (5/11, 5/11, 1/11))
satisfies the conditions of Lemma 2 with
A(1) = 25/44, X(2) = 15/44, X(8) =1/11, «a(1]2) = 5/44, «(2]1) = 0.
That is, the payoff allocation generated by the standard separating plan is
inhibitive of all alternative matching systems when they get equal numbers
of high-productivity (type-1) and low-productivity (type-2) workers. Thus,
any feasible matching plan that satisfies
U (w) 2 120, U,(u) 2 600, Uy(u) 20

is sustainable. Such matching plans include the standard separating plan

]

(for which (Ul(#), Uz(y), Us(u)) (120, 600, 0)), the standard pooling plan

(for which (Ul(y), Uz(y), Us(u)) (160, 960, 0)), and the pooling plan in
which all workers are hired full-time at a wage of $28 per hour (for which
(Ul(#), Uz(#), Us(y)) = (120, 920, 400)). Among these sustainable matching
plans, the only competitively sustainable matching plan is the standard
separating plan.

To understand why the standard separating plan is competitively
sustainable, and why other feasible plans are not, recall how in Section 2
we showed that neither the standard separating plan nor the standard pooling
plan could be a Rothschild-Stiglitz equilibrium. The standard separating plan

is not a Rothschild-Stiglitz equilibrium because a pooling alternative could

attract all workers and give employers a positive expected profit, under the
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assumption that the large majority of all workers are type 1. But this
assumption does not apply when our solution concept is competitive
sustainability, because the proportion 9, of type-1 workers in the input
population for alternative matching systems can be less than Py On the other
hand, the standard pooling plan is not a Rothschild-Stiglitz equilibrium
because it could be perturbed slightly (higher hourly wage, shorter hours)

to create an alternative that would attract only the type-1 workers, who
generate positive profit for employers. This kind of argument continues to
hold when our solution concept is competitive sustainability. To see why,
notice that (6.2) and (3.3) imply that Ul(#) =W

and Uz(#,l) <w Thus,

1 2°
if type-1 workers are more profitable for employers in a feasible plan g, then
the terms of employment for type-1 workers in x4 can be perturbed to create

terms that are better than w, for type-1 workers and worse than P for type-2

1

workers. So with inputs (w,qg), an alternative offering these terms can match

each unreturned employer with 50 profitable type-1 workers, so that he too

is better off than in the established system, where he cannot expect more than

10 workers. This argument can be extended to show that neither type of worker

can generate positive profits for employers in competitively sustainable plans.
For an example of a feasible plan that is not sustainable at all, even

though it is Pareto-efficient within the set of feasible matching plans,

consider the pooling plan in which all workers are hired full-time at a wage

of $27 per hour (10 workers per employer). For this matching plan,

(Ul(p), Uz(p), Us(#)) = (80, 880, 800). To see why this allocation vector,

and every allocation vector w that is less than or equal to it in all

components, is not inhibitive, consider an alternative system that operates

as follows. First, every worker is asked whether he would prefer to work
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full-time (40 hours) at a wage of $19.40 per hour or to work for 23 hours at

a wage of $29.00 per hour, or return to the established system. With
reservation wages of $25 per hour, the high-productivity workers would all
choose the $29.00 option (notice that 23 x (29.00 - 25) = 92 > 80 2 wl). With
reservation wages of $5 per hour, the low-productivity workers would choose
either the $19.40 wage or return to the established system (depending on
whether w, is greater or less than 40 x (19.40 - 5) = 576, which is greater
than 23 X (29.00 - 3) = 552). The workers that have not been returned are
then matched (under the employment terms that they chose) with employers, fifty
workers to each employer, until either all employers or all workers have been
matched; excess workers or employers are compelled to return to the
established system. (The determination of which workers are compelled to
return, if any, is made independently of their choice of employment terms.)

So each employer who is not returned exits with a full complement of fifty
workers. From each high-productivity worker he makes 23 X (30 - 29) = 23,

and from each low-productivity worker he makes 40 X (20 - 19.40) = 24, so

his profit is at least 50 X 23 = 1150 > 800 2 Wo. So, the prospectus for

this alternative system will specify an exit probability equal to 1 for at
least one type, at every input vector (w,q) such that w, < 92 and

1
w, < 1150. Thus, (80, 880, 800) and any vector that is less than or equal

3
to it in every component, is not an inhibitive allocation.

Another allocation vector which is not inhibitive is (160, 960, 0). For
any q in AP(N), the viable prospectus mapping discussed at the end of Section 4
has nonzero values for any input vector an open neighborhood of

((160, 960, 0}, g) (because only case (4.4) applies here). On the other hand,

the allocation vector (160, 600, 0) is representatively inhibitive, because,
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for any positive £, the input vector
((160 + £, 600 + g, ), (9/11, 1/11, 1/11))

satisfies the conditions of Lemma 2 with

I
o

A(1) = 10/11, X(2) =0, X(3) =1/11, «a(1]2) = 1/11, «a(2]|1)

Thus, the standard pooling plan, which gives payoff 40 x (29 - 20) 160
to the high-productivity workers, payoff 40 x (29 - 5) = 960 to the
low-productivity workers, and expected payoff 0 to the employers, is not
competitively sustainable but is representatively sustainable. 1In fact, it
is the unique representatively sustainable plan for this example.

It may be helpful to see why the argument in Section 2 against the
standard pooling plan does not apply when our solution concept is
representative sustainability. The alternative ($29.50 per hour for 38 hours)
that was supposed to overturn the standard pooling plan fails to do so when
the expected payoff in the established system for low-productivity workers is
w, = 600 < 38 X (29.50 - 5) = 931, so that the proposed alternative would
not be able to induce low-productivity workers to voluntarily return to the
established system. On the other hand, the argument in Section 2 against the
standard separating plan (that a pooling plan could be better for all workers
and employers) continues to apply when our solution concept is representative
sustainability, because representativeness of the input population implies
that an alternative will recruit nine times more high-productivity workers than
low-productivity workers. To see why no matching plan that gives positive
profits to emplovers can be representatively sustainable, notice that such a
plan could be overturned by a viable alternative that gave workers slightly

higher wages and attracted employers by promising them to either match them

with 50 workers (90% of whom are type-1, by representativeness) or return them



‘41_

to the established system (where they cannot expect more than 10 workers).

It may be surprising that (160, 600, 0) 1is an inhibitive allocation
while (160, 960, 0) ié not inhibitive. After all, the two allocations differ
only in that type 2 gets a lower payoff in the inhibitive allocation, which
makes type-2 individuals more eager to exit through alternative systems. But
type-2 individuals are the low-productivity workers, so greater eagerness of
type-2 individuals to exit through alternative systems in turn makes it harder
for an alternative system to assure employers that they are only being matched
with high-productivity workers. Thus, lowering the expected payoff to the
low-productivity workers can make an allocation inhibitive.

To understand better how a centralized matching system that implements
the standard pooling plan could make a waiting list in which individuals get
the representatively inhibitive allocation (160, 600, 0), consider the
following perturbation of the standard pooling plan. Let € and § be positive
numbers, where € is very small. Each worker is asked to fill out an application
form stating whether he is a high-productivity worker or a low-productivity
worker. If he says that he is a high-productivity worker then, with
probability 1 - 2¢, he is assigned immediately to an exit configuration in
which he works 40 hours at a wage of $29 per hour; with probability €, he is
assigned immediately to an exit configuration in which he works 23 hours at a
wage of $30 per hour; and, with probability €, he is asked to wait some period
of time & after which he will be assigned to an exit configuration in which
he works 40 hours at a wage of $29 per hour. If he says that he is a
low-productivity worker then, with probability 1 - ¢, he is assigned
immediately to an exit configuration in which he works 40 hours at a wage of

$29 per hour; and, with probability €, he is asked to wait a period of time &
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after which he will be assigned to an exit configuration in which he works

40 hours for a wage of %20 per hour. It is straightforward to check that each
type of worker gets a strictly higher expected payoff from being honest than
from lying about his type in his application form. Notice, however, that among
the individuals who are asked to wait, the high-productivity workers have an
expected payoff of 40 X (29 - 25) = 160, and the low-productivity workers ﬁave
an expected payoff of 40 X (20 - 53) = 600. Notice also that each type of
worker has the same expected waiting time €§ when he enters this system. Thus
(if employers also have the same expected waiting time), the allocation and
distribution vectors that represent the population available in the waiting
list at any point in time are

w = (180, 600, 0) and gq = p = (9/11, 1/11, 1/11).

As € goes to zero, the matching plan implemented by this system converges to
the standard pooling plan.

Baumol, Panzar, and Willig [1986] have argued that sustainability against
short-term entry by potential competitors (alternatives) is a sufficient
condition to guarantee Pareto-efficiency of economic systems. This conclusion
does not hold in dynamic matching problems with adverse selection. However,
we have seen that representatively sustainable matching plans always exist
and are Pareto-efficient. So Baumol, Panzar, and Willig's argument can be
extended to the markets with adverse selection if alternatives can be assured
that their inputs have the same distribution of types as the population that
arrives in the economy during any period of time. 1If all types get the same
expected waiting time (on arrival) in the established system, then alternatives
that get random inputs can be assured such a representative type distribution.

On the other hand, Pareto-efficiency may be incompatible with
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decentralization. 1In our example, the unique competitively sustainable
matching plan is strictly Pareto-dominated by other feasible matching plans.
It is competitively sustained by the input vector

((120, 600, 0), (5/11, 5/11, 1/11)). To create such a distribution vector
(with equal numbers of high- and low-productivity workers) in the population
that is available at any point in time, low-productivity workers must expect
to wait and search nine times longer than the high-productivity workers
(because the ratio of birth rates is pl/p2 = 9). In a decentralized market,
such a waiting-time inequality could occur with a separating plan if most
employers only offered the terms of employment that attract high-productivity
workers, so that low-productivity workers would have to search longer find
their terms of employment. (In a model with small waiting costs, the standard
separating plan could be perturbed slightly so that low-productivity workers
would strictly prefer their terms over the terms that the high-productivity
workers take.) In general, then, our analysis suggests that competitive
markets with adverse selection may be sustained in a Pareto-inefficient
equilibrium by a kind of Gresham's Law, according to which the good types are

only briefly available but the bad types circulate widely.

8. Proofs.

We begin with some preliminary definitions and observations.

Suppose that we are given a dynamic matching problem, as generally defined
in Section 3. Finiteness of the sets N and E implies that we can select some
number B such that

|ui(e)| < B and |ui(e,j)| <B, VieN, Ve e€eE, Vj€EN.

This in turn implies that, for any matching plan 7,
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(8.1) IV,(m)| < BIR,(n)| and Igi(n,j)l < BIRj(n)l, Vi € N, Vj € N.
For any (w,q) in RN X AP(N), let H(w,q) denote the set of all (vy,s)

in RT X [0,1]N for which there exists some viable alternative matching

plan m, satisfying (4.1)-(4.3), such that

(8.2) v, = (Vi(n) - Ri(n) wi)/qi and s; = Ri(n)/qi, Vi € N.

It is straightforward to check that H is upper-semicontinuous on its domain,

and that H(w,q) is always a nonempty convex set. H satisfies the following

boundedness property:

(8.3) if (y,s) € H(w,q) then Iyi + Siwi| < Bsi,

because there is some m such that Vi(n) = q.(yi + siwi) and Ri(n) = (.8,

i ivi’

So, given (y,s) € H(w,q),

v

if w,
i

0 then 0 £ Vi < B,
and

if w, > B then s, = 0.

i i

(The participation constraint (4.2) guarantees that v; > 0.) As defined in
Section 4, a viable prospectus mapping is any upper-semicontinuous
correspondence F:RN X A(N) = RT x [0,1]N such that, for any (w,q)
. N 0 .
in R X A"(N), @ # F(w,q) € H(w,q).

Let ﬁ:RN X A(N) - RT X [0,1]N be the minimal upper-semicontinuous

extension of H to all of RN X A(N). Then H is a viable prospectus mapping.

Proof of Lemma 1.

An input vector (w,qg) in RN x AO(N) is strongly inhibitive iff
H(w,q) = {(g,g)}. (Here 0 is the zero vector in RN.) Let © denote the closure
in RN X A(N) of the set of all strongly inhibitive input vectors. We need
to show that ® is the set of all inhibitive input vectors.

Suppose first that (w,q) € ®, so that (w,q) is a limit of some sequence
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of strongly inhibitive input vectors {(wk,qk)}w

k=1 Then for any viable
k

prospectus F, F(wk,q ) = {(0,0)} for every k, and so, by upper-semicontinuity
of F, (0,0) € F(w,q). Thus, if (w,q) € ® then (w,q) is inhibitive.

If % is a viable alternative matching plan with inputs (w,q) and if B
is some positive scalar such that BRi(%) < a5 for every type i, then n = B%
is also a viable alternative with inputs (w,q). (This holds because (4.1) is
the only constraint in the definition of a viable alternative plan that is not
linearly homogeneous in m.) So, given any input vector (w,q) in RN X AO(N),
if (w,q) is not strongly inhibitive, so that there exists a nonzero plan that
is a viable alternative with (w,q), then there exists some viable alternative
7 such that Ri(n) = qi for at least one type i. (Let B =
minieN qi/Ri(n).) Thus, if (w,q) is not strongly inhibitive then there exists
some (y,s) in H(w,q) such that $; = 1 for at least one type i.

Define the mapping G:lRN X A(N) = R§ X [0,1]N so that, for every (w,q)
in RY x A(N),

if (w,q) € ® then G(w,q) = H(w,q),
and

if (w,q) ¢ ® then G(w,q) = {(v,s) € H(w,q)| I s, > 1}.

ieN “i
It is straightforward to show that G is an upper-semicontinuous correspondence,
and that, for any (w,q), G(w,q) is a nonempty subset of H(w,q). So G is a
viable prospectus mapping. Thus, if (w,q) is inhibitive then (0,0) € G(w,q).
But (0,0) € G(w,q) if and only if (w,q) € ®. So if (w,q) is inhibitive then
(w,q) must be in ®. So ® is indeed the set of all inhibitive input vectors.

No allocation vector with negative components could be strongly

inhibitive, because an alternative plan that lets all individuals with negative

allocations exit in solitary configurations would be viable. Thus, if (w,q)
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is inhibitive then every component wi must be nonnegative. Q.E.D.
In the proof of Lemma 1, we have also shown that any input vector (w,q)

in RN X A(N) is inhibitive if and only if (g,g) € G(w,q). For this reason,

we may refer to G(e) as the universal prospectus for our dynamic matching

problem.

Proof of Theorem 1.

If there exists some gq such that (w,q) is an inhibitive input vector,
then w satisfies the definition of an inhibitive allocation vector with this
distribution vector q, for every viable prospectus.

Conversely, if w is an inhibitive allocation vector, then there exists
some q such that (0,0) € G(w,q), because G is a viable prospectus. But then,
by the remark following the proof of Lemma 1, (w,q) must be an inhibitive

allocation. Q.E.D.

Proof of Theorem 2.

We can naturally extend the correspondence H to the domain RN X R§+
so that (y,s) € H(w,q) iff there exists some 7 in RE satisfying (4.1)-(4.3)

and (8.2). (RN is the orthant of vectors in RN in which all components are

++
strictly positive.) With this extended definition of H, for any (w,&) in
RN X AO(N) and any positive scalar B, H(w,Ba) = H(w,&).

Let us use this extended definition of H to also define G for any vector
in RN X RT+. That is, for any (w,&) in RN x AO(N) and any positive
scalar B, we let G(W,B&) = G(w,&).

Let € be a small positive number. Let n denote the number of types in

the set N. (That is, n = {N}.) We define a function

¢€:[0,B]N X [0,1]N - RT x RN+ so that (w,q) = ¢€(y,s) iff, for every i in N,
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a; = pi(l + e)/(si + ¢) and w, = yi/e + (si + €)nB.
Because ¢€ is continuous and G upper-semicontinuously maps vectors in
IRN N N N .
L X R++ to nonempty convex subsets of [0,B} x [0,1}, the Kakutani
fixed-point theorem implies that we can select (y,s) so that
(v,s) € G(¢€(y,s)). Let (w,q) = ¢€(y,s), where (y,s) is this fixed point
of G(¢€(-)). Applying the definitions of G and ¢€, we can select a plan 7

in RE that satisfies the viability constraints with (w,q) and such that, for

every type 1,

q.

i =Pl = e)/((R;(M)/q;) + €) and

w

i (Vi(n) - W, Rj(n))/(eqi) + (Rj(n)/qi + €)nB.

These two equations imply by straightforward algebra that, for every i,
(8.4) eq; = pi(l + €) - Ri(n) and w, = Vi(n)/(pi(l + ¢)) + enB.

The above equations also imply that

v - w,R.(M)/q; = ev,(m)/(p;(1 + €)) - enBR,(n)/q;, Vi €N.

But then, using (4.2),

0 2 ZieN (Vi(n) - wl.Rl.('n))/qi =3,

ieN (evi(n)/(pi(l + g)) - €nBR; (M)/q;)

< neB/(1 + €) - neB ZieN Ri(n)/qi~

This implies that ZieN s; = ZieN Ri('n)/qi <1/(1 + €) < 1. Let g be the

distribution vector in AO(N) defined by q; = qi/Z g. for every i. Then,

JEN 7j

by definition of G, (w,q) is an inhibitive input vector, because

G(w,q) = G(w,q) # {(v,s) € H(w,q)] T. .s. 21}

ieN "i
Furthermore, using (4.3) and (8.4), for any (j,i) in J,

0

1A

ev,(m)/(p; (1 + €)) - enBR, (M)/qy

-V (m3)/ay ¢ (V M)/ (py (1 + €)) + enB)R (M) /a,
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[}

(8 + Ry(M/a) (V,(m)/(p; (1 + €))) - V;(n,3)/a,

- enB(Ri(n)/q. - Rj(n)/qj)

I

1
(pj/qj)(v.(n)/p- - V.

i i 1(n,j)/pj) - enB(Ri(n)/qi -~ Rj(n)/q.).

J
Thus,

V.(m)/p, - Vi(n,j)/pj 2 (epB)(Ri(n)qj/(qui) - Rj(n)/pj)-

Rewriting the first equation in (8.4) as R.(n) =p, + £(p, - 49.) and

i i i i
applving (4.1), we conclude that
Ri(n) 2p;, VieN.
Thus,
- j >
(8.5) V. () /p; Vi('n,J)/pj > ~enB.

Now let u be the matching plan such that, for every type 1,

y(éi) = n(éi) + (pi - Ri(n)), and u(e) = m(e) for every exit configuration e

other than the solitary exit configurations. Then

Vi(u) = Vi(n), Vi(#,j) = Vi(n,J), R. (1) = Py Vi € N, Vj € N.

i
By (8.4), U,(u)/(1 + €)=V (u)/(p;(1 + €)) =w, - enB, so

IUi(y) - wil = |Ui(y)e/(1 + €) - enB)| £ (1 + n)B.

BY (8:5), U (1) - U, (s.d) = V;(m)/p,

- 3 > -
i i Vi('n,J)/pj > —-¢nB.

Now consider a sequence of values for € that go to zero, and let w, q,

~

and ﬁ be limits of convergent subsequences of the w, q, and u vectors
constructed from these values of € as above. (Such a limit u exists because,

for each €, u is in the compact subset of RE in which

Locp (Tiey Ty(@)) mle) S L, vpy =10)

Then (w,q) is inhibitive, U (u) = ;i for every i, and Ui(ﬁ) > Ui(ﬁ,j)

for every (j,i) in J. Thus, u is a competitively sustainable plan. Q.E.D
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Proof of Theorem 3.

Let ®* denote the set of all representatively inhibitive allocation

vectors in RN. Let F:RN - RE X [0,1]N be defined so that

C(w) = H(w,p) if w € &%,
Fw) = {(v,5) € How.p)| I, s, 21} if we R but w ¢
r(w) = {(v,s) € H(w,p)| Vi, if w, <0 then s, =1}, if w¢ Rf-

If w ¢ ® then (w,p) is not strongly inhibitive and so there does exist some

(v,s) in H(w,p) such that ZieN s, > 1 (as we showed in the proof

J _
of Lemma 1). Also, if w ¢ R& then the plan 7, that is defined so that

ﬁ(e.) =P for every i such that wi < 0, and ﬁ(e)

i 0 for every other

it

e in E, is viable with inputs (w,p). Thus, for every w, ['(w} is a nonempty
convex set. ' is upper-semicontinuous because &% and RT are closed, &* C Rﬁ,
and H is upper-semicontinuous.

Now let Ww:{-1, B + 1]N - (-1, B + I]N be the correspondence defined
so that x € ¥(w) iff there exists some (y,s) in I'(w) such that

X; =W, +8; - 1/(n + 1), Vi € N.

(Notice that S5 must equal zero here if W, > B, by (8.3); whereas s; must
equal one if wi < 0, by definition of I"'.) By the Kakutani fixed-point
theorem, there exists some w such that w € ¥(w).

This fixed point w must be a representatively inhibitive allocation in ©%,
because there is some (y,s) in I'(w) such that si =1/(n + 1) for every i,

and so % < 1. Furthermore, by definition of H, there must exist some 7

ieN Sji
such that m is a viable alternative plan with inputs (w,p) and
Rj(M/p; = 1/(n + 1) for every type i. Now let x4 = (n + 1)n. Then x is also

a viable alternative plan with inputs (w,p), and Ri(H) = P for every

type i. But then the viability constraint (4.3) implies the informational
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incentive constraint (3.3) in the definition of feasibility. So u is a
feasible plan. Furthermore, the viability constraint (4.2) implies the
sustainability constraint (6.1). So u is a representatively sustainable plan.

Q.E.D.

Proof of Theorem 4.

Suppose that u is a feasible plan that is Pareto-inefficient. Then there
exists some other feasible plan v such that Ui(v) > Ui(y) for every i in N.
But then, for any ; such that ;i < Ui(v) for every i, v is a viable
alternative plan with input vector (;,p), and so (;,p) is not strongly
inhibitive.

Thus, if w is any vector such that W, < Ui(ﬂ) < Ui(v) for every i, then
{w,p) cannot be the limit of any sequence of strongly inhibitive input vectors

of the form (w,p), and so w cannot be representatively inhibitive. So the

Pareto-inefficient plan g cannot be representatively sustainable. Q.E.D.

Proof of Theorem 5.

Suppose J = g. If q; > 0 for every i, then there exists a nonzero
matching plan that is viable with inputs (w,q) iff there exists a nonzero
matching plan m such that Vi(n) > Ri(n) W, for every type i. (Even if this
m violates (4.1), some positive multiple of 1 would satisfy (4.1).) Thus,
if {(w,qg) is any strongly inhibitive input vector, then so is (;,p), for any
; such that ;i > Wy for every type i. Thus, if Ui(y) > W, for every i

and w is an inhibitive allocation vector, then (Ui(,u))ie,\I is a

representatively inhibitive allocation vector. Q.E.D.



Proof of Lemma 2.

Given any input vector (w,q) in RN X AO(N) and any positive number ¢,
consider the following linear programming problem:
< s R E
maximize ZeeE en(e) subject to 7n € R,

(Vi(n) - W, Ri('n))/qi >0, VieN,

(Vi(m)- wy Ry(m)/a; - (Vi(m,3) - wy Ry(m)/ay 20, ¥(3.i) € J.

By substituting in the definitions of Vi(n), Ri(n) and Vi(n,j), it can be shown

that the dual to this linear programming problem is:

minimize O subject to X € RF, a € mf,

+

+ Z( yeg @11 ((wy — us(e))r;(e)/ay - (wy - ;i(e,j))rj(e)/qj) >e, Ve € E.

J, i

(We write the (j,i)-component of a as "a&(j|i)" to emphasize that this is the
dual variable corresponding to the constraint that "an individual should not
have an incentive to claim to be type j, given that his actual type is i.")
For any positive €, the input vector (w,q) is strongly inhibitive if and only
if the first linear programming problem has an optimal solution with a value
of zero. By the duality theorem of linear programming, the first linear
program has an optimal solution with a value of zero if and only if the dual

problem has a feasible solution that satisfies its constraints. But the dual

constraint for each e can be rewritten

iy (1) + Lygy alili))w, - 3

i JEN
>z

a(ilj)wj)ri(e)/qi

((X(1) + ZjeN a(jli))u,(e) - ¥

; jey @ilDuj(e i)r (e)/a; + e,

ieN
when we adopt the convention that «(jli) = 0 if (j,i) ¢ J. Thus, the
constraints in Lemma 2 can be satisfied if and only if (w,q) is strongly

inhibitive. Q.E.D.
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