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Abstract

We study the structure of Nash Equilibrium set in repeated games assigning an
increasing cost of implementation to increasing complexity. We present
relations between the strategies supporting equilibria with and without cost
of implementation. We drop the assumption about finite complexity of the
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1.- Introduction

The theory of equilibrium of repeated games have become a topic of much
research in recent years. Repeated play allows the players to react to each
other’s actions. The possibility of retaliations leads to some outcomes
which are not supported in equilibrium in the one shot game.

Starting from éhe well know ‘Folk Theorem’ several lines of research
were developed. A comprehensive survey of the main literature existing in
this field prior to the 80's is given by Aumann [1981], see also Fundenberg-
Maskin [1986], Kalai-[1987] and Sorin [1988].

It was early observed that some strategies of the repeated game might
be, at least intuitively, wvery complicated. Aumann [1981] proposed the use
of finite automata for distinguishing between simple and complicated
strategies . This line of research was followed by Neyman [1985], Ben Porath
[1986], Ben Porath-Peleg [1987] and others. The interest of putting a bound
on the complexity of the strategies that the players may choose, comes from

the limited ability of the devises (secretaries or computers) they can use

for implementing their strategies, see Simon [1972]. A measure of strategic
complexity was considered by Kalai-Stanford [1986], (see also Stanford
[19871).

Besides this, it was studied how the cost of implementation affects the
set of outcomes supported in equilibrium. This line of study was initiated
by Rubinstein [1986] and Abreu-Rubinstein [1987]. A substantial reduction of
the outcomes supported by Nash Equilibrium was obtained in a two-person
repeated game when complexity costs are incorporated into the model. Also a
severe discontinuity in the set of equilibrium outcomes was illustarted as

the complexity costs go to zero (in page 27, Abreu-Rubinstein [1987]



illustrate how the Folk Theorem looks for some of the most popular two-
person games).

In this note, following Rubinstein [1986] and Abreu-Rubinstein [1987],
we will focus on the structure of the set of Nash Equilibrium in repeated
games with cost of implementation. We note that rules of behavior are costly
to operate and it is the aim of the decision makers to minimize such costs.
We will focus on this type of cost. We will not deal with the cost of
selecting an optimal strategy. We will also deal with a measure of
complexity for the strategies following Kalai-Stanford [1986].

The structure of this note is the following: In section 2, we present
the model and some basic definitions. Section 3 is focussed on the study of
relations between the strategies which are Nash Equilibrium without cost of
implementation, with an infinitesimal and a non infinitesimal cost. These
relations are strong for the case of two-person games (Theorem 1) and
somewhat weaker for n-person games with n=3 (Theorem 2 and Theorem 3).
Theorem 4 establish a relation between the complexity of the strategies of
Nash Equilibrium with infinitesimal implementation cost. This is the version
for n-person games of the result given by Abreu-Rubinstein [1987] for two-
person games. Section 4 is centered on the study of the outcomes supported
by Nash Equilibrium with an implementation cost. We do mnot restrict to
strategies implemented by finite automata. Then we prove that a 'full’ Folk
Theorem (Theorem 5) holds for case of an infinitesimal implementation cost
(i.e it coincides with the standard Folk Theorem without cost) . An 'almost
full’ Folk Theorem is presented 1f the cost of implementation is strictly
positive (Corollary 1). We also present (Theorem 6) a technique for

obtaining a uniform approximation of the strategies of equilibria by



strategies which are e-Nash equilibrium with finite complexity. This result
is similar to that presented by Kalai-Stanford [1986] (Theorem 4.1) for
Subgame Perfect Equilibrium without cost of implementation.

2.- The Model

n
Let G=(A,u) be a n-person game in normal form. A = X Ai denotes
i=1
the action combination of n-player. Ai’ the set of action of player i, is a

non-empty subset of a metric space. u;(ul,...,un) is a vector of utility
functions. For each i=1,...,n ; u; A >R 1is a real-valued function.

We describe a standard repeated game Gw(A,u) associated with G as
follows:

The set of histories of length 0 is a singleton set denoted by HO. Its
single element will be denoted by e. Let HY = A x..... x A be the set of

m-times
histories of length m.

= o]
H= U Hm is the set of all histories.
m=0
For each player i=1,...,n; a strategy fi is a function fi:H - Ai'
n
Let Fi be the set of all strategies for player i. And F = X Fi
i=1
We define a path of length m as a sequence P=(p(l),...,p(m)) where

p(t) € A for each t=1,...,m .
Given a strategy vector f € F; Lets define a infinite path as follows:
P(E) = (p(ED(L),...,p(E)CE),...... )
where p(£f)(1) = f(e) and p(£)(t) = £(p(E)(L),...,p(E)(t-1)).
With the above construction we can extend the utility functions to be
defined on F:
ui(f) = Lim 1/T g ui(p(f)(t))

T > o t=1

(As usual, in order to avoid the problem of nonexistence of this limit we



might use a Banach limit; see Kalai [1987], page 1l1)
A strategy vector i1s a Nash Equilibrium for the repeated game Gw(A,u) iff
ui(f) > ui(f_i,gi) for all g; € Fi and for all i=1l,...,n .

We denoted (f .,gi) = (f

,E
-i

)

1" i-l’gi’fi+l""

Given a strategy fi € Fi and a history h € H we denote filh the strategy
defined by: filh (h') = fi (h.h'") for any h'eH; where h.h' 1is the
concatenation of h and h'. This means to play the history h followed by the
history h’ ( see Kalai-Stanford [1986] ).

We will denote by comp fi the complexity of a strategy fi' It is the
cardinality of the set Fi(fi)={ filh ;: heH}. We have to underline that
comp fi is the cardinality of the smallest automata implementing fi ( see
Theorem 3.1, Kalai-Stanford [1986] ).

Let » be a lexicographic preference relation on the set of strategy
vectors F defined by:

f Z? g 1iff ui(f) > ui(g) or: ui(f) = ui(g) and comp fi < comp g; -
(See Abreu-Rubinstein [1987]).

With this preference relation we say that f&F is a lexicographic Nash
Equilibrium iff:

for any i=1,...,n and for all gieFi: f ?; (f_i,gi).
(We will refer to this as Nash Equilibrium with ulex)'

We are going to assign a cost to increasing complexity by defining the
following nondecreasing cost function:

k: N>R
(N stands for the set of positive integers and R" for the positive real

numbers) such that :

Lim k(n) =K

n = <



(K might eventually be infinite).
The utility functions with cost k are defined by:
ws(£) = u () - k(£
i i i
where we denoted k(fi) = k{(comp fi)'
Note: We assume that the cost function is the same for all the players. By
dropping this assumption we will get essentially the same type of results
with added notational complexity.
The preference induced by uk belongs to the class of preferences
considered for two person games by Abreu-Rubinstein [1987].
A strategy f 1is a Nash Equilibrium with cost k iff f is a Nash
Equilibrium with uk, i.e.:
uk(f) = uk(f g.) for all g. € F. and for all i=1 n
i I R R | i i rrrre o

A strategy feF is an e¢-Nash Equilibrium with uk iff:

k k
for any geF ui(f) > ui(f-i’gi) - e,

3.- Connections between the Nash Equilibrium strategies with u, Uy o and uk;

In this section we will assume that for each i=1,...,n ; Ai is a finite
set of actions (pure strategies in the one shot game).

We will establish some relations between the strategies which are Nash
Equilibrium with the 1lexicographic order and those which are Nash
Equilibrium with uk.

This connection is wvery close for two-person games. We will use the
result given by Abreu-Rubinstein [1987] in order to obtain a necessary
condition for Nash Equilibrium with uk. This is shown in Theorem 1. That is

no longer the case for n=3. This will be illustrated through an example. For



n>3, we obtain (Theorem 2) a weaker version of Theorem 1.

Definition 1: Given two cost functions k and k. k increases faster than k'

(we denote kYk’) if and only if k(n+l)-k(n) = k' (n+l)-k’'(n) VneN.

In the next Theorem, we will consider n=2.
Theorem 1:
a) 1f f=(f1,f2) is a Nash Equilibrium with u? then £ is a Nash Equilibrium
with u,.

i

b) If f=(f1,f2) is a Nash Equilibrium with u? then f is a Nash Equilibrium
with u, with the lexicographic order.
c) 1If f=(f1,f2) is a Nash Equilibrium with u? then £ is a Nash Equilibrium
for every u? with krk’.
Proof:
a) Let &y be a strategy such that:

u, (£) < u,(£],8,)
If comp (g2) < comp (f2) , then k(gz) < k(f2)’ which implies:

k k

us () <u(£),8,).
If comp (g2) > comp (f2) then by Lemma 1 (Abreu-Rubinstein [1987]) there
exists an strategy gz such that comp (@2) = comp (fl) and u2(f1,g2)5
u2(f1,g2). Then we have: u2(f) < u2(fl,g2) and comp (gz) = comp (fl)
By Abreu-Rubinstein [1987]: comp (f2) = comp (fl) then:

k k A

uz(f) < u2(f1,g2).
b) Suppose that f=(f1,f2) is a Nash Equilibrium with uk but it is not a Nash

Equilibrium with the lexicographic order. Then there exists &y such that:

I uy(f) < uy(f.e,)



or
I1) u2(f) = u2(fl’g2) and comp &) < comp fl'
Case I is not possible because of part a). Then f is Nash Equilibrium.
If 11 holds then uS(£) < uS(f.,g.,)
olds en u, u, (£1,85) -

¢) £=(f,,£,) is a Nash Equilibrium with u? . Then

uz(f)-k(fz) > uz(fl,gz)-k(gz) for any strategy &p-
f=(fl,f2) is also a Nash Equilibrium with u, (by part a)). Then

uz(f) = u2(f1’g2)'
Thus, if comp g, < comp f2 then

uz(f)-k'(fz) = uz(fl,gz)-k'(gz) for any cost function k'.

Assume that comp < comp f,. Then for any Kpk'’, we have :
&9 P L, y

k(£,)-k(g,) = k' (£,)-k'(g,). Thus ug'(f) < ug’(fl,gz). (q.e.d.).

Remark 1: It is immediate that Nash Equilibrium lexicographic implies Nash
Equilibrium.

The results stated in Theorem 1 do not hold (as it is) for n=3. It is
illustrated through the following example:

Example 1:

Lets consider the following 3-person one-shot game G:

I c D I c D
3, 3 .5/2|1/2, &, O clT2.2.3010. 3.0
p & .12, 01, 1.3/2 p[3.0,0]1.1.1/2

Player 1 chooses the row (C or D), player 2 the column (C or D) and player 3
the matrix (I or II).

Lets fl’f ,f, be the strategies of the repeated game G implemented by

2’73



the following automata:

f. (player 1) )

f3 (player 3)

C and D on the arcs in player 1 (player 2) automata, mean that the
tfansition function depends only on player 2 (player 1) actions. E means _
that the transition function does not depend on the previous action.

We have that:

ul(fl’fZ’f3)=7/3 ; u2(f1,f2,f3)-7/3 and u3(f1,f2,f3)-13/6

*
If f3 is the strategy described by the following automata
E

. . *
Then we obtain again u3(fl,f2,f3)—13/6

> by the

f=(f1,f f.) is not a Nash Equilibrium with u because if we define f3

2'73

following automata:



then u3(fl,f2,fé)=15/6 > u3(f f3)=l3/6 (indeed (f fé) is a Nash

l’f2’

1’f27

Equilibrium with u).
However, if we define a cost function k such that:

k(1)=0 and k(2)=1/3, then f=(f f3) is a Nash Equilibrium with uk,

l’f2’
because for all g3¢f3 we have:
*

= 1/3 = k(g)-k(£,).

Remark 2:
There does not exist a strategy f2 such that: for any fl with comp fl < e,
uk(f f,) = uk(f g,) for any g
2710720 T T2 L2 2°
(The same statement holds for u, with the lexicographic order).

This is a consequence of Lemma 1 Abreu-Rubinstein [1987], which states
that: For any fl with comp fl < o and for any f2, 3 &y with comp &y < comp
f2 and u2(fl’f2) < u2<fl’g2)'

Thus the result presented by Gilboa and Samet [1987] in Theorem A, is
not longer true with the utility functions u? or even with the lexicographic

order.

For n>3 we obtain the following weaker version of Theorem 1.
Theorem 2:
If £ is a Nash Equilibrium with ug and u? for some cost function k, then f

is a Nash Equilibrium for u, with the lexicographic order.

10



The proof follows from Lemma 1 and Lemma 2.

Lemma 1:
let £ be a Nash Equilibrium with u, and u? for some cost function k. Then
there exists a sequence of cost functions k° with Lim K° = 0 such that
kS S =&+

f is a Nash Equilibrium with ug for all s.
Proof:
Let k°:N-R' be a sequence of cost functions with the following properties:
i)  Lim K° = 0 and ii) k°(n+l) - ¥°(n) < k(n+l) - k(n)

S~ s

We will prove that f is a Nash Equilibrium with u? for any k5.

By hypothesis we have that for any strategy ;"

(3.1) u (£) 2 u (£ ;,8;)
and
(3.2) u, (f_;.85) - w(£) =< k(gy) - k(f,)

We consider two cases:
a) comp g, = comp fi
If this holds, then ks(gi) > ks(fi) for every s. Then by 1) we have :
x5 x5
ui(f-i’gi) < ui(f) for all s.
b) comp g, < comp\fi.
This implies ks(gi) < ks(fi) and then:
s s
k (fi) -k (gi) =< k(fi) - k(gi) for all s.
Then, by 2) we have:

ui(f-i’gi) - ui(f) < k(gi) - k(fi) for all s. (q.e.d).

Lemma 2:

+ . .
Let k°:N+R" be a sequence of cost functions such that Lim k° =0
S = ®

11



( Where K° = Lim ks(n) .
n -+ o kS
if f=(f1,...,fn) is a Nash Equilibrium with u for all s, then f
is a Nash Equilibrium for u with the lexicographic order.
Proof:
Suppose that f is not a Nash Equilibrium for u with the lexicographic order.
Then for some i there exists g such that
a)  u (£ .,g) > u ()

or

b) ui(f-i’gi) = ui(f) and comp gi < comp fi'

If a) is true then we have:

B = ui(f_i,gi)-ui(f) >0

Let s’ be such that Ks < B. Then
sl s'

s' s’ k k
ui(f_i,gi)-ui(f) >k (gi)—k (fi) then ui (f-i’gi) > u, (B

s r

which is a contradiction because f is Nash Equilibrium with u?.
s s
If b) holds then for all k° we have u? (f-i’gi) > u? (f) leading

again to a contradiction. (g.e.d.).

The following result complement Theorem 2, by giving a sufficient

condition for the existence of Nash Equilibrium with cost.

Theorem 3:

If £ is a Nash Equilibrium with the lexicographic order, then there exists a
cost function k such that f=(f1,..,fn) is a Nash Equilibrium with u?.

Proof:

We will first analyze the case when comp fi = @,

f is a Nash Equilibrium with the lexicographic order, then for any strategy

12



g; e have:
a) ui(f .,gi) = ui(f) and comp gi=m
or
b) ui(f_i,gi) < ui(f).
If a) holds, then f is a Nash Equilibrium with u? for any cost function k.
If b) holds. Lets define
n

B ={b \ b—ui(f_i,gi) and comp gi—n}
As we assumed Ai to be a finite set, then B" is also finite for any neN,
let b = maxnb

beB

We define inductively the sequence tn'
t, = u.(f) - b and we choose t such that:
1 i 1 n

0 < t, < min (tn_l,ui(f)-bn).
t_ is a decreasing sequence and Lim t_ = 0
n oo D

Now, we define the cost function k.

Let K be any real number such that K > t and let be k(n) = K - tn'

1
It defines a (increasing) cost function k with Lim k(n) = K.
n -+ ©

We will proof that f is a Nash Equilibrium with u?.

For any strategy gy we have:
k k

ul(E) - ul(f_ .8 = u (F) - u (f_,g) - kK(£) + k(g) =

ug(6) - w(f .8) - €,
where n'= comp B - However, by construction:

ui(f) - ui(f_i,gi) > tn'

k k R s 51 s . k

Then ui(f) - ui(f_i,gi) > 0 and f is a Nash Equilibrium with u, .
Now, if comp £ = n. Then f is a Nash Equilibrium with u? for any cost

function k such that :

0 < k(n) - k(ntl) <b

13



where b = min b and
b’eB’' (n)

B'(n) = { b = ui(f) - ui(f~i’gi) and comp & <n }

B'(n) is finite and V b'eB’'(n): b’'>0. Then k is well defined. (q.e.d.)

We conclude this section with a result establishing a relation between
the complexities of the strategies of a lexicographic Nash Equilibrium.
This is the version for n-players of that presented for two players by
Abreu-Rubinstein [1987].

This result goes much in the direction of the Gorollary 5.1 given by

Kalai-Stanford [1986].

Theorem &4:
Let f be a Nash Equilibrium for u with the lexicographic order and
comp fi < o for all i. Then:

comp fi < II comp f,
j=i

Proof:
Without lost of generality (w.l.o.g.) we assume that
comp f1 < comp f2 < ..... < comp fn.

Consider the following two players game:

n-1
G= (A ,A) ,u ,u ) where A = X A,
-n’"'n -n’ n -n i-1 1T
u _: A - R defined by
n-1
u_n(al,...,an) = iil ui(al,...,an)

*
Let G be the infinite repeated game of the one shot game G.

and let f_n tH=- A a be the following strategy:

f_n(h) = (fl(h)’fZ(h)’""fn-l(h)) and comp f_n =< iin comp fi'

14



Then by (Abreu-Rubinstein [1987]) there exists fé such that
un(f_n,fn) < un(f_n,fn) and comp fn = comp f_n

If comp fn > comp f-n’ then there would exist fﬁ such that:

comp £' < comp £ and u (f ,f') = u (f ,f ), which is impossible because
n -n n' -n’n n' -n’"n

f=(f_n,fn) is a Nash Equilibrium for U with the lexicographic order.

(q.e.d.)
Remark 3: The results of this section also holds if, instead of considering

the lim of the mean criteria, the utility functions are defined for a given

discount parameter.

4. - Folk Theorems and Finite Complexityv Approximation

In this section we drop the assumption of finiteness of Ai' We
consider a n-person (one-shot) game G=(A,u), where Ai is a compact set and
u, are bounded functions.

Abreu-Rubinstein [1987] showed, for two-person repeated games, that the
set of outcomes supported by Nash Equilibrium is drastically reduced when
restricted to strategies implemented by finite automata wunder an
infinitesimal implementation cost.

We show that by dropping the restriction on the finite complexity of
the strategies, we obtain a 'Full’ Folk Theorem for the case of
infinitesimal cost. A slightly different version of this theorem is obtained
when the cost of implementation is not infinitesimal. We also present a
Finite Approximation Theorem. It shows in a constructive way how to
uniformly approximate any outcome supported by a Nash Equilibrium under a
non infinitesimal cost, by considering e-equilibrium strategies of finite

complexity.

15



We associate with the game (A,u), n n-tuples of actions s

that:

i .
s, € arg min max u,(a ,
i ivtvt-1
a . a,
-1 i
-1
max u, (s, ,a,
((s;h,a)

1
a.
1

-i 1
u,(s. = Uu.(S. S. =
(5 = u(s] 8D

v‘ =

i~ u(sy) 5 U=

vV = {er“ with x. > v.}
i i

W.l.0.g. we assume that vi=0 for all 1i.

Theorem 5:

{u(a) with acA} ; U

= Convex Hull of U

17

and

S

such

For all xeV there exists an strategy f which is a Nash Equilibrium for u

with the lexicographic order and u(f)=x.

We state the following Lemma which will be used during the proof of

Theorem 5.

Lemma 3:

Let (ri):=1 and (bi)c;=1 be (weakly) increasing sequences of natural numbers

and bi>0. If (ri/bi):=l defines a sequence of rational numbers Q, which is

also (weakly) increasing. Then:

n n
a) .le ri/bi = Lim .Z r, /.Z bi'
i-w n -+ o i=1 i=1
n n
b) Lim r./b., = Lim X r, / (n+ 2Db,)
. i’71 . i . i
i - © n -+ o i=]1 l=1

Proof of Lemma 3:

16



Part a)

(ri/b.)co is monotone. Thus, the limit exists (it might be «).

i’i=

(4.1)

s =

(This follows immediately because (ri/bi)c.lo=1 is increasing).

(4.2) ¥ k 3 n such that:

The above statement is equivalent to:
n
Z (r. b
. i
i=1

- r bi) =0

k k

Agai (r./b)5 . is i i
aln as Ir. e ) . 1S 1lncreasing.
g i’ 7i’i=1 &

T bk - Ty bis 0 for i< k and r bk - Ty bi =2 0 for i=k.
k n
Then Z r. b, - r, b,.< 0 and 2 v, b -1, b, >0
jo1 T k ki jop41 T k k i
Moreover
Vij=i=k bj (ri bk - T bi)s bi(rj bk - rk bj)
Using that (bi)c.lo=l is also increasing, we obtain:
Viji=i=k r, bk - T bis rj bk - T bj'
Then, choosing n big enough
n
.2 (ri bk - Ty bi) >0
i=1
(4.1) and (4.2) imply the assertion done in a).
Part b)
n
It follows from part a) and the fact that Lim n / Z bi = 0. (q.e.d)
n- i=1

Proof of Theorem 5:

17



k k
Let x =2 with € A; ¢, = 0 and 2 a =1
by 2 7h h h by B

Let (xm):_l be a sequence of vectors in V, satisfying:

i) X" goes to x when m tends to =.

m

ii) There exists T, € Q such that:
k
m m m m
X =2 T : 2 r, =1 and r, =0
oy B *h oy B h
iii) 1, < rE+l for h=1,...,k-1

. m
We note that 1) means that Y, Boes to o when m tends to » for any

h=1,...,k.
We write

~m k ~m

X =22 T

o] B *h

where

~ k ~m m ~m

™eN ; b =3 r and x =x /b_.

h h m

h=1

We will construct the vectors: xh(i), with i=1,...,n.
They will consist of a reordering of the vectors Lo for h=1l,...,k such

that there exists a pure strategy a® € A with :
i . i i
(4.3) u(a”) = Xl(l) and a; # sy

Note: If there does not exist a strategy a e A satisfying (4.3) then, in

. i i
the construction of the vector P, replace o by any other strategy §; for,

which (4.3) holds.

m

We will denote by Eﬁ(i) the coefficient corresponding to Eh after the
above stated reordering.
Let P? be a sequence consisting of bm n-tuples of actions.
P? = (ai,...,ai,...,a;,...,a;)
~m,, > ~m
Y, (i)-times r, (1) -times
1 k
where u(a;) = xj(i). We note that the average payoff of P? is x". Lets

18



define:

z
i,P?,...,Pi) It is a finite sequence of length = bm

Pi(z) = (P i -z

and let P be an infinite sequence of n-tuples of actions

P = (Pl(l)’SZ’PZ(z)’S3’P3(3)""’Sn’Pn(n)’sl’Pl(n+l)’52’""

sj,Pj(kn+j), ..... )

It will be the equilibrium path for a strategy f:H-A which will be defined
as follows:
Let h = (h(l),...,h(t)) € H then fi(h)=si iff for some t’ with 1<t’<t and
only one j:

[h(t')]j > [P(t')]j and otherwise f(h) = P(t+l)

The above constructed strategy f is a Nash Equilibrium of the repeated
game and comp f = o,

We claim that:
a) u(f) = x
b) It does not exist a strategy 8; with comp g5 < « and

ui(f) = ui(f-i’gi)'

a) holds because :

T
ui(f) = Lim 1/T z ui(P(t))

T =+ o t=1
k n . n
=Lin 2 x [ = (n+l-)) rfl] / (n + 2 (n+l-j)b.)
n - o h=1 j=1 j=1 J
and by Lemma 3 we have that: ui(f) = X, .

Now in order to prove b), Lets assume that there would exist a strategy

g; such that comp 8 < o and ui(f) ui(f_i,g.).

i
By the definition of f we have that:

(4.4) (f-i’gi) (P(1l),...,P(t)) = P(t+l) for all t

(because otherwise ui(f_i,gi) =0).

19



For ¢ =0,1,2,.... and 1 =1,...,n; lets define :

ne+i-1
t(c,i) =nc + 1 - 1 + 5 (nc+1i- 3) b,
1 J
J
Comp g; <=, then there exists ¢’ < ¢" such that:
(4.5) gi|((P(l),...,P(kl)) = gi|((P(l),...,P(k2)) where we denote
k1 = t(ec’',i-1) ; k2 = t(c",i-1) and k3 = t(c',i). Note that P(t(c',i)) = s;
By the definition of P(t) we have :
(P(k1+1),....,P(k3~1)) = (P(k2+1),....,P(k2+k3-k1-1))

and by (4.3) we have:

(4.6) s] = [P(k)1, = [B(kytky-k))], = a)
But, by (4.4) and (4.5) we have:
[P(ky)]; = g | ((B(L),...,P(k)) (BCky+1),.... B(k,-1)) =
= g, (B, .. P(k)) (BlkyH1), .. Pk, -k, -1)) =
= g | (), .. Plytky -k -1)) = [B(k,tky-k)],
and this contradicts (4.6) (q.e.d.).
Lets denote VN — { xeV such that x+(K,... ,K)eV)

Corollary 1:

Consider a cost function k:N—vR+ with Lim k(n) =K
K n -+ © )
Let x € V' then there exists a strategy f of the repeated game such:
uk(f) = x and £ is a Nash Equilibrium with uk.
Proof:

Lets consider x’'=x +(K,...,K) then x’ belongs to V.

Let f be the strategy constructed in the proof of Theorem 5. Then f is a
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lexicographic Nash Equilibrium and u(f)=x’, we have:
k , -
ui(f) = ui(f) - k(fi) = x{ - K = Xg
Then we only need to prove that f is a Nash Equilibrium with uk.

By construction, comp f = « . Then for all 8; with comp 8; <

we have:

u (£,8;) = v,

I
<

Then

With this and having into account that £ 1s a lexicographic Nash

Equilibrium, we obtain that f is a Nash Equilibrium with uk. (q.e.d.).

Remark 4: Corollary 1 is not a complete Folk Theorem. It is immediate to
observe that it does not exist f with comp fi = o for all i and uk(f)EV-VK.
However it might exist f being a Nash Equilibrium for uk with comp fi < @

for some i and uk(f)GV-VK.

Remark 5: For all x in the interior of V there exists a cost function k and

a strategy f such that uk(f) = x and f is a Nash Equilibrium with uk.

Theorem 6: Given the game Gw(A,u), the cost fuﬁction k and ¢ > 0. There
exists a positive integer W=W(e,k) such that for each feF with f a Nash
Equilibrium with uk and comp fi=w for all i, 3 geF fulfilling :

i) For i=1,...,n comp g. < W

i) | uie) - uie) | <«

iii) g is an e-Nash Equilibrium with uk.

Proof:
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let N(rJ,e/Z) be a neighborhood of center rlev and radio e/2 such that:

vy . . .
U N(J,e/2) o V°  and B =0 e
j=1
Claim: For each j=1,...,y, there exists a strategy gJEF such that
a) For i=1,...,n comp gi <

by  uf(gl) e NI, e/2)

c) g is an e-Nash Equilibrium with uk.

The claim completes the proof of the theorem. In order to check this,
]

lets define W = max comp g3 -
J.i K, ..k
For a given fe&F such that u (f)eV" there exists j such that:
W) € N, e/2)

Then gJ fulfills the conditions stated in the theorem. (q.e.d)

Proof of the Claim:

Let z be a vector in V such that:

1y |z - ri | < e/a
o ) ) ) )
4.7) (ii) z = = r£ X where x” = u(a”) with a"€A and r£€Q'
£=1
(iii) z - X,...,K) > O
W.l.o.g. we assume that there exists a pure strategy c=(cl,...,cn) €A
such that:
1 .
(4.8) c; [a ]i for all 1.

We have that:

N
I
M8

rk x£ / b with rk being a positive integer and r£=rk/ b.

£=1
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Let P’ be a sequence consisting of b n-tuples of actions:

P = (a1 .. al,...,am,...,am)

r!-times r'-times
1 m

We note that the average payoff of P’ is =z.

Lets define:

pd = (P',c B/ B',c,....,c,R ... ,P'c)
2-times gq-times

For this path we have:

Lim u(®?) =z

q-—+®
We will define the equilibrium strategy gq as follows:

Let h = (h(1),...,h(t))eH then gg = si iff for some t' with l<t’<t and only

one j:

[h(e)]; = [PY(t')]. and otherwise gl(h) = PI(t+l).

J
This strategy gq fulfills that u(gq) =u(pq) and for all strategy g'such

that comp 8 <q: ui(g?i,gi) <0

Now we can choose a q' big enough such that:

(1) | ®,...,K) - (k(q'),...,k(g") | = e/
4.9) G |5 - u@?)] s e
(iii) w(ed) > &, ...,K)

]

We will check that the strategy gq satisfies the Claim’s conditions.
!
a) holds because by construction comp gg < o for all 1.
In order to check b) we have:

[y - o | = Jue®) - ke, k) - v kL) =

lue?y - ) |+ [0 - @), kG| s o2
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Now we prove c):
If comp gi < q' then we have:
S
u;(g’;.85) =<0
and as gq is a Nash Equilibrium then :
N 'y - q’ q’
u,(g2;,8;) - k(gy) - u,(g” )+ k(g ) <0 <e
by condition (4.9) part (iii)
If comp gi > q' then we have:
Q' Ly "y - q’ q’
u; (g% .81) - k(g) - uyg) + k(g ) = es4
because gq is a Nash Equilibrium and by (4.9) (i):
k(gy ) - k(g}) <K - k(g}) =K - k(g') < /4

This completes the proof of the Claim. (q.e.d.)
Remark 6: An approximation result for 1lexicographic Nash Equilibrium

obviously holds because every strategy which is a Nash Equilibrium is an

e-lexicographic Nash Equilibrium for any &>0.
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