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1-Introduction

The polymatrix games (Janovskaya (1968)) form a subclass of the n-
person noncooperative games. The equilibria of polymatrix games was studied
by Janovskaya (1968) as a linear complementary problem. Howson (1972) proved
the existence of Nash equilibria based on a generalization of the almost
complementary paths used for the linear complementary problems. He also
proved that every non degenerate polymatrix game has an odd number of
equilibrium points.

In this note we will study the structure of the set of equilibrium
points of a polymatrix game and we will present characterizations of these
games.

The organization of the paper is as follows. After some definitions and
notations (section 2), we will describe the set of Nash equilibrium points.
Every Nash equilibrium point will be obtained from a finite set of extreme
equilibrium points (section 3). We will give conditions which will allow us

to recognize if a given n-person games is a polymatrix game (section 4).

2.- Some Notations and Definitions

A polymatrix game (presented by Janovskaya (1968)) is a n-person non

cooperative normal form game : T =({ Zi , Ai , 1eN }. Here N is the finite
set {1,..,n}, with n > 2. Every player ieN has a finite set of pure
strategies:
i i
Zi = { al,...,ami}

If player i chooses strategy oe Zi and player j chooses pure strategy aJeZE

it is possible to assign a partial payoff alJ(al,aJ) such that for any

choice of pure strategies (al,...,an) by the n players, the payoff to



player i is given by:

(2.1) A.(al,...,an) - s a @t o)

. . j=i
Let A = (a J) be the m, X mJ. matrix of partial payoffs to player i
resulting from the choices of pure strategies by player i and player j.
The scalars and all entries in matrices and vectors will be taken from

an ordered field F.

A mixed strategy for player 1 is a probability distribution over the

pure strategies. That is a column vector X = ( X. (a ), 1(alm ) ) =
i i
(x 1,... ; ) where xl is the probability of i playing his strategy a:e =,
i
Let S, be the set of mixed strategies for player i:
S, = { x. : eTx. =1 and x, = 0 )
i i i i

Here e and 0 are column vectors of dimension m consisting of 1's and 0's
respectively. The inequality Xg = 0 means inequality between the respective
elements of the vectors. We denote with (.) T the transposed of the

corresponding vector or matrix.

n
Let x = ( xl,...,xn) e II §i be a n-tuple of mixed strategies of the n
i=1
players. The expected payoff to player i is:
: T Iy m, m. o . .
(2.2) E.(x) = (x.)" 2 A Jx.= 5 2t =t K
i i’ L. . . rs s T
j=i j=i r=1 s=1

For a n-person non cooperative normal form game T ={ Zi ) Ai , ieN ) ,

we have the following definition of Nash equilibrium points:

n
* * ~
An n-tuple x = ( Xpooe s X Y e 1 Zi is a Nash Equilibrium point if

i=1

and only if :

(2.3) E. (x) E. (xN {i)’xi) for each X, € Zi and for each i ¢ N.

4 a- * * * *
Here we denoted: (XN-{i)’Xi) = (Xl’""Xi-l’xi’xi+1""’xn)

We say that §i is a best reply of player i against x if and only if:

Ei(xN-{i}’gi) = max E, (xN {1} )

X, €3,
i 71



We denote with Ji(XN-{i}) the set of all pure best replies against x:

i . i, i
(2.4) Ji(XN-{i}) = { o € Ei : Ei(XN-{i}’ar) = m?x Ei(x N-{i}’at) }
o €x.
We used the notation: t 1
i
(XN-{i}’ap) = (Xl”'"Xi-l’ep’xi+1""’xn)

where ep is a column vector of dimension mg with 1 in the place p and zero
in other places.
Let S(xj) be the support of the mixed strategy xj, that is:
] ]
S(x,) ={ o €2, : x2 >0
( J) p J p )
It is well known that Xy is a best reply against x if and only if:
(2.5) S(xi) c Ji(XN-{i})
Therefore, an n-tuple x is a Nash Equilibrium if and only if
(2.6) S(xi) C Ji(XN-{i}) for each 1 € N.
Now for the case of Polymatrix games, the definition of Nash equilibrium
point (2.1) becomes
An n-tuple X is a Nash Equilibrium point of the polymatrix game T' if
and only if:
iy * * i] *
ot s AU x = @)t = ab i,
i L. i i Lo 75
_j=i j=i
for each X; € Ei and each i € N.

Let E(I') be the set of Nash equilibrium points of a Polymatrix game T.

For Each player i ¢ N and each non-empty set Si c Ei we define:

n
(2.7) Hi(si) = { X ¢ igl = : Si C Ji(XN-{i}) }
We remark that in view of (2.2)
. m, .. . . .
Iy & J 1] J _ J i
(2.8) Ei(XN—{i}’Up) .2. ? aps X .2. Fi (ap,xj)
. j=1i s=1 j=i
where F{ is a linear function in the wvariable Xj , and then the sets H are

convex polytopes.



3.- The structure of the set of Equilibrium Points

We are going to describe the set of Equilibrium points E(I') of a
polymatrix game. We will show that it is a finite union of convex polytopes.
Each equilibria will be a suitable convex combination of a finite set of

equilibrium points. *

We define
n~
(3.1) C(Sl,...,Sn) ={x eigl Zi : S(Xi) C Si for each 1 ¢ N )
It is a convex polytope.
n
For each x e I ii we have that:
i=1
X € iQN Hi(Ji(XN~{i))) N C(S(xl),...,S(xn))
Moreover, given x ¢ E(T'), by (2.6),(2.7) and (3.1) we have:
(3.2) X € .n Hi(si) N C(Sl,...,Sn) with Si = Ji(XN-{i})
ieN a
For each (Sl,...,S Y e I 2, we define:
n jop 1L
(3.3) H = n H.(5.) ncC(S,,...,S)
C(Sl,...,Sn) PeN it 1 n

It is also a convex polytope. We note that for some choices of n-tuples

(Sl""’sn) the set H could be the empty set @ . However, (by the

C(Sl,...,Sn)
Nash Theorem) E(I)= @. This and (3.2) imply that at least
for some n-tuple (Sl,...,Sn) : HC(Sl""’Sn) =

We also note that for each x ¢ HC(Sl""’Sn) we have :

S(xi) c Ji(XN-(i}) for each 1 ¢ N
Then, in view of (2.6), x is an equilibrium point. We will denote with V(.)

the set of vertices of each convex polytope. Thus, we denote the finite set:

VH { x}...,xq }

C(Sl,...,Sn)

If H is such that 7 (S,,...,S ) with H
C(Sq,...,5) 1 n C(Sy,---.5)

C

1 A similar result was showed for bimatrix games (see Winkels(1979),
Jansen(1981a), (1981b)).



then the points in VH are called Extreme

H. - -
C(Sl,...,Sn) ) C(Sl,...,Sn)
Equilibrium Points ",
We also define:
H(S.,...,S$ ). = = .= n H.(s.) nc(S,,...,8)
1 n C(Sl,...,Sn) i eN i1 1 n

Proposition 3.4:

n
VH(Sl""’Sn)C(é - ={ x e.H Zi T X € V(’n Hi(si)) with
) ; 1 n i=1 ieN
X € C(Sl,...,Sn) }
- - 3
(We denote the second set by: K(Sl’ ’Sn’sl’ ,Sn)) *
Proof:
Given x ¢ K(Sl,...,Sn;Sl,...,Sn) then x € V(.n Hi(si)) c 'n Hi(si)
} } ieN ieN
and X ¢ C(Sl,...,Sn); so that x ¢ H(Sl"'"Sn)C(él,...,én)'
Suppose th:t x £ VH(Sl’""Sn)C(él,...,én)' That is
t . t
(3.5) X = til At X with x € VH(Sl""’Sn)C(él,...,§n) and 0 < At <1
However, as x ¢ N V( ﬁi(Si)) and xt € N ﬁ.(Si) then (3.5) becomes
ieN ieN
impossible to be fulfilled. Then:
K(Sl,...,Sn;Sl,...,Sn) C VH(S].’.'.’Sn)C(él,...,én)'
Suppose that there would be a point x such that:
* e VG uS)e(s L8 ) T R SyiSy. 0 Sy) then
X € C(Sl,...,Sn) and x € V( .n Hi(si))
- ieN
At the same time: x ¢ N Hi(si) , so that:
ieN

2 It corresponds to the notion of Extreme Equilibrium Points defined

for bimatrix games in terms of Maximal Nash Subsets.

It says that the vertices of H(Sl"" are those

] S - -
) ] n%(Sl,...,Sn)
vertices of N H.(S.) which are also in C(S,,...,S ).

it i 1 n

ieN



w
(3.6) x= % x" A withx“eV(n H.(5.))c n H.(5.) and 0 < A_< 1.
t . iv7i . it7i t
t=1 w ieN ieN
Then for each i ¢e N x, =2 X XF
1 i=1 t 1
On the other hand we have : X ¢ C(él,...,én) and by (3.6) we obtain:
S(X;) C S(Xi) c éi for each i ¢ N. Then:
t - -
(3.7) xi € C(Sl,...,Sn)

Therefore, from (3.6) and (3.7)

t
(3.8) x € H(S,,...,S) and x € VH(S.,,...,S )..= -
1 n C(Sl,...,Sn) 1 n C(Sl,...,Sn)
Then (3.6) and (3.8) will be incompatible and we obtain:
R(Sy,..-,8 387, ....8) = VH(sl,...,sn)c(él’_“,én) (Q.E.D)
If for each 1 ¢ N éi = Si we will use the notation:
K(Sl,...,Sn;Sl,.‘.,Sn) = K(Sl,...,Sn). We remark that:
(3.9) K(Sl"°"sn) = VHC(S 8
1 n
We will define:
— n —
E( N Hi(Si)) ={xe I Zi with X being a convex combination of
c ieN i=1
points x ¢ K(Sl,...,Sn) }

We note that we can rewrite :

t -~ . .
K(Sl,...,Sn) ={ x ¢ V(iCNHi(Si)) with S(Xi) c Si for each i ¢ N}

Proposition 3.10:

a) K(Sl,...,Sn) C E(I) b) E(.n Hi(si)) Cc E()
ieN
Proof':
t t . .
a) If x ¢ K(Sl,...,Sn) then x ~ ¢ H(Sl""’sn)C(Sl,...,Sn) It implies

t t . . t
S(Xi) - Si - Ji(x N-{i}) and in view of (2.6) x ¢ E(T).

b) Given x ¢ E( N ﬁi(si)) , X is then a convex combination:
z . ieN ‘ z
X = X A_X with x € K($,,...,8 ) ; 0 <)X =<land I x_=1
t 1 n t t
t=1 t=1
and we obtain:



b4
(3.11) s(x) € N S(xt.l:) c s,

t=1
As x 1s a convex combination of xl,...,xz , which are points of n ﬁi(Si)
ieN
and it is a convex set, then x ¢ N ﬁi(Si) , So that:
ieN

(3.12) Si c Ji(XN-{i}) for each ieN.

(3.11), (3.12) and (2.6) imply : x € E(T). (Q.E.D)

We define: E = U E( N ﬁi(Si))

(Sl,...,Sn)g(Zl,...,Zn) ieN

Theorem 3.13:

E = E(I")
Proof:
In view of Proposition 3.11 b) E C E(I'). Let x ¢ E(I') be a Nash

equilibrium of the polymatrix game, then by (3.2) and (3.3):

X € HC(Sl""’Sn) with Si = Ji(XN-{i}) for each ieN.
Then VHC(S S ) is a non-empty finite set.Moreover, as remarked
1025,
. R -
in (3.3): x € VHC(Sl""’Sn) C E(I)
By Proposition 3.4 and (3.9): xt € K(Sl,...,Sn) and as X is a convex
combination of elements of K(Sl,...,Sn) then x ¢ N ﬁi(Si) and thus we
_ ieN
obtain: x ¢ E. (Q.E.D.)

In this way every Equilibrium Point of a Polymatrix game can be obtai-
ned as a convex combination of a finite set of Extreme Equilibrium Points.

We conclude this section with some examples:

Example 1: Consider the 3-person polymatrix game I, where Zi={a,b} for
i=1,2,3 and the payoff matrices are defined by:
RPN {

1 if al= aJ

0 otherwise



The total payoff for player i will be the sum of the number of players,
other than himself, matching his strategy. The payoff matrices for the

normal form of this game are given by:

Player 2 Player 2
a b a b
Player a |_2,2.2 1.0.1 Player a | 1.1.0}1 0.1.1
1 b|0,1.1 [ 1.1.0 1 b |_1.0,1 ] 2.2.2
a b
Player 3

(Player 1 chooses the row, player 2 the column and player 3 the matrix).
There are two Nash equilibrium points (in pure strategies): All the
players choosing strategy a or all of them choosing b. The payoff at these
equilibrium points will be 2 for everyone.
There is another, less appealing, equilibrium point if mixed strategies
are allowed: Each player mixing (0.5,0.5) each pure strategy, with an

expected payoff of 1.

Example 2: Consider the 3-person polymatrix game defined by:

0,0,0 3,0,0 0,0,
A~ {101 a3 2270 A3 1)
0,1,0 0,3,0 0.0

’ s

O

] and the remaining At= o

This game belongs to the subclass of cyclic games studied by Marchi and
Quintas (1983). The set of equilibrium points is:
E = {(0,1,0),(0,0,1),(0,1,0))} v {((0,0,1),y,(0,0,1)); where y is any

convex combination of (0.5,0.5,0), (0,0.5,0.5) and (0,1,0))

4 .- Characterizations of polyvmatrix games

Until now, we considered polymatrix games defined by means of the
matrices Ai- (see Examples 1 and 2). However, if the game is given in the

usual normal form it arises the problem of recognizing whether it is a



polymatrix game.

In this section we will state necessary and sufficient conditions in
order that a given n-person noncooperative normal form game I = ({ Zi, Ai’
ieN } be a polymatrix game. We remark that every polymatrix game is defined
by n(n-1) matrices (see (2.1)) and it forms a n-person normal form game.
However many sets of matrices (i.e. many polymatrix games )define the same
normal form game.*4

We will introduce some nomenclature. Given two n-1 tuples

1 i-1 i+l
T

1 i-1 i+l n
o , 0 N-{i}~ (r—, ..., , T yee.,7 ), for

n
aN-{i}_ (o7,..., ye..,0 ) and r

each subset S C N-{i}, we denote :

o Vvijes

o W)
(4.1) N~ g

where S' = (N-{i}) - S

- vjes

We will use the above notation to state the following conditions:

(4.2) V oo e Z;, ¥ (n-1) tuples r. ., and V S C N-{i}

CON-(iy 0 TN-{1)
i §s!

i 8
) = Ai(a ;WN_{i}) + Ai(a ’WN'{i})

A.(al

i
i ’aN-{i}) + Ai(a

'TN- (1)

In a polymatrix game, for each strategy o € Zi , each other players

J

strategies (aJ or v~ with j#»#i) provide a fixed amount ( al(al,aJ) or

al(al,rj) respectively ) to the total payoff player i receives ( Ai(al,aN_

) or Ai(al,r ) ).Then a polymatrix game will trivially fulfill (4.2).

{1} N-{i}

We will prove that, for a normal form game, (4.2) is also a sufficient

condition in order to be a polymatrix game.

(4.3) V ol e Ei , oY € Zj , o e Zj , ak € Zk, Ek € Zk with j,k = i
) i~j =k
and V (n-3) tuple aN-{i,j,k} Ai(a ,0° 0 ’aN-{i,j,k})

—~ —~

i 4 The formula (4.10) will allow to generate many sets of matrices
atd defining the same n-person normal form game.

10



i j k _ i j k ) i j k
Ai(a ,0V ,0 ’aN-{i,j,k}) = Ai(a ,0% ,0 ’aN-{i,j,k}) Ai(a ,0° ,0 ’aN-{i,j,k})

Lemma 4.4
Conditions (4.2) and (4.3) are equivalent.
Proof:

For each § € N-{i} we denote 9g the |S|-tuple of strategies where each

player j € S plays the strategy o) e Zj.
Condition (4.2) can be rewritten as follows:
(4.5) Vo e %, VS CN-(i) and §'=(N-(i))-S

i i i i
Ai(a ’aN-{i}) + Ai(a ,TN_{i}) = Ai(a ’US’TS') + Ai(a T

When S=(k} (i.e. |S|=1l) we obtain the condition (4.3).

s %)

In order to prove that (4.3) implies (4.2); Suppose that:
(4.6) this implication holds for each set S" with |S"|=s-1.
Then, we will prove it also holds for each set S with |S|=s.
For any k ¢ S € N-{i), we apply (4.6) to the set S-{k}. We obtain:

4.7) A, (ot )y = A, (ot

1(7 o (1)) * Ai(al”N~{i} 109105 Tg) *
Ai(al’TS-{k}’a(S-{k})’) and
(4.8) Ai(ai,aN_{i}) + Ai(ai,TN_{i}) - Ai(ai,fs,as,) +
8300005 T (s- 1)) )

Summing up (4.8) and (4.7), and using again (4.6) we obtain (4.5) for

the set S. (Q.E.D.)
Theorem 4.9:
A noncooperative n-person normal form game I = { Zi, Ai’ ieN)is a

polymatrix game if and only if it fulfills (4.3). 1If it is the case,
then the elements of the n.(n-1) matrices atd defining the polymatrix game
can be written as follows:

(4.10) Fixed any n-1 tuple o , j#i and n-2 arbitrary values Cj

N-{i}
11



ij, 1 3, _ i j
a (o ,07) = Ai(a 07,0y, (i}

aij(al,aj) = Ai(al aJ

) + C; for o) e %, (for j#i and 3=3).

P c

(n 2) A, (o7, - _
j=1i,]

ON- (1)) N-(1)) i
Proof:

It is immediate to verify that every polymatrix game fulfills (4.3). On
the other hand, we will denote P=Pn when |N|=n. If Pn fulfills (4.3) we are

going to show that:

i
(4.11) YV o ¢ Zi v aN-{i} € .H. Zj
j=i
i ij, 1 ] . < .
Ai(a ’aN-{i}) = X a-(o ,07) i.e. (4.10) defines a polymatrix game.

j=i
It can be rewritten as follows:
i
(4.12) Ai(a ’aN-{i}

For n=3 (4.12) is just (4.3).

)= ZA (o L
J#l

) + (n-2) A, (a

IN- (1) N-(i})’

- . . -k, -k .
For each oy € Zk we define the game: Pn(a )y = { Zi(a ), Ai’ ie N}

. -k . -k -k
with Zi(a ) = Zi for each i=k and Zk(a )y = {o)

It is equivalent to consider the n-1 person game :

k k k -k

k - .

Fn_l(a Y = {2 () , Ai , 1 € N-{k} } where Ai(aN-{i,k}) = Ai(a, aN-{i})'
We will assume (4.12) holds for Pn_l(ak), that is:
i -k i- i k -
(4.13) A.(a ,O N {1 k}) + (n-3) Ai(a ’aN-{i}) + Ai(a ,O ’aN—{i,k})
J
= XA, (a ,o L)
i i N-{1}
Using (4.3), the left term in (4.13) becomes:
i- i

(4.14) (n-2) Ai(a ’UN-{i}) + Ai(a ’UN-{i})
Then (4.12) holds for Pn. (Q.E.D.)

It is immediate that different choices of Cj's and aN-{i} give origin
to different payoff matrices A in the polymatrix game, but they define
the same n-person normal form game.

Condition (4.3) 1is wuseful to recognize a polymatrix game when the

12



matrices A™J are not explicitly given in the description of the game. We

illustrate this in the oligopoly model considered in the following example:

Example 3: Consider an industry with a fixed number of firms producing an
homogeneous good. Each firm may choose to produce nothing or to produce a
positive quantity q; from a finite set of possible outcome levels Qi' Each
firm has a cost function ci(qi). Let Q be the total output of the industry
and p the market price. Let q be the n-tuple of quantities produced for each
firm: q=(q1,...,qn). The profit function of firm i can be written:
Ai(q)=qip(Q)-ci(qi). We imagine the firms make their decisions (choose each
output level qi) simultaneously. Then, the above situation can be
described as a n-person game F={Qi, Ai’ ieN}
n
Qi a finite set for each ieN. Ai(ql,...,qn)=qi p(ii1 qi) - ci(qi).
I' is a polymatrix if and only if:
v qieQi v q_; anq r;o¢€ Q_i =1 Qj and for each partition {S,S’'} of the
=i
set N-{1i}
p(q; + 2 q.) + p(q; + 2 r.) =

) jeN-{i} - jeN-(iyd

p(qi + X q,. +2 r,) + p(qi + X q. +Z r,)
jesS jes’ J jes’ jesS

If we assume linear cost functions: ci(qi)=Ki q; and also a linear demand

function p(Q)=a-bQ with a,b>0. Then the profits (payoff functions) are given

by:
2 .
Ai(q)=qi(a-Ki) - bqi -4y bjiiE qi) and (*) becomes the following
identity:
b q. + 2 r. = 2q, +3 r, +2r, + X q,
jeN-{i) 3 jeN-({i} 3 jes I jes' d jes I jesr d

Then, I' is a polymatrix game and we can use (4.10) to define explicitly the

13



coefficients of the matrices Aij.
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