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ABSTRACT

This paper concerns a group choice model in which efficient choice
requires the revelation of at least some of the group members' private
information. A mechanism is a game that determines the group choice and
transfer payments from the headquarters to each member as functions of the
members' messages to headquarters. Each member's utility is the sum of a
direct payoff from the group choice plus the transfer payment from the
headquarters. A mechanism is dominant if it implements efficient choice in
dominant strategies. Informational externalities exist when the direct payoff
to one member depends upon information that is privately held by other
members. This paper examines the effect of informational externalities upon
the existence of dominant mechanisms. In particular, the impact of

informational externalities upon the Groves mechanisms is studied.



1. Introduction

Each agent in a group typically has some private information. When a
collective action is considered, the agents may be asked to reveal some of
their private information to a central agent (or headquarters) in order to
permit an efficient choice. An agent may find it in his best interest,
however, to lie; this can lead to an inefficient choice for the group.

This paper concerns the problem of devising transfer payments (positive
or negative) from the headquarters to the agents that will induce them to
reveal their private information. To be more precise, we regafd the process
whereby the agents communicate with headquarters as a game, where each agent's
strategy set is his range of possible messages. A mechanism is a game that
determines the group choice and a set of transfer payments from the
headquarters to the agents as a function of the agents' messages. A mechanism
is dominant if (i) each agent has a dominant strategy, and (ii) the
headquarters makes an efficient choice when the agents choose these
strategies. We examine conditions under which dominant mechanisms exist.

As a starting point of our analysis, we present a model of group
decision-making. In our model, each agent's utility is the sum of the

transfer payment from headquarters plus a direct payoff that results from the

group choice itself. Our model differs from most of the models in the
mechanism design literature in one important respect: 1in this paper, an
agent's direct payoff may depend upon information that is observed only by the

other agents. We refer to this phenomenon as an informational externality.

It is usually assumed that an agent's direct payoff depends only upon the
choice itself, information that is common knowledge, and his own private
observations (e.g., his personal characteristics), but not upon the private

observations of the other agents. Informational externalities do not preclude



the existence of dominant mechanisms, but they do place limits on their
existence. The purpose of this paper is to explore these limits.

Informational externalities are illustrated in the internal transfer
problem, which concerns the transfer of an item within a firm. One division
(the manufacturer) can produce an item for another (the marketing division).
The headquarters must decide if this should be done. When the item is
transferred, the direct paycff to the manufacturer is the cost of the item,
and the direct payoff to the marketing division is the price that it expects
to receive when it later sells the item outside the firm. Informational
externalities exist if the marketing division would alter its estimate of this
price if it somehow acquired the manufacturer's information about the cost of
production. This might occur if this cost and the cost of the item to
competing firms were dependent random variables. Similarly, if the
manufacturing division itself had the option of marketing the item, then this
opportunity cost must be considered in determining the manufacturer's direct
payoff. Informational externalities exist if the manufacturer's estimate of
this cost would change if it acquired the marketing division's knowledge of
the marketplace. This example is more formally presented in Section 2.

A revelation mechanism is a mechanism in which each agent can completely

reveal his private information. A natural starting point for our analysis is

a particular family of revelation mechanisms - the Groves mechanisms. These

mechanisms originated in the work of Clarke [1], Groves [7], and Vickrey
[12]. 1In several models, it has been shown that a Groves mechanism solves the

misrepresentation problem by making truth-telling into a dominant strategy for

each agent. We reexamine these results in light of the problems that can be
caused by informational externalities.

Three independence properties (I-III) are formulated that limit the



dependence of any agent's direct payoff upon the other agents' information.
Property I states that no informational externalities exist; Properties II and
IIT are less restrictive. Property I implies that II and III hold, while II
does not imply III, nor does III imply II.

When Property I is satisfied, any Groves mechanism makes truth-telling
into a dominant strategy for each agent. This is the "classical” result about
Groves mechanisms. Property III is a necessary condition for the existence of
a Groves mechanism that makes truth-telling into a dominant strategy for each
agent, We then formulate a class of quasi~Groves mechanisms for the set of
direct payoff functions that satisfy Property II. These mechanisms are
identical to the Groves mechanisms when Property I holds, but they form a
completely separate class when informational externalities exist. For all
direct payoff functions in the set defined by Property II, truth-telling is a
dominant strategy for each agent under any of the quasi-Groves mechanisms.
Property II is therefore a sufficient condition for the existence of dominant
mechanisms. We also prove in this paper that none of these three properties
is necessary for the existence of a dominant mechanism.

These results are meaningful, because it is easy to imagine that these
properties would not be satisfied in many of the real-world situations where
Groves mechanisms have been proposed as solutions to the misrepresentation
problem. For instance, the Groves mechanisms have been considered as a way to
insure efficient choice in the internal transfer problem (see [9], [11]). Our
work shows that informational externalities may make the Groves mechanisms
ineffective in such situations.

The final section of this paper concerns the more general problem of the
existence of dominant mechanisms. 1In a special case of our model, we

formulate Property D (for "dependence”), which expresses the presence of



informational externalities. Property D implies that IT does not hold. 1In
this specialized setting, we prove that D is sufficient to insure that no
dominant mechanism exists; moreover, we show that D is satisfied by "almost
all” determinations of our model in this restricted setting. This in some
sense mitigates our criticism of Groves mechanisms, for it suggests that the
dominant strategy solution concept is simply too strong a requirement for the
decision problems that can be represented by our model.

We conclude this introduction by briefly describing the relationship of
our work to several other papers. In a special case of our model, Green and
Laffont [5] showed that the Groves mechanisms are the only revelation
mechanisms for which (i) truth-telling is a dominant strategy for each agent,
and (ii) headquarters makes an efficient choice when the agents tell the
truth. This strong characterization assumes that informational externalities
are not present, and that each agent's direct payoff function assumes a
"dense” range of values. Since the focus of our paper is the effect of
informational externalities upon dominant strategy implementation of
efficiency, the Green and Laffont characterization does not apply to our
model. Our analysis in fact shows that Green and Laffont's characterization
does not generalize to include all cases where informational externalities may
exist: the Groves mechanisms are not always dominant in these cases, and
other mechanisms (e.g., the quasi-Groves mechanisms) may be dominant. The
reader should also note that though we do not make any assumptions about the
range of the agents' direct payoff functions, such assumptions would not alter
these conclusions.

Our model does assume that an agent's utility is additively separable
(i.e., it is the sum of his direct payoff plus the transfer payment). We also

do not impose the budget constraint, which requires the transfer payments from




the headquarters to the agents to sum to zero. Green and Laffont [6, Ch. 5.2]
showed that while separability is not necessary for the existence of dominant
mechanisms, such mechanisms cannot exist when the class of non—-separable
utility functions is sufficiently rich. Green and Laffont [5] contains an
example where nonseparability precludes the existence of dominant

mechanisms. Similarly, in some cases dominant mechanisms exist that satisfy
the budget constraint (e.g., see Groves and Loeb [8, Sec. 2.6]). The Green
and Laffont characterization that is discussed above, however, can be used to
show that such examples require strong assumptions about the agents' utility
functions (see [6, Ch. 5.3] for further discussion). These results reveal
some of the limits of dominant mechanisms as solutions to the
misrepresentation problem. We assume separability and we do not impose the
budget constraint in this paper in order to properly isolate a third
limitation on the usefulness of dominant mechanisms -- informational
externalities. The reader should also note that the budget constraint may be
inappropriate in the internal transfer problem (for instance), for it may not
be important that the budget of the headquarters balances as long as the
organization as a whole balances its budget. See Radner [11] for further
discussion.

Using a Bayesian model of collective choice, d'Aspremont and Gérard-Varet
[3,4] studied how correlation between the agents' private observations affects
the existence of revelation mechanisms for which: (i) truth-telling is a
Bayesian—~Nash equilibrium; (ii) an efficient choice is made when the agents
tell the truth; (iii) the transfers sum to zero no matter what the agents
choose to report. As discussed above, our paper is focused on the dominant
solution concept, and we do not attempt to balance the budget; the budget

constraint is a prime interest of d'Aspremont and Gérard-Varet [3,4]. The



most important distinction between our model and theirs is that we consider a
larger family of direct payoff functions. As noted earlier, this is what
distinguishes our paper from most work on mechanism design. In d'Aspremont
and Gérard-Varet [3,4], an agent's direct payoff depends only upon the agent's
own observation and the group choice itself; the agent is concerned with the
other agents' observations only because they may affect the messages to
headquarters, and hence also the group choice. 1In our model, an agent's
direct payoff may in principle depend upon any feature of the state of nature;
an agent is interested in the observations of others not only because they may
indirectly affect the group choice, but also because they could directly
affect his own preferences over the set of possible choices. Because we
consider a more general class of direct payoff functions, correlation between
the agents' observations is not the true source of the problems that we
consider (as it is in d'Aspremont and Gérard-Varet [3,4]), but only an
incidental effect; informational externalities can exist even when the agents'
observations are independent. This will be clarified by a formal discussion

of our model.

2. Model
There are n agents, and an institution that is separate from each of the

agents — the headquarters. Headquarters must choose an element of a set A

(the set of alternatives) for the group of agents. Each agent is risk-

neutral.

We assume that there is a probability space (Q,B,u), which we refer to as

the space of environments. Every element of Q specifies a value for each of

the economic parameters that is relevant to the decision problem at

hand, @ describes the range of possible environments, and u expresses the



likelihood that a particular set of circumstances would occur. We assume that
(2,B,p) is common knowledge. In a moment, we shall discuss what the agents

and headquarters actually know about the environment. Note that an element of

Q would determine the characteristics of the agents themselves, if these
characteristics could vary. An example of @ will be given shortly.

We assume that agent i's utility function U,(e) has the form
y i

U.(a,w,t. ) = W (a,w) + t .
i i i i

Here, a is in A, w is in @, Wi(a,w) is the ith agent's direct payoff, and ti

is a transfer payment from headquarters to the ith agent. This is the linear

form that was mentioned in the Introduction. We assume that headquarters
knows each of the functions W1(°),...,Wn(°).

For each 1 € i € n, we assume that there exists a measurable function
X. (*) from (Q,B) into some measurable space E, ., Each of these functions
i i
is common knowledge. For a specific environment w, however, agent i alone

observes the value g, X.(B). This value represents agent i's private
i i

information about the true state of the environment w. Note that the values
of X,(B),...,X (B) might not completely determine B; given all the agents'
i n

observations, there still might be some uncertainty about the actual

environment.
. s * .
By assumption, headquarters wants to choose an alternative g that is

% ..
efficient in the following sense: s maximizes

n
Ep( Z Wi(a,w)IXj(w) = Xj(w), 1<j<n), (1)

1

1

where w is the actual environment. Headquarters, of course, does not observe



XI(B),,,,,XH(E), In order to attain its objective, headquarters must acquire
information about the observations xi(E) from the respective agents.
Headquarters' problem is to design transfers so that the agents will have an
incentive to provide it with enough information to make an efficient choice.
Before proceeding, we first illustrate our model by formalizing the

internal transfer problem.

Example: The two agents are divisions of the same firm. One division
(the manufacturer) can produce a good for the other division (the marketing
division). Headquarters must decide whether or not the manufacturer should
supply the good to the marketing division.

An element w of @ determines all of the information that might be useful
to headquarters or to the divisions if it were made available to them; w might
specify the cost to the manufacturer of producing the good, a complete
description of the market that the marketing division would face if it
acquired the good, etc. Each division makes an observation about the actual
environment ;. For instance, the manufacturer might have some information
about its cost of production, and the marketing division might know something
about the price it would face in the market if it tried to sell the good.
When the decision is actually made, however, the manufacturing cost and the
market price might not be perfectly known by the respective divisions.

Headquarters wishes to act in the best interest of the firm as a whole.
Given all that is known about the true state of the environment, it should
order the manufacturer to produce the item for the marketing division if and
only if the expected benefit to the marketing division exceeds the expected
cost to the manufacturer. If Wl(-) represents the benefit to the marketing

division, Wz(-) the cost to the manufacturer, Xl(a) and XZ(G) their respective



observations, and if A is the set consisting of the two optiomns that are

available to headquarters, then headquarters should choose an option that

maximizes (1).

We return to the general case. Since decisions can only be based upon
what is actually known, we can eliminate (Q,B,u) and the functions
Xl(-),...,Xn(') from the problem. This will reduce our model to a form that
is similar to the more standard models. Let E denote the Cartesian product

n

T. ) Ei’ and let e denote the n-~tuple (el,...,en). For 1 € j € n, define a
1=

function wi(°) from A X E into R by the following formula:

for a € A and e € E,

w,(a,e) E [w,(a,w)IX,(w) =e , 1< 1ic¢g n].
] B-od 1 1
If agent j knew all n components of e, his evaluation of the alternative a and

the transfer t, would be wj(a,e) + tj. Agent j, however only knows
]
ej = Xj(w). He will therefore use the function ;j(') to evaluate

alternatives, where

wj(a,ej) = Ep[Wj(a,w)IXj (0) = ej].

Finally, the objective for headquarters is to choose an alternative a(e) such

that

n
o(e) € argmax z w, (a,e).
acA i=1

Our model now differs from the more standard approach in only one
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respect: agent j's evaluation of the alternatives might change if he somehow

acquired the information that is known only by the other agents.

Informational externalitites are present when wj(') and ;j(.) are distinct
functions on A X E for some j. Because an agent's direct payoff may depend
upon any feature of the environment, informational externalities can exist
even when Xl('),...,Xn(') are independent; correlation between the
observations is not necessary for their existence. Note that informational

externalities do not exist in the special case where the agents' observations
are perfectly correlated.
We now state several properties that limit the presence of informational

externalities. The first property completely precludes their existence:

Independence Property I: for 1 € j < n, w,(*) does not depend upon
J

£ s
ey for i j

This property is assumed in most analyses of the misrepresentation problem.
We shall also use the following hypotheses in our analysis of Groves

mechanisms:

Independence Property II: for I < j < n,

w.(a,e) = v_(a,e,) + y_(e);
j h| j j

Independence Property III: for 1 < j € n, if
oel,e ) = ofel',e ,) = a, then
b IR ’

2 w.(a,el,e .) = ) w.(a,e!',e_.).
igg + 373 iz - 3 0T

Note that II and III follow from I, but II does not imply III, and III does
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not imply II. Properties II and III are motivated by their use in the next
section.

There is no mathematical reason to expect that any of these independence
properties would hold. They may or may not be true in a particular real-world
problem. Our discussion of the internal transfer problem illustrates,

however, that they need not hold.

3. The Problem

As mentioned in the Introduction, we regard the process whereby the
agents communicate with headquarters as a game, or mechanism. To define a

mechanism, we must specify a strategy set Si for each agent, and a mapping

n

Hi=1 Si into A x R™. The set Si contains all of the messages

g(+) from S
that are available to the ith agent. The mapping g(e¢) is the rule with which
headquarters chooses an alternative and a set of transfers, based upon the
messages it receives from the agents. We let g = (a,tl,...,tn), where a(*) is
an element of A and tj(°) is the transfer to the jth agent. For the moment,
we do not assume that o) has any special properties.

Let (S,g) represent the mechanism with strategy set S and outcome g(+).
Also, let S__ denote the Cartesian product of the n-1 sets
Sl""’sj—l’sj+1"°"sn’ let S_j denote any element of S—j’ and let (s;,s_j)
denote the element of S that is obtained by starting at (Sl""’sj’°°"sn) and
changing the jth component from Sj to s;.

A strategy for agent j is a mapping ¢j: Ej-* Sj that selects his
messages on the basis of his observations. Let T denote the probability
measure on E that is defined using p and mapping (Xl,...,Xn): Q> E. For

i#j, let ¢i: Ei-+ Si be any strategy for the ith agent, and let

¢_j: E_j-> S_j denote the mapping (¢1’.'.’¢j—1’¢j+1"..’¢n)' Given that the
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jth agent observes z. and believes that the other agents will use the
]

*
strategies given by ¢_j(°), he should choose his message sj to maximize the

conditional expected value of the sum of his direct payoff and his transfer.

This is formally given by the function u. :

ui(es,5,0_0) = Efw(als; 0 (e D)serse ) + ti(sp,0_s(e ) ey = e ]

The goal of this paper is to determine when dominant mechanisms exist. A

mechanism is dominant if: (i) each agent i has a dominant strategy

y.: E, -~ Si; (ii) when the agents use these strategies, headquarters chooses
i i

an alternative that is efficient relative to what the agents have observed.
As long as we are interested only in the existence of dominant mechanisms, the

revelation principle allows us to restrict our attention to revelation

mechanisms in which truth-telling is a dominant strategy for each agent. A

revelation mechanism is a mechanism (S,g) in which each S, equals E,. The
i i

revelation principle states that if there exists a dominant mechanism, then

there also exists a dominant revelation mechanism (E,h) that satisfies the

following conditions:

i) truth-telling is a dominant strategy for each agent:

*
u.,\e.,e. d) . >u, e.,e, d) . 2
( s s ) ( ’ ’ ) ( )
1 € ( )
< 9 < = ese cee
for al 1 ] n, e,, e, E., and ¢ . ¢l, ,¢, l,¢. l’ ,d) ’

where ¢,: E, > E.;
i i i
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ii) for any e € E,

n
a(e) € argmax z w_(a,e). (3)
a€A i=1 '

Further discussion of this revelation principle can be found in Dasgupta
et.al. [2, p. 1941,

Note that our real task in defining g(¢) is to devise transfers so that
(2) is satisfied. The choice of an af+) that satisfies (3) is immediate, as
long as there exists at least one alternative in A that maximizes
Z?=l wi(a,e). We assume throughout this paper that such an alternative exists

for every e in E.

4. The Scope of Groves Mechanisms

In Theorem 1, we prove that a Groves mechanism satisfies (2)-(3) if
Property I holds, and only if Property III holds. A Groves mechanism may
still be dominant when Property III is not satisfied, for efficiency may be
implementable with non-truthful dominant strategies. Theorem 1 simply states
that the Groves mechanisms do not guarantee the existence of dominant
mechanisms when Property III does not hold.

Assuming that Property II holds, we then define a family of quasi-Groves
mechanisms. In a corollary to Theorem 1, we prove that each of these
mechanisms is dominant. Theorem 1 and its corollary together show that the
Groves mechanisms are not identical to the family of dominant mechanisms when
informational externalities may exist.

As a technical result, the corollary also shows that neither Property I

not Property III is necessary for the existence of dominant mechanisms. 1In
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the following section, we shall show that Property II is also unnecessary for

the existence of dominant mechanisms.

Definition: A Groves mechanism is any revelation mechanism (E,g) that

has the following properties:
i) g(e) satisfies (3);
ii) for each value of j, the transfer tj(') to the jth agent has the form

tj(e) = izjwi( a(e),e) + Aj(e_j),

where Aj(-) is any function on E_j-

Before we state Theorem 1, we first prove the following lemma. Given the
reports of the other agents, agent j may be able to influence both the
headquarter's choice of an alternative and the transfer that he receives by

varying his message. The lemma states that if we are considering a revelation

mechanism in which truth-telling is a dominant strategy for the jth agent,
then this agent can change the transfer that he receives only when he also

causes headquarters to change its choice of an alternative. The transfer to

the jth agent can therefore be written as a function of the reports of the
other agents and the alternative that is chosen. The lemma is part of the

folklore of the theory of dominant strategy implementation; a proof in a more

restricted setting can be found in Green and Laffont [5, Lemma 1], for

instance.
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Lemma: Let (E,g) be a revelation mechanism for which truth-telling is a
* %
dominant strategy for some agent j. If “(eﬁ’e—j) = a(ei"e'j) for some

* * *
el,e'" €E, ande , €E ,, then t. (e',e ) =t (e'",e .).
3’73 k| ~j -3’ R R I B

*
Proof of Lemma: TFor i # j and ei € Ei’ let ¢i(ei) = e;s and define

¢_j: E_j-+ E_j by ¢_j = (jl,---,¢j_l,¢j+1,---,¢n)- The proof is by

*
contradiction. If t.(el,e .,) < t.(e!',e .), then
J 1 7] J 3 =]

uj(ej,ej,¢_j) ET[Wﬁ(a(ej,¢_j(e_j)),e) + tj[ej,¢_j(e_j))!ej = ej]

Ye, = e!]

E_[w,(ale! e .),e) (el,e
w,l e, e .),e)] + t.(el,e
T j’> =37’ ivTi’T- h| j

3 J

< ET[wj(a(ej ,¢_j(e_j)),e) + tj(ej',¢_j(e_j))|ej = eﬁ]. (4)

The expected value in (4) equals uj(ei,ei',¢_j). This contradicts (2). A

* *
similar argument can be made if tj(ej"e—j) < tj(ej,e_j). Q.E.D.

Theorem 1l: Let (E,g) be a Groves mechanism. If Independence Property I
holds, then (E,g) satisfies (2) (i.e., truth-telling is a dominant strategy
for each agent). Moreover, If (E,g) satisfies (2), then Independence Property

III must be satisfied.

Proof: We first assume that I holds. Let Zj denote the observation of

the jth agent, while ¢_j: E_j-> E_j represents the strategies of the other
%
agents. Assuming that agent j reports ei, we first write out the value of

ods

u,\e, ,e, . ).
J( 3 J,¢_J)
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i
=
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=3
®
>
~
®

T et ) Me) + T ulae 0 (e . ))e s . )
uj (e_'] ’ej ’¢_. = _j e Wi ¢4 ej ’¢_J e_j) ’ej a¢_j e_j
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L]

Applying I, this reduces to

Ret0 ) =E[ ) w (el (e ) e_ e, =%,] (5)
dylepeyty) = Vil deyat_gle_g))seys0_sle_giley = e

J J

%
Agent j's choice of e, affects only the first term in the sum in (5). By (3),
J

* ~ n % ~
setting e, equal to e, maximizes ). .w.| ale. .(e . e, .(e . for an

g ey eq 3 Liopwi(ates0 (o), 50 (e ) y
value of e_j; hence, the sum in (5) is maximized when eg = Ej. This verifies
(2).

Assuming that (2) holds for a Groves mechanism, the lemma states that

Property III must also be satisfied. Q.E.D,

Corollary: Suppose that Independence Property II holds. Let (E,g) be

any revelation mechanism where a(*) satisfies (3) and each tj(') has the

following form:

tj(e) = ziij vi(a(e),ei) + Aj(e-j)’ where

Aj(') is any real-valued function on E_j-
Then under (E,g), truth-telling is a dominant strategy for each agent.

This corollary can be proven by applying the techniques that were used to
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prove Theorem 1.

5. The Generic Nonexistence of Dominant Mechanisms
Our goal in this section is to develop a necessary condition for the

existence of dominant mechanisms. We begin with the following conjecture:

a dominant mechanism can exist only (6)

if Independence Property II holds.

This conjecture is false in the class of models for which the set of
alternatives A and each of the sets Ei is finite. It is easy to devise
examples in this case that refute (6). One begins by constructing an example
of our model such that: (i) Property II holds; (ii) there exists a mechanism
(E,g) such that (3) holds and the inequality in (2) is strictly satisfied
(i.e., truth-telling is the unique dominant strategy for each agent). The
functions wl(-),...,wn(-) can then be perturbed so that they no longer satisfy
Property II. 1If the perturbations are sufficiently small, (2)-(3) will be
satisfied by the same (E,g) together with the new, perturbed version of the
example.

Using this procedure, it is possible to devise counterexamples to (6)
that involve sets El’ Ez""’En and A of arbitrary size. This is true as long
as we do not require the mappings in the model to have any other properties
besides measurability.

For this reason, we now both weaken the conjecture and restrict ourselves
to a special case. We assume there are only two agents, and that the set of

alternatives contains only two elements - A = {ao,al}. Each Ei is a closed

interval on the real line; for convenience, we assume that Ei = [0,1] for
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i =1,2. We assume that wl(o) and wz(-) are c1 functions of the

environment. Finally, we assume that the probability measure T is absolutely
continuous with respect to the Lebesgue measure on E. It is possible to
generalize the following results, but our ideas are amply illustrated by this
simple case.

The following notation is needed:

wj(e) = wj(al,e) - wj(ao,e);

o = 1', the density of the probability measure T.

Headquarters should choose a, whenever w < 0, and a, whenever w > 0. The set
of points where ;(-) changes sign is therefore especially important, for at
these points headquarters must switch from one alternative to the other. Let

Z(;) denote this subset of w (0):
Z(w) = Cl{e|§(e) > 0} n Cl{e]%(e) < 0}.
Theorem 2 describes conditions on ;1(') and ;2(°) under which dominant
mechanisms cannot exist. Property D is one of the hypotheses of this

theorem. Property D is satisfied at an environment e in z(;) if the following

regularity conditions hold at e for either j=1or j=2:

i) an/ae_j(E) # 0; (7)
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1) a?«/aej (e) # 0. (8)
iii) a%&/ae_j (e) # 0. 9)

Condition (7) implies that wj(') does not satisfy Independence Property II.
Conditions (8) and (9) imply that for i = 1, 2, when the ith agent reports

Zi’ the (-i)th agent could implement either a0 or al by perturbing his message
away from_z_i. These conditions are illustrated in Figure 1. In this
specialized setting, it is clear that Property II is too strong to serve as a
necessary condition for the existence of dominant mechanisms, for it can be
violated far away from Z(;) without affecting the incentives of the given
mechanism. Property D expresses this idea, for it states that Property II is

violated somewhere in E in an essential way. Theorem 2 is therefore a weaker

result than (6).

Theorem 2: Assume that (i) 51(') and ;2(-) are Cl, (ii) Property D holds
at some environment Z in z(;) n Int E, and (iii) o(+) is positive in some

neighborhood of e. Then no dominant mechanisms exist.

Proof: Without loss of generality, we make the following assumptions:
(i) Property D holds at e for j = 1l; (ii) when agent 2 reports 22, agent 1

implements ag by reporting a value slightly less than Zl’ and he implements

a; by reporting a value slightly more than Zl' Condition (8) implies that a

C function Y(*) is defined in some neighborhood [gz,gz] of ;2 by the equation
;(Y(ez),ez) = 0. By (9), this interval can be chosen so that Y'(*) is nonzero
over it.

The proof is by contradiction. Let tl(-), tz(-) be transfers that
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satisfy (2)-(3). The lemma to Theorem 1 implies that tl(-) has the form

h(al,ez) if w(el,ez) > 0,
tepney

h(ao,ez) if ;(el,ez) < 0.

* ~ -
For el near e,, let e* denote ¥ l(et). We consider strategies ¢(*) for

1 2
(ii) ¢(e2) = 52 ife. >e

agent 2 such that: (i) ¢(e2) =e, 1if e, < 9

2 2~ 93 23

(iii) ¢'(e2) > 0 if e, < e, < 52. Given such a strategy ¢(¢), agent 1's

*
and reports e, 1is

expected utility when he observes ° 1

1

e
-2 ~ ~
fO [Wl(al’el’ez) + h(al,gz)]c(el,ez)de2

[wl(al,gl,ez) + h(a1,¢(e2))]c(gl,e2)de2

e
2 ~ ~
+ f¢_1( * [Wl(ao’el’ez) + h(a0,¢(ez))]c(e1,e2)de2

e2)

]_ ~ — ~
+ fg [wl(ao,el,ez) + h(ao,ez)]c(el,ez)dez.
2

Note that the first and the last terms in this expression do not vary with

*
perturbations of e . The first order condition for utility maximization at
* o~

= e1 reduces to
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0= wl(al,?e'l¢‘l<?e'2>) + h(a ,e,) = wl(ao,?a'l,¢‘l<?a’l>) - h(ag.e,),

or equivalently,

wl(al,21,¢—l(22)) = h(ao,gz) - h(al,gz).

._]_N
The right side of this expression does not depend upon the value of ¢ (ez);

_l~
the left side does, however, because of (7). Since ¢ (ez) can be any value

in (gz,ez), we have a contradiction. Q.E.D.

Our next theorem states that the hypotheses of Theorem 2 are satisfied by
almost all ;l(.)’ ;2(') for which Z(w) is nonempty, together with almost all
continuous density functions o(*). This paper is not concerned with those
;l(.)’ ;2(-) for which Z(w) is empty; in those cases, a(*) is constant on E,
and there is no reason for headquarters to try to overcome the
misrepresentation problem. EI(E,RZ) denotes the subset of Cl(E,Rz) consisting
of all ;l(.)’ ;2(-) for which Z(w) is nonempty, and D(E,R) is the set of all
continuous density functions on E. Each of these sets is given the

appropriate induced Whitney topology (see Hirsch [10] for further discussion).

Theorem 3: For all (51,52,6) in some open, dense subset of

-1
C (E,B ) x D(E,E), there are no dominant mechanisms.

Proof: Given Theorem 2, this result is proven by simply applying the

1 0
definitions of the Whitney C and C topologies. Q.E.D.
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