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Abstract

This paper concerns a model of partnership in which each partner
privately chooses his input into a joint production process. The partners'
inputs determine a probability distribution over a finite set of alternative
output levels. Each partner's utility is the difference between his share of
the output and the disutility of his input contribution; the partners are
therefore risk neutral. Earlier work suggests that because of moral hazard,
there cannot exist rules for fully sharing the joint output that sustain the
Pareto optimal inputs as a Nash equilibrium. Our results are more positive.
We show that in a generic problem, the corresponding first order conditions
are solvable because uncertainty makes the budget constraint non-binding in
the first order analysis. This allows us to construct examples in which moral
hazard is overcome purely through the choice of the compensation scheme. The
results are extended to a case in which the set of output levels is a

continuum, and the case of risk aversion is also discussed.



1. Introduction.

A partnership is a group of agents who jointly produce some observable
output. A production plan is efficient for the partnership if it is Pareto
optimal, given the disutility to each partner of his input into the collective
effort. Moral hazard may exist when each partner's input is not fully
observable, for a partner may have an incentive to contribute less of his
input than the amount that is needed for efficiency. Unless this problem is
overcome, the partnership will be inefficient.

Monitoring is one possible solution. Either an outsider can be brought
in to observe the partners, or the partners can monitor each other to insure
that each partner contributes his proper input. This is a flawed solution,
however, for the requisite monitoring may be costly, or physically
difficult. The cost of monitoring may even exceed the gain in output that it
permits.

This paper concerns a different approach. A sharing rule defines a

partner's share as a function of the joint output. Rather than trying to
learn about thne partners' inputs, we consider the problem of choosing sharing
rules that provide each partner with an incentive to contribute his proper
input. To be more precise, we wish to design sharing rules that (i) sustain
the efficient inputs as a Nash equilibrium, and (ii) balance the budget (i.e.,
the joint output must be fully distributed among the partners, no matter what
level of output is observed). We call such a family of sharing rules a

solution to the partnership problem. When such rules exist, moral hazard can

be overcome without altering the decentralized nature of decision-making
within the partuership.
Earlier work on this problem has produced mostly negative results.

Holmstrom [3] showed that when the output is fully determined by the partners'



inputs, the partnership problem is unsolvable. This was proven by showing
that in order for each partner to have the proper incentive, his marginal
payment must equal his marginal product at the efficient level of his input,
given that the other partners have chosen to contribute the efficient levels
of their inputs. It was then shown that paying each partner in this manner is
incompatible with the budget constraint.

In contrast to this discouraging result, the conclusions of our paper are
more positive. We consider a single—stage model of partnership. Each
partner's utility is the difference between his share of the joint output and
the disutility of his contribution. Utility is therefore transferable, and
each partner is risk neutral. Each partner chooses an input from an interval
on the real line. A finite number of different levels of output can result
from the choice of the partners' inputs. The primary difference between our
model and the model that underlies Holmstrom's [3] negative result is that the
joint output in our model may not be completely determined by the partners'

inputs. The output function in our model assigns a probability distribution

over the range of output levels to each choice of the partners' inputs. The
main conclusion of this paper is that when the joint output is uncertain, the
partnership problem may be solvable. An intuitive explanation of the role of

uncertainty follows an outline of our results.!

We begin by showing that when there are only two alternative output
levels, even the presence of uncertainty does not permit the solution of the
partnership problem; as in Holmstrom [3], balancing the budget is incompatible
with the first order conditions for a Nash equilibrium at the efficient
inputs. The case of two output levels, however, is exceptional. When there

are three or more output levels, sharing rules that satisfy the budget

constraint and the first order conditions for a Nash equilibrium at the



efficient inputs exist for a generic choice of the output function and the
partners' utility functions. (The precise meaning of "generic” will be
specified later.) Under uncertainty (generically), each partner can be paid
his marginal expected product at the efficient level of inputs without
breaking the budget constraint.

It is easy to construct linear exaumples in which every family of sharing
rules that satisfies both the budget constraint and the first order conditions
for a Nash equilibrium also solves the partnership problem. More generally,
we derive conditions on the output function under which at least one solution
to the first order problem also solves the partnership problem. For
simplicity, we derive these conditions only in the case where there are two
partners and three levels of output. The conditions are awkward, and at
present they have no economic interpretation. "Reasonable” examples exist,
however, that satisfy them. Despite their awkwardness, they prove the
existence of robust examples of partnerships in which moral hazard can be
overcome through the proper choice of a compensation scheme.

This paper also contains a paradoxical result that concerns the nature of
the solutions to the first order conditions when the output function satisfies
stochastic dominance with respect to each partner's input. (For each partner,
given the inputs of the other partners, stochastic dominance holds if the
observation of a higher level of output allows one to infer, in a
probabilistic sense, that the selected partner contributed a greater level of
input; e.g., see Whitt [7].) Each of the three examples in this paper shows
that stochastic dominance does not necessarily prevent the solution of the
partunership problem. When stochastic dominance holds, one might expect that a
partner's share should increase with the output; as Alchian and Demsetz [1, p.

778] suggested in their analysis of the internal structure of firms, a partner



may have an incentive to "sabotage” the organization if his reward and the
output are inversely related. We prove that the opposite is true: when
stochastic dominance holds, for any sharing rules that satisfy the first order
conditions, some (at least two) of the partners' shares must be nonincreasing
over some subsets of the range of outputs levels. As our examples illustrate,
moral hazard can be overcome in some problems in which stochastic dominance
holds, but only if some partners do not always benefit when the joint output
increases.

This paradox may explain why our results seem surprising, and why they
have been overlooked in the literature on partnership. We note that Radner
[5, p.46] did analyze the problem that we consider, and he correctly argued
that the Nash equilibria of partnerships are typically inefficient when the
budget is balanced. His argument does not contradict the conclusions of our
paper, for it assumes: (i) each partner's share is an increasing function of
the output; (ii) for each state of a random environment, the output is an
increasing function of each partner's input. This second assumption implies
that the output function satisfies stochastic dominance.

We also explain how each of the results that we prove when the range of
output levels is finite can be extended to the case where this set is a
subinterval of the real line. The purpose of this discussion is to show that
our results are not just a special feature of a finite model. It is possible
to solve the partnership problem in our model, not because of any special
assumption about the range of output levels, but because the joint output is
uncertain.

Our paper is focused on the case in which the partners are risk

neutral. In the final section of this paper, we emphasize the importance of



risk neutrality to our analysis by briefly discussing the more general case in
which the partners may be risk averse. In a generic problem with risk
aversion, efficiency cannot be sustained as a Nash equilibrium with budget-
balancing sharing rules. By completing our analysis of the uncertainty case,
this discussion allows us to conclude the paper by summarizing the
relationship between the partnership model and the principal-agent model.

The explanation of the role of uncertainty in our results rests upon the
following point: while the decision problem that a partner faces is the same
in both the certainty and the uncertainty cases, the mechanism designer's
problem is very different when there is uncertainty, for he would typically
have available more methods for influencing the strategic choices of the
partners. For fixed sharing rules, a partner verifies that an input profile
is a Nash equilibrium by solving the same maximization problem in both cases;
when there is uncertainty, he simply solves this problem in terms of expected
(rather than certain) shares. The set of sharing rules that is available to
the mechanism designer is also the same in both cases. Now regard the
certainty case as a special instance of the uncertainty case. For given

sharing rules, consider the functions of the inputs that assign to each

partner his expected share under the given sharing rules; define these

functions as the (induced) expected sharing rules. Except for degenerate

instances of our model, the mechanism designer can choose from a wider class
of expected sharing rules in the uncertainty case than in the certainty
case. This is clearly significant, because the expected sharing rules
completely determine the incentives of a given set of sharing rules.

The extra freedom that uncertainty provides is illustrated by the

following simple observation: in the certainty case, the expected sharing



rules can be written as functions of the (expected) joint output, but when the
joint output is uncertain, the expected shares may not be expressible as
functions of the expected joint output. For instance, two input profiles may
define probability distributions that determine the same expected output; this
does not mean that they would determine the same expected shares for the
partners. This discussion does not explain how this extra freedom may permit
the implementation of efficiency with budget-balancing sharing rules. To
explain this central issue and to get a better sense of how uncertainty alters
the design problem, we return to the first order viewpoint.

Our explanation of the role of uncertainty in the first order analysis
begins with Holmstrom's simplest model of the case in which the output is
fully determined by the inputs. Holmstrom showed that the efficient inputs
cannot be implemented with budget—-balancing sharing rules. In fact, the
following argument shows that a generic input profile cannot be implemented in
this fashion. At an equilibrium input profile, the marginal disutility of
each partner's contribution must equal his marginal share of the output. The
budget constraint, however, restricts the values of these marginal shares; at
a generic input profile, the marginal disutilities would not satisfy these
restrictions. A generic input profile therefore cannot be a Nash
equilibrium. Holmstrom's proof that the efficient profile cannot be a Nash
equilibrium is really a verification that it is always in this sense
generic. It is also clear that the efficient profile can be sustained as a
Nash equilibrium with budget-breaking sharing rules (e.g., see Holmstrom [3,
Thm. 2}).

A similar analysis holds when the partners' inputs determine a
probability distribution over only two different output levels. Suppose one

wishes to choose budget-balancing sharing rules to sustain some particular



profile as a Nash equilibrium. The marginal expected shares of the partners
at the given profile are again determined by the first order incentive
constraints. The budget constraint imposes an additional condition upon these
marginal expected shares; hence, a generic input profile cannot be a Nash
equilibrium. As in the certainty case, it can then be shown that the
efficient inputs are always in this sense generic.

The analysis changes completely when the partners' inputs determine a
probability distribution over three or more output levels, for the budget
constraint no longer imposes a restriction upon the marginal expected shares
at a generic input profile. As the number of output levels increases, there
are more variables (the shares of each of the different output levels) that
one can adjust to determine the partners' marginal expected shares. These
extra variables are "wasted” in the case of two output levels, for the
elementary nature of the marginal probabilities makes the formulas for the
players' marginal expected shares into a degenerate linear system. When there
are at least three output levels, however, this extra freedom permits one to
choose budget—-balancing sharing rules that make the marginal expected shares
at a generic input profile assume whatever values one wants. (This is proven
in Theorem 1 of this paper.) At a generic input profile in this case, budget-
balancing sharing rules can be chosen that solve the first order conditions
for a Nash equilibrium; hence, this can usually be done at the efficient
profile. Uncertainty is therefore significant in our model because it makes
the budget constraint non-binding in the first order analysis when there are
three or more possible output levels.

A similar argument resolves the paradox of why some of the partners'
sharing rules must be somewhere nonincreasing when stochastic dominance

holds. As shown in Theorem 2, the budget constraint and the assumption that



each sharing rule is an increasing function together imply that each partner’'s
marginal expected share must exceed the marginal disutility of his
contribution at the efficient profile of inputs. Efficiency therefore cannot
be sustained as a Nash equilibrium in the prescribed manner. The paradox
illustrates how any constraint upon the sharing rules may cause inefficiency
if it restricts the values of the partners' marginal expected shares at the
efficient profile. At a Nash equilibrium, a partner's expected share mst be
an increasing function of his input, for his marginal expected share must
equal the (positive) marginal disutility of his contribution; the paradox
rests upon the trivial observation that a partner's expected share can be an
increasing function of his input even if his share does not always increase
with the output.

The results of this paper are significant because of the questions that
they pose for theories of the firm. The presence of moral hazard in
partnerships has been used to explain why firms are typically organized in a
hierarchical form (e.g., see [1], [3]). Because the partnership is
(allegedly) inefficient, the partners have an incentive to change their
organization by bringing in a principal, either to monitor inputs, and/or to
administer budget-breaking compensation schemes. The partnership therefore
evolves into a hierarchical form. Our paper questions whether or not the
partners have any incentive to alter their organization, for they may be able
to achieve optimal production without having to pay a principal. It may in
fact be true that partnership is an inherently inefficient form of economic
organization, but our results show that the existing theories are incomplete.

We conclude this introduction by discussing the limitations of our
approach. Aside from the assumption of risk neutrality, the most obvious flaw

is that we derive specific sharing rules for each particular choice of the



output function and the partners' utility functions. The solution process
requires information that may be dispersed among the partners (the utility
functions), or not even known with certainty (e.g., the output function). Our
analysis thus rests upon strong informational assumptions. We have also not
proven that the sharing rules we derive for a particular partnership are in
any sense optimal for an open class of partnerships. From a practical
viewpoint, it may not be possible to redesign a compensation scheme as either
technology or the composition of the partnership changes.

Our solutions seem more complex than the simple sharing rules that are
often seen in partnerships. It is possible that these simple rules are just
inefficient, or it may be that they have certain advantages because of their
simplicity. Complexity is not considered in this paper.

Finally, partners in many production processes contribute their inputs
over time. A partner may receive information about the output during
production. Our model clearly does not include these cases (e.g., if
production is ending, and a partner believes that his share would now decrease
with an increase in output, then he may have an incentive to stop providing
his input). The role of time in production may justify Alchian and Demsetz's
[1] claim that compensation should increase with the output.

These points criticize both the informational hypotheses of our model,
and the questions that we try to answer. The main conclusion of this paper is
that when the output is not completely determined by the partners' inputs, it
is not per se impossible to implement efficiency through the proper choice of
a compensation scheme; it may, however, be impractical to actually do so.
Richer models that perhaps reflect the above points may provide a better

understanding of the performance of partnerships.
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2. The First Order Approach.

We begin by describing our model. There are m > 1 partners. The ith
partner chooses his input a; from some closed and bounded subinterval Ai of
the real line. His choice is his own private information. Let
a = (al,...,am) denote an input profile, and let a_, denote the (m~1)-tuple
(a1’°"’ai—l’ai+l""’am)'

Once the partners have chosen their inputs, one of several levels of
output results. This output is publicly observable. Let @ denote the range
of output levels of the partnership. Except where otherwise noted, the reader

should assume that Q@ is some finite subset of K with n > 2 elements,

Q = {yl < Y, Kool yn}.

The partners' inputs determine a probability distribution over Q. For the
input profile a, let F(*,a) denote the cumulative distribution that is
determined by a, and let f(e¢,a) denote the corresponding density function.

These functions are common knowledge, and each is a Cl function of the

. . . . _ OF _ of
inputs. For simplicity, let Fi(y,a) —'ggz(y,a) and fi(y,a) = ggz(y,a).

The ith partner's utility u.(s,,a.) consists of whatever share s,(y) he
P Yy uyiSiedy iy

receives of the observed output y, minus the disutility Qi(ai) of his

contribution of the input a;:
u,(s,,a.,) = s, - Q.(a.).
1( i’ 1) 1(y) Ql( 1)
. . 1 . : . . .
By assumption, Qi(-) is a C° function of the ith partner's contribution. Let

qi(°) = 6Qi/bai(-). We assume that qi(') is strictly positive.

Since utility is transferable, an input profile & is Pareto optimal 1f
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and only if it maximizes the difference of the expected total output minus the

total disutility of the input contributions:

4 € argmax E(yla) - zm Qi(ai). (2.0)
a i=1

We assume that there exists a solution to this maximization problem in the

interior of IT, lA_. Efficiency therefore requires each partner to make a
i=1"1

positive input contributiom.

Our concern is the existence of sharing rules sl(-),...,s (*)
m

that satisfy the budget constraint

m

) s, (y) =y, all y € Q, (2.1)
and that also make the efficient profile & into a Nash equilibrium,

A D A - < i< m.
a; € argmax m(si(y)l(ai,a_i)) Qi(ai) for 1 i m

a,
1

The problem of devising sharing rules with these properties is the partnership

A

problem. The following first order conditions are necessary: if & is
efficient, then each partner's marginal expected product must equal the

marginal disutility of his contribution at i,

) yjfi(yj,a) = qi(ai) for all 1< i < m, (2.2)
j=1

and if & is a Nash equilibrium, then each partner's marginal expected share

must equal the marginal disutility of his contribution at 3%,
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T =

i) = A f 1< i< m 2e
si(yj)fi(yj,a) qi(ai) or all i m (2.3)

j=1

The problem of devising sharing rules that satisfy the first order conditions

(2.2), (2.3) and the budget constraint (2.1) is the first order problem.

Our approach is to solve the first order problem and then to determine
whether or not these solutions also solve the partnership problem. In
analyzing the first order problem, we focus upon the solvability of the first
order Nash equilibrium conditions, together with the budget constraint; the
role of efficiency is merely to determine a particular instance of this
system. We illustrate this viewpoint by reconsidering a simple model in
Holmstrom [3] in which the partners' inputs fully determine the joint
output. Let @ be the real line, and let F(a) denote the output determined by
a. Assume that F(*) is a differentiable function of the inputs, and that the
sharing rules sl(-),...,sm(°) are differentiable functions of the output. An
input profile a* is a Nash equilibrium only if each partner's marginal share

equals his marginal disutility at a*, i.e.,
si(y*) . dF/dai(a*) = qi(a*) for 1< i < m, (2.4)

where y* = F(a*). The budget constraint implies that

zllsi(y) =1 (2.5)

at any y € Q. Equations (2.4) and (2.5) define a system of m + 1 equations in
the m unknowns si(y*),...,s'(y*). In a generic problem, this system is
m
m 2
unsolvable for all a* in some open, dense subset of Hi=lAi' A generic input

profile in the certainty model hence cannot be sustained as a Nash equilibrium
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with budget-balancing sharing rules. At the efficient profile &4, the marginal

disutility of any partner's input equals its marginal product,

(2.6)

A
=
A
=]
.

dF/dai(é) = qi(é), for 1

When (2.6) is substituted into (2.4) we obtain si(F(é)) =1 for 1 € i< m,
which contradicts (2.5). This shows that the system defined by (2.4) and
(2.5) is unsolvable at the efficient profile in every problem; hence,
efficiency can never be implemented in the desired fashion.

The above analysis can be illustrated with a simple example. Let

2
A=A, = [0,2] , vy = F(a) = a, +a,, and ui(si(y),ai) = s,(y) - aj/2 for

i =1,2. The first order conditions for a Nash equilibrium at a* are
si(a?+a§) = ai, i =1,2, By (2.5), the budget constraint implies that

af + a§ = 1; hence, an input profile must be on the line 3, + a, = 1 if it can
be a Nash equilibrium under some set of budget-balancing sharing rules. It is
easy to show that the efficient inputs are ﬁl = ﬁz = 1, which therefore cannot
be sustained in the prescribed manner.

The main conclusion of Theorem 1 is that the first order problem is
solvable for a generic choice of F(*) and Ql(o),...,Qm(-) when F(*,a) defines
a probability distribution over at least three output levels. As in the above
analysis of the certainty case, efficiency plays a relatively minor role in
our proof. We actually prove the stronger result that in a generic problem
when there are at least three output levels, a generic input profile can be a
Nash equilibrium under budget—-balancing sharing rules. Our emphasis in this
paper, however, is upon implementing efficiency.

We specify our set of problems with the following notation. For a given

range of output levels @ and input intervals Al,...,Am, let ¥ denote the set
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of (m+l)-tuples (F(y,a), Ql(al),...,Qm(am)) such that: (i) F(*,a) is a
cumulative distribution on Q that is C1 in a; (ii) each Qi(O) is a C1 function
of ai, and qi(ai) > 0; (iii) there is at least one efficient point (i.e., a
solution to (2.0)) in the interior of H?= A_. The set ¥ is given the

i
1
Whitney C topology.

Theorem 1. When the range of output levels Q has only n = 2 elements, the

first order problem is unsolvable. When Q@ has n > 2 elements, the first order

problem is solvable for each (F,Ql,...,Q ) in some open, dense subset of the
m

set ¥ of problems that we consider, and the solution set

for (F,Ql,...,Q ) forms an (mn—m-n) - dimensional affine space.
m

Proof. We regard (2.3) and (2.1) as a system of m + n linear equations in the

mn variables (si(yj)) whose coefficients are determined by the

1<i<m, I<j<n
efficient profile 4. The left-hand side of the first m equations (from (2.3))
are the marginal expected shares of the partners, and the last n equations
(from (2.1)) form the budget constraint. Efficiency is used in the analysis
of the n > 3 case in this proof only to determine the values of these
coefficients; the argument could be carried out in terms of a generic input
profile.

Let S; denote the n-vector of the ith partner's shares,

Si = (si(yl),...,si(yn)), and let S denote the mn-vector (51’32""’Sm)' The

system of linear equations can be represented in matrix form as
T A A T .
DS" = (qy(@)),eeesq (A ), ¥ seeesy ), (2.7)

where D is an (mtn) X mn matrix. The matrix D consists of m blocks in a row,



15

D = D1D2'°'Dm’ where Di is the (mtn) X n matrix

Here, Z, _ denotes the k X n zero matrix, and In n is the n X n identity
Ky ’

matrix.

To prove the existence of a [mn - (m+n)]-dimensional affine space of
solutions to the first order problem, it is sufficient to show that the rank
of D is m + n. This would imply that the budget constraint (the last n
equations) does not affect the solvability of the first order incentive
constraints (the first m equations). We shall show that this holds for a
generic choice of (F’Ql’°°°’Qm) when n > 2. Note that since X?=lfi(yj,ﬁ) =0
for each i, through column operations the last column of each Dy could be
replaced by a vector whose top m entries are zero and whose bottom n entries
are one. The rank of D is therefore bounded above by m(n-1) + 1. When
n=2, rank D< m+ 1< m+ 2= + n; the budget constraint therefore
restricts the values that the partners' marginal expected shares can assume,
and our argument breaks down. We return to the n = 2 case below.

The following argument holds for an open, dense set of problems
(F,Ql,...,Qm) when n > 2. We outline a procedure for choosing m + n linearly

independent columns of D:

(i) for 1 £ i £ n, define Ci as the ith column of Dl;

(ii) for 2 < k < m, let C_ be a colum of D whose kth entry is

+k



16

nonzero,

(iii) finally, let Cn+ be any remaining column in D

1 2°

It is clear that Cl,...,Cn are linearly independent. For 2 < k < m, Ch4k is

the only column in the set {Cl,C Cn+m} that has a nonzero entry in row

n+22°°*?

k; hence, this set is also linearly independent.

It remains to be shown that Cn+1 is not a linear combination of the other

columns. Let Cn+1 and Cn+2 be the pth and qth columns (respectively) of DZ'

We assume that C = 2 A C , and we shall derive a contradiction. Since

+ b}
n+l t#n+l tt

C has a zero in row k for 3 < k < m, Kt must be zero for t > n + 2. By

n+l1

n
L. i . i C = AC + A C i
examining the last n rows in the equation n+l 2t=1 St a4+2%n42° it

= Ao=1, A = A i
follows that Kt 0 for t # p,q, and P ' N 4o’ 1eees

Cn+l = Cp + xch - qun+2. This equation implies that

-fl(yp,a)/fl(yq,a) = Kq = -fz(yp,a)/fz(yq,a)-
When n = 2, this equality is satisfied; when n > 2, it does not hold for all
3
problems in some open and dense subset of VY. The set {Ctll <t <n+m is

therefore linearly independente.

We now show that solutions to the first order problem cannot exist when
there are only two outputs. 1In this case, fi(yl,a) = —fi(yz,a) for all i.

Equations (2.2) and (2.3) reduce to

(yl-yz)fi(yl,é) = qi(ﬁi) (2.8)
and

(s, = s, E, (58 = q, (2D, (2.9)
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respectively, for all i. Since qi(é) is positive, fi(yl’a) is nonzero. We
can therefore solve (2.8) and (2.9) to obtain Yy T Yy = Si(yl) - Si(YZ) for

all i. Using the budget constraint, summing this expression over 1 < i € m

gives

m
s, (v - .g s.(v,) =y, =,

m
IIl(yl—yZ) - .X i

i=1 i=1

which is a contradiction. Q.E.D.

Example 1. We now illustrate that the first order problem can be solved,
and that its solutions may also solve the partnership problem. We consider a
simple example where the output rule is linear in each partner's input, and
the disutility of each partner's input is quadratic. This insures that each
solution to the first order problem is also a solution to the partnership
problem.

There are two partners (m=2) and three output levels (y1 = 0,
¥yo = 1, y3 = 2). ZXach partner's strategy space is [0,1]. The density f(e,a)

is defined by

f(yl,a) =1 - 5a1/12 - a1/3

f = 6 + 12
(Yz,a) al/ a2/
f = 4 + 4,
(y3,a) al/ az/
s 1 . . 2
Partner i's utility function is u,(s.,,a.) = s, - a,.
s R § i i

The pair 4 = (51,32) is efficient if and only if
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2 2 2 2
4 € argmax E(y|a) - (a1+a2) = argmax 2a1/3 + 7a2/12 - (a1+a2).
a a

The efficient inputs are therefore 51 = 1/3 and 52 = 7/24.

Given these values of él and 52, solving the first order problem 1is

equivalent to finding sharing rules sl(°), sz(°) such that

sl(yl)(—5/12) + sl(yz)(l/6) + sl(y3)(l/4) = 2/3
- + + =
Sz(yl)( 1/3) sz(yz)(1/12) s3(y3)(1/4) 7/12
+ = < j < 3.
Sl(yj) Sz(yj) Y50 1 <j<3
This is a system of five linear equations in the six unknowns Si(yj)’ i=1,2,

1 € j € 3. The set of all solutions is the one dimensional space

sl(yl) =t sz(yl) = -t
Sl(y2) =8+t sz(yz) = -7 - ¢t
sl(y3) = -8/3 + t sz(y3) = 14/3 - ¢t

where the choice of t € R determines a particular solution. As noted above,
each of these solutions also solves the partnership problem because of the

nature of the functions in this example.

Several remarks should be made about Theorem 1. The theorem states that
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when there are at least three output levels, there exists a multiplicity of
solutions to the first order problem in the generic case. We note that if

sl(y),...,sm(y) form a solution to the partnership problem and if k ""’km

1

m
are constants such that Xi=1ki = 0, then k, + Sl(Y),---,km + Sn(y) also solve

1
the partnership problem. This is a very simple procedure for adjusting the
relative expected shares of the partners, once one solution has been found.

A linear sharing rule si(y) has the form si(y) = hiy + 51- The proof of
Theorem 1 can be modified to show that regardless of the number of output
levels, the Nash equilibria under linear sharing rules are necessarily
inefficient., The analysis of the case of linear sharing rules is similar to
the two output case in Theorem l; the key issue in both cases is that there
are an insufficient number (i.e., two) of variables per partner that the
mechanism designer can adjust. Looking ahead, it is interesting to note that
in Example 3 (Section 4) of this paper, a set of linear sharing rules plus
appropriate bonuses and penalties are efficient. The bonuses and penalties
provide the mechanism designer with the extra freedom he needs to induce the
proper choices by the partners.

Finally, we emphasize that Theorem 1 states that the two output case is
degenerate., For simplicity, research on partnership has sometimes focused on
this case. Though it may be of interest, such research may not reflect what
is achievable in a partnership when there are more than two output levels.4

We conclude this section by examining the nature of the solutions to the
first order problem when the output function satisfies stochastic dominance

with respect to each partner's input. Mathematically, this is given by
P p y g

m
< €1 <o € Q € .
Fi(y,a) < 0 for all 1 £ 1< my vy » and a Hi=1Ai
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Theorem 2. Assume that the output function F(e¢) satisfies stochastic

dominance. If sl('),...,s (¢) is some solution to the first order problem,
m
then at least two of the functions si(Y) are nonincreasing over some subsets

of the range of output levels.

Proof. For 1 € i € m, let s_i(y) = 2k¢isk(y)' The proof is mostly a matter
of rewriting the first order conditions for a Nash equilibrium in terms of
S ('),"'93 (‘)'

-1 -m

The first order conditions for efficiency can be rewritten as

o
qi(é) = i f.(y:,é)yj

]

n
Fopay 1RG0 -6 a0y,

1

T

F (y,,8)(y, -y, ).
2t i’ i 73+

1
Since qi(ﬁ) > 0, Fi(yj,ﬁ) must be nonzero for at least one value of j between
1 and n-1.

In a similar fashion, each of the first order conditions for a Nash

equilibrium can be rewritten as

fi(yj,é)si(yj) - qi(é) (2.10)
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n
= jzlfi<yj,a>s 1G5
n—-1
= jlei(yj,a)[S_i(yj) - s_i(yj+l)]- (2.11)

Since Fi(yj,a) € 0 for all

of j, one of the terms s_i(yj) - S_i(yj+1

1 < j<n, and Fi(yj,ﬁ) < 0 for at least one value

) must be nonnegative; for some

k # 1, sk(') is nonincreasing over some subset of €. Such a value k exists

for every 1 € i € m; hence,
are nonincreasing over some
The reader should note

strictly less than zero for

conclude that the shares of

there must be at least two partners whose shares

subsets of Q. Q.E.D.
that a stronger conclusion holds if Fi(yj,a) is
all 1 £ i <mand 1 € j < n; in this case, we can

at least two partners must somewhere decrease.

3. The Sufficiency of the First Order Approach.

In this section we describe conditions on F(e) under which some solution

to the first order problem also solves the partnership problem. We restrict

our attention to the simple

three levels of output (n=3

case in which there are two partners (m=2), and

). The conditions that we shall derive can be

extended to larger partnerships with many possible levels of output; this

extension is not very illuminating, however, and it is therefore omitted.

Throughout this section, we

dominance.

also assume that F(+) satisfies stochastic

We begin by rewriting the partnership problem. Using the budget

constraint, the ith partner

's expected utility given his input a; and the

input ﬁ_i of the other partner is
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s; (v (a8 ) + s, (v)f(y,,a,,8 5) = Q;(ay)

= [y, f(y5a,8 ) + y,E(y,,a,,8_) - Q (a)] (3.0)
- [s_ ey a8 ) +s_ (5,858 0] (3D

Since 4 is efficient, (3.0) is maximized at a, = 4,. The remaining term (3.1)
i i

is the expected share of the -ith partner when he contributes ﬁ_i and the ith

partner contribute aj;. It is clear from (3.0) and (3.1) that Sl(.)’ 32(0)

form a solution to the partnership problem if each partner minimizes the
expected share of the other partner by choosing ﬁi, given that the other
partner contributes %_i.

It is helpful if we now take a slightly different viewpoint. A partmner's
share of the joint output can be regarded as a rule that provides him with
some fixed fraction of the lowest possible output level (i.e., the "certain"
output) plus fractions of each additional increment of output. The partner
chooses his level of input to maximize the expected value of the additional
fractions that he receives as the observed joint output increases. This
decision does not depend upon the size of his share of the smallest level of
output. (Note the importance of risk neutrality in this argument.) Similar
remarks hold for his evaluation of the other partner's shares.

We now rewrite the above problem to reflect this viewpoint. For i = 1,2,
let dy denote the two-vector whose jth component is y. - yj+1, let \ denote

N

the two-vector whose jth component is si(yj) - si(yj+l)’ and let Ji(ai) denote

L] { A A .
the vector—valued function Ji(ai) (Fi(yl,ai,a_i), Fi(y2’ai’a—i))' Using the

method between (2.10) and (2.11) in the proof of Theorem 2, it is easy to show

that the first order condition for the ith partner to minimize the expected
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share of the —-ith partner is

Ji(ﬁi)'v = 0. (3.2)

The budget constraint can also be rewritten as

v, t v, =dy. (3.3)

The problem of devising sharing rules that satisfy the first order problem is

equivalent to the problem of finding two-vectors Vs Vv that satisfy (3.2) and

2

(3.3). For the remainder of this section, we shall work with this form of the

first order problem.

Our sufficient conditions on F(¢) are motivated by the following
geometric analysis. By stochastic dominance, Jl(él) and 32(32) lie in the
lower left-hand quadrant of R2 (see Figure 1). When these vectors are
colinear (e.g., in the symmetric case), solutions to (3.2) and (3.3) do not
exist. 1In a generic case, these vectors are independent; we assume that
Jl(él) lies on a line with smaller slope than 32(52)- The solution to (3.2)

and (3.3) is unique; the one parameter family of solutions to the first order

problem is generated by the different divisions of the smallest output Y
The solution vector v; lies in the upper left-hand quadrant, while vy lies in
the lower right-hand quadrant (as illustrated). Our goal is to find
conditions upon F(¢) such that each Ji(ai)'v_i changes from negative to
positive at a, = éi. The most obvious way to insure this is to assume

that Jl(al) moves clockwise as a] increases, while 32(82) moves
counterclockwise as aj increases: as Ji(ai) changes from determining an

obtuse angle with v_; to an acute angle, Ji(ai)'v_i changes from negative to
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positive. This motivates the following theorem.

Theorem 3. Consider the model of partnership in which there are two partners
(m=2), and three levels of output (n=3). Assume that F(e¢) satisfies
stochastic dominance. A one parameter family of solutions to the partnership

problem exists if the following two additional hypotheses are satisfied at the

efficient profile 4:

i) Fl(yl,a)Fz(yz,a) - Fl(yz,a)Fz(yl,é) > 03 (3.4)

ii) Fl(yz,al,éz)/Fl(yl,al,éz) is an increasing function (3.5)
of a;, and FZ(YZ’al’aZ)/FZ(yl’él’82) is a decreasing

function of aj.

Proof. We first note that (3.4) states that 31(51) lies on a line with
smaller slope than the line determined by 32(32). Hypothesis (3.5) states
that ¥,(a,) moves clockwise as a; increases, while ¥,(a,) moves
counterclockwise as a) increases.

Given the preceding discussion, the proof is straightforward. The

solution to (3.2) and (3.3) is

q,(&,) . .
V]. = < (Fl(yz,a), ‘Fl(Yl,a))
q, @)
V2 = T (_Fz(y29§-)9 Fz(yl9a))

where K is the left-hand expression in (3.4). A one parameter family of

solutions to the first order problem is obtained by varying the division of
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the "certain" output level yj. One can easily verify that each of these
solutions also solves the partnership problem by using the argument that

immediately precedes the statement of the theorem. Q.E.D.

Example 2. The three levels of output are vy = 1, ¥y = 2,
y3 = 3. The ith partner chooses an input a, € [0,1], and the disutility of
i

2 2
his contribution is Qj(aj) = ai/2. The output function F(*) is given by

Py ,a) = [(2 +a = 3a)) + (1 - a)]/e

1

F(y,,a) = [(3 - a)) + (3 + a) - 3a,)]/6.

Note that F(e¢) satisfies stochastic dominance. By a direct computation, it

A

can be shown that the efficient inputs are 51 =8, = 1/2. 1t is then easy to

verify that the remaining hypotheses of Theorem 3 hold.

The solutions to the first order problem are

sl(yl) =t Sz(yl) = (1-t)
sl(yz) = 3/2 + t sz(yz) = -1/2 + (1-t)
sl(y3) =1+t SZ(YB) =1+ (1-t)

or alternatively, in the notation of (3.2) and (3.3), i (3/2,1/2),

vy = (1/2,-3/2). With these sharing rules, the marginal expected return to

the ith partner when he chooses a; and his partner chooses & _ = 1/2 is
-i
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(Ji(ai)-vi) - a, = —(ai+3/2)(ai—l/2).

This changes from positive to negative at a; = 1/2. The efficient inputs are

therefore a Nash equilibrium under these sharing rules.

4., The Continuum Case.

In this section, we discuss how each of the three theorems in this paper
can be extended to the case in which the range of outputs Q is an interval
[Z,;] on the real line. We conclude this section with an example in the
continuum case in which the partnership problem is solved.

Intuitively, the formula in Theorem 1 for the dimension of the affine
space of solutions to the first order problem suggests that there should exist
an infinite dimensional space of solutions for a generic problem in the
continuum case. This can be proven with the following procedure for reducing
the first order problem in the continuum case to a linear system of the form
that is described in the proof of Theorem 1.

As before, let & denote the efficient profile of inputs. The first order

problem is to find sharing rules sl(°),...,sm(°) on [z,§] such that
y a)dy = q. (& 4.0
[o8:E (7,8)dy = q; (3) (4.0)
for all 1 €< i < m, and
m
Y s (y) =y (4.1)

for all y € [z,;]. We consider sharing rules of the form

si(y) = ti(y) + ci(y), where tl(Y),---,tm(Y) are any (integrable) functions
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m
that satisfy Zi=lti(y) =y, and Cl(Y):---:Cm(Y) are unspecified functions that
we shall determine. When these sharing rules are substituted into (4.0) and

(4.1), the first order problem is reduced to finding cl(y),...,cm(y) such that

for 1 € i < m,

3%

J3eiE; (v,a)dy = ay, (4.2)
and for y € [z,;],

m

J e (y) =0, (4.3)

. i

i=1

where (by definition)

0y = 4, @) - [T (5)F, 7,80y

There are now several ways that (4.2) and (4.3) can be reduced to a
system of the form in (2.7). One approach is to first partition [Z,;] into a
finite number (greater than two) of sets, and then to let cl(y),...,cm(y) be
unknown simple functions that are constant over each set in this partition.
Equations (4.2) and (4.3) can then be regarded as a system of linear equations
in the values that these functions assume; different systems can be obtained
by varying the choice of the subsets of [Z,;] over which each of the functions
is constant. The systems that are obtained in this fashion differ from (2.7)
only in their right-hand side, which does not play a role in the proof of the
existence of solutions in the generic case. An alternate approach is to let
each ci(y) be a polynomial in y of degree k > 2 with unknown coefficients.

Equations (4.2) and (4.3) define a linear system in these coefficients that is
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of the same form as (2.7). This latter approach can be used to compute smooth

solutions to the first order problem. Each of these procedures is illustrated

in the example at the end of this section.

Theorem 2 has the following extension to the continuum case: if Fi(°) is
negative on (Z’§)’ and sl(.)’.."sm(.) are piecewise ¢t functions with left-
and right-hand limits at all points in [z,;] that solve the first order

problem, then at least two of these sharing rules are nonincreasing over some

subintervals of [z,§]. This is shown by a calculation that resembles the

proof of Theorem 2. Let Yo = ¥ ¥ =y, and let yl < y2 <eeoX yn denote the

= n+1

points in [z,;] at which the functions Sl(°),---Sm(°) may fail to be Cl. The

marginal expected return to the ith partner at the efficient inputs is

(e}
i

= [78,(7,2)s, Ay - ;)

r ; A _ a _ ; a
szfi(y,a)y dy - q,(8)] szi<y,a>s_i<y>dy

[78;(7s2)s_; Dy

n+l y=yj ;
= jlei(y,a)s_i(y)|y=yj_l - IZFi(y,a)s_i(y)dy

) 5 7
=jZlFi(Yj,a)(§_i(Yj) - 5,0 ) - [7F G208 (). (hats)

In (4.4), s (yj) and g_i(yj) are the lower and upper limits of s_i(-) at Y3
-i

respectively. If s_i(°) were an increasing function, then (4.4) clearly could

not hold. The proof is then completed with the argument at the end of the

proof of Theorem 2.

Finally, we note the following extension of Theorem 3 to the continuum
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case: 1if (i) F(+*) satisfies stochastic dominance, (ii) there are only two
partners, (iii) dqi/dai > 0 for both values of i, and (iv) there exist levels
of output y < Y, < Yo < ; at which the hypotheses of Theorem 3 hold, then
there exists at least a one dimensional affine space of solutions to the
partnership problem. Note that (iii) is simply the standard differential
hypothesis to insure that the disutility of each partner's input is a convex
function. We consider sharing rules of the form si(y) = vy/2 + ci(y),

where ci(°) is a step function whose discontinuities can occur only at yj or
Yo As in the above discussion of the first order problem, we shall solve for
the values of the functions cl(°) and c2(°). With these sharing rules, the
expected return to the ith partner given his input aj and the —ith partner's

. is
-1

o>

input

fzf(y,ai,é_i)si(y)dy - Q ()

[J5EG,2;58_)(v/2)dy - qCap)/2] + (4.5)

[fzf(y,ai,ﬁ_i)ci(Y)dy - Qi(ai)/z]. (4.6)

A

Since % is efficient, (4.5) is maximized at ai = ai. It is therefore
sufficient to choose cl(°), c2(°) such that (i) for each i, (4.6) is maximized

at a; = éi and (ii) the budget constraint holds, i.e., Cl(Y) + CZ(Y) = 0 for

all y in [2,5].

Now let c;

i,

. denote the value of c¢_(*) on [y.
j i j-1

,V.]l. The first order
J

A

condition for the maximization of (4.6) at 4, is

(Fi(yl,a), Fi(yz,a))(cil—c ¢ ,7C.y) = 4. (3)/2. (4.7)

i2> Ti2 Ti3
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When these equations are combined with the budget constraint, the wvalues
T Ci9v S5 T 43 for 1 = 1,2 are uniquely determined; solving, one obtains

€11 T ©y20 S99 T C93 > 0, and €19 T C93> C91 T S22 < 0. Together with the

assumption that dqi/dai is positive, the argument from the proof of Theorem 3

then shows that these values determine a one parameter family of solutions to

the partnership problem.

Example 3. We now apply the techniques of this section to a modification

of the example in Section 3. As before, let A; = A, = [0,1], Ql(al) = af/z,
2
QZ(aZ) = a2/2, and y| = 1, yp = 2. The range of output levels is now {o,31.

The output function F(e) is

yE(y,»a) if y <1
F(y,a) = (2-y)F(y ,a) + (y-1)F(y,,a) if 1< y<2
(3-y)F(y,,a) + (y=2) if 2<y< 3

where (as before)
F(y,,a) = [(2+a>-3a,) + (1-a>)]/6
1? - 1 1 2
F( ) =[(3- %) + (3+a>-3 )] /6
Yyra) = a, a,"3a, .
The expected value of y given the input profile a is

E(y|a) = 5/2 - F(y,,a) = F(y,,a).
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Using this formula, it is easy to show that the efficient inputs are

a =3 = 1/2.
a1 a2 /

This example satisfies the sufficient conditions for extending Theorem 3

to the continuum case. We now solve the partnership problem with that

procedure. When 51, 32 = ]1/2 are substituted into (4.7), we obtain the linear

system

c..—Cc..) =2

(=3,-1)e (e e 55 ¢y

(=1,=3)+ ey = ns €)p7C)) = 20

Adding the budget constraint cl(y) + cz(y) = 0 to this system, one can

= -] and ¢ - = C = 1.

- c 12~ %137 “»1 22

determine that c

11 12 - S22 7 ©23

These four values define the following one parameter family of solutions to

the first order problem (where the choice of t determines a particular

solution):

0 if y <1

Sl(y) = (y/2+t) + 1 if 1<y< 2
0 if 2<y< 3

(4.8)

0 if y <1

sz(y) = (y/2-t) + -1 if l<y< 2.
0 if 2< y< 3

Each partner therefore receives a fixed fraction of the joint output, a share

of the minimum output (yO = 0), plus a bonus or a penalty. Under each of
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these schemes, the marginal expected utility of the ith partner given the
input profile a is —(ai—l/2)(ai+3/2). Each of these solutions to the first
order problem thus also solves the partnership problem.

We conclude by noting that smooth solutions to the partnership problem
can also be computed in this example by using the alternative approach to the
first order problem that is described earlier in this section. For i = 1, 2,
let Ci(y) = xiy2 + Z.¥e. When the first order problem is solved in this form,
we find that x

1= -1, z, = 3, Xy = 1, and 22 = -3. These values determine the

one parameter family of sharing rules

sl(y) = —y2 + 7y/2 + t,
(4.9)

sz(y) = y2 - 5y/2 - t.

It can be shown that the marginal expected utility of the ith partner given
the inputs a is the same under each of these schemes as it is under any of the
schemes in (4.8). Each of the schemes in (4.9) is therefore a solution to the

partnership problem.

5. The Case of Risk Aversion.

Returning to the case in which the range of output levels is finite, we
now describe how the first order problem changes when the partners may be risk
averse. Under risk aversion, efficiency cannot be treated separately from
Nash implementation; the efficient sharing of risk imposes n{(m—-1) additional
constraints upon the shares and the inputs. In a generic problem, these
additional constraints prevent the implementation of efficiency with budget-
balancing sharing rules.

For 1 < 1 € m, the ith partner's utility function ui(si,ai) is now any
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1
¢ function such that (i) aui/asi > 0, and (ii) aui/aai < 0. For welfare
weights Xl,...,Xm (where ??=1X. = 1) and Lagrangian multipliers 61’."’6n’ the

1

Lagrangian for maximizing the weighted sum of the expected utilities subject

to the budget constraint is

m

Vil uy(s 0 0sa) £, = 6 (10 s, =y

.

J

Differentiating with respect to 6j for 1 € j € n produces the n equations that

form the budget constraint. Differentiating with respect to a for 1 € k< m

leads to the m equations

m n
zi=1)‘i[2j=1“i(si(yj)’ai)fk(yj’a)]

+ )‘k[Z;l:lauk/aak( Sk(y:j)’ak) f(yJ )a)] =0,

which generalize the m efficiency conditions in (2.2) of the risk neutral

case. Additiounally, nm equations are obtained by differentiating with respect

to si(y_) for 1 < i <mand 1 < j € n,
J
f = .
Kiaui/asi(si(yj),ai) (yj,a) 6j
Eliminating the multipliers 6j’ these reduce to n(m-1) equations,
Kiaui/asi(si(yj),ai)f(yj,a) = Klaul/asl(sl(yj),al)f(yj,a) (5.0)
where 2 < i < mand 1 € j € n. The system of equations (5.0) must hold for

optimal risk-sharing between the partners.

Adding the m first order incentive equations, we have (n+2)m equations in
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(n+2)m - 1 variables.5 For all problems (F,ul,...,um) in some residual subset
of the set of problems that we now consider, this system is unsolvable.6

We now summarize the relationship between our partnership model and the
principal-agent model.’ Without discussing the principal—-agent model in
detail, we draw an analogy between inducing each partner and inducing a single
agent to contribute the proper input. When the output is determined by his
input, the agent can be given the incentive to choose the efficient input with
a budget-balancing payment function; the principal simply pays the agent an
appropriate amount if and only if the efficient output is observed, and
punishes him with a "small" payment or penalty otherwise. A corresponding
result does not hold in the partnership model because of the free rider
problem. Similar results do hold for the two models when the output is
uncertain. A risk neutral agent can be induced to choose the proper input
with the following compensation scheme: the agent receives the entire output,
but he must pay a fixed "franchise fee," no matter what he produces. If we
ignore the question of whether or not the first order approach is sufficient,
then Theorem 1 of this paper is an analogous result; it is only more difficult
to solve for the appropriate compensation scheme in the partnership model
because there are several partners that must be given an incentive to
contribute their proper inputs. A risk averse agent cannot be induced to
choose the proper input with a budget-balancing payment function. As in the
preceding analysis of the partnership model, the problem of optimally

allocating risk between the principal and the agent makes this impossible.
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Footnotes

Holmstrom [3] considered the case in which the output is uncertain, but he
did not discuss the particular problem that is the subject of our paper.
For any output function in some specified class and any & > 0, he proved
the existence of sharing rules that (i) sustain efficiency as a Nash
equilibrium, and (ii) require an expected deficit or subsidy of no more
than & when the partners choose the efficient inputs. As he noted,
however, his sharing rules may require arbitrarily large bonuses or
penalties for the partners, depending upon the amount of output and the
nature of the output function. It should also be noted that a stronger
result is true. It is easy to show that for any choice of the output
function, a Groves mechanism exists that (i) sustains efficiency as a Nash
equilibrium, and (ii) balances the budget in expected value when the
partners choose their efficient inputs.

This argument can be formalized by using the Thom Transversality Theorem
[2, p. 54] to characterize the input profiles at which this linear system
is degenerate.

The attentive reader may be concerned about difficulties that could arise
when perturbation of a problem in ¥ leads to an abrupt change in the

%
efficient point. Note that there is an open, dense subset ¥ of ¥ such

*
that, for each problem in ¥ the efficient point is uniquely determined;

b
% .
on ¥ , the efficient point varies continuously with the problem. By
%
carrying out the above analysis over ¥ , the difficulties caused by abrupt
movement of the efficient point can be avoided.
In particular, Theorem 2 and the above discussion of linear sharing rules

show that the example of Radner et. al. [6] does not typify repeated

partnership games in which the sharing rules may be designed, for the
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example rests upon (i) the assumption that there are only two alternative
output levels, and (ii) the use of linear sharing rules.

The equations consist of n budget equations, m incentive equations, and
n{m-1) risk—-sharing equations. The variables are the m inputs, the nm
shares, and the m — 1 welfare weights.

A multijet transversality theorem is needed to formalize this statement,
for the equations involve the values of the utility functions and their
derivatives at several points (i.e., the different shares). See [2, p.
57] for details. In Theorem 1 of our paper, a generic problem is an
element of some open, dense subset of the set of problems; in the risk
averse case, a generic problem is in some residual subset. We obtain
different results because of the differences between the utility functions
in these cases. The characterization in the risk averse case is weaker
because the domains of the utility functions in this case are not compact
(i.e., the shares are unbounded). 1In the risk neutral case, the
disutility of a partner's input (which is all that we use of his utility
function) has a compact domain.

See Radner [4] for an overview of the principal-agent model. In our
discussion of this model, "efficient"™ means Pareto optimal, relative to

the utilities of the principal and the agent.
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