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ABSTRACT

This paper investigates a production growth logistics
system for the machine loading problem (generalized transporta-
tion model), with a linear cost structure and minimum levels on
total machine hours (resources) and product types (demands). An
algorithm is provided for tracing the production growth path of
this system, viz.in determining the optimal machine loading
schedule of machines for product types, when the volumes of
(1) total machine hours and (ii) the total amount of product types
are increased either individually for each total or simultaneously
for both. Extensions of this methodology, when (i) the costs of
production are convex and piecewise linear, and (ii) when the
costs are non-convex due to quantity discounts and (iii) when
there are upper bounds for productions are also discussed.
Finally, a '"goal-programming' production growth model where
the specified demands are treated as just goals and not as

absolute quantities to be satisfied is also considered.
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1. TINTRODUCTION

Growth path logistics system and the prespecified market growth
rate in the context of a '"transportation problem'" was analyzed by
Srinivasan and Thompson via their rim operator theory [14]. The
same has also been discussed utilizing the network formulation and
converting into an uncapacitated transfortation problem by Fong and
Rao [19]. These are general extensions and characterizations of
earlier work on such logistics systems modelled as a 'transportation
problem'" [8,9]. However, nothing has been reported into the liter-
ature on such logistics systems for the '"machine loading problem"
[1,7,10] characterized as a generalized transportation problem or
the anlogous 'metworks with gains' [13]. This paper is expected to
fill this gap in considering a logistics system modelled as a

" for the machine loading problem

"generalized transportation problem
where one minimizes the total production costs of a homogeneous

good given by different product types from a set of machines. Speci-
fically, we will consider the "growth path' of such a system, i.e.
given a planning horizon, how the optimal total cost, the machine
hours available treated as sources, product types required considered
as demands, vary continuously as a path, when the total volume in the
system, both with respect to total machine hours available and total

amounts of each product types and their totals increase subject to

certain lower bounds on each machine type's available hours and each



product type's demand. These patterns of changes are essential
for optimal production planning for both short and long term pro-
jections of the entire system relative to facilities, financial
commitments, growth of the firm, manpower needs, etc.

Such an investigation is needed in the context of production-
marketing and logistics system. For example, consider a firm that
plans to expand so that it has to ascertain which machine type
capacities have to be increased and which additional product types
as demands should be sought after. It is reasonable to assume that
the firm wishes to maintain at least its current levels of production
and demands. The cost of production of a product type from a
specified machine involves also other manpower, transportation,promo-
tion and other related costs and the revenue from selling the same.

It is assumed that the net costs (or revenues) are proportional to

the amounts concerned, to enable us to obtain a net per unit cost
(or negative per unit profit) for each machine type-product type
combination. For such a case, the growth path will provide the
effect on the optimal solution as the total volume of both types
mentioned is increased. Further, job shops that are committed,
comprising of the machine types involved and the product types pro-
duced by these machines with the associated personnel would benefit
to decide on the additional workforce required in overtime and
hiring or redistribution of work schedule decisions.
2. THE MACHINE LOADING PROBLEM AND AN OPERATOR THEORY FOR OPTIMAL
PRODUCTION PATH DECISIONS
The following provides the mathematical formulation of the

""lower bounded and constrained total volume machine loading problem."



(1) Let <= {1,2,...,i,...,m} the set of machine types

(services) and

(2) §=1{1,2,...,j,...,n} the set of product types

(demands).

For i € 4 and j € g, the following are defined

xij = amount of product type j to be produced
utilizing machine type i (> 0)

cij = per unit cost of production of product type j
using unit time of machine type i's unit time
(> 0)

bj = minimum amount of product j required (> 0)

a; = current availability of machine time units of
machine type i (> 0)

eij = machine utilization time of machine type i

per unit of product j (> 0)
Si(Tj)- Surplus amount of machine hours available of
the type (demanded of product type j) (> 0)
gi(hj)= unit cost of production using one unit time of
machine type i (or one unit of product type j) (> 0).
With these known values, the following problem (P) is defined.
(3) Minimize Z = X Z e..x,.+ Z g.(a,+S.) +
icy jeg 0T qen bR
= hj (bJ.+TJ.)
j€d

subject to the following constraints:



(4) ]Eg 15 ¥ij 2 84 + S for i e 4
(5) XX, . =b. + T, for j € g
jeyg M ] ]
(6) Xij >0, Si - 0, Tj >0 for i ¢4 and j € @

v e Xii’ Si and T] are the decision variables.

REMARK 1. We can generalize this problem in the framework of network

with gains 113 ) which can also accommodate a coefficient fij in con-

straint set (5) for each xii' I'or such a case one could define
x!. = t.. x.. so rhat new constants ¢, = c¢../F.. and e,). = e../f.. change
L] 1yt 1] 177 1] 1] 1] 1]

this piciviow o have  the same structure as in (3)-(6). Thus without
any toss ol generality we consider problem P where one always ensured
ity as coelficients ol A0 in coustraint sel (5). Further, we may
have apperbonnds for i and the problem can be handled by the method
provided by satachawh v and Thompson |1

oo pronlom Uowi th Si = (0 and Tj = () may not have a feasible
sotution. Thus we will introduce a slack column ntl, with ei,n+l =1,

Ciord 0 fFor Vv i ¢ & and a fictitious machine type with abundant
skl

availabiltity a and a prohibitive per unit cost of production

mt1

= M (a high cost) with e 1 For V € g. Further let

CITH'l,j HH—l:J

. S e = and no constraint exists for the newl
Lrn+1,n—i-l ’ Cm+l,r1+l 1 Y

created column nt+l. Let us now define the index sets I = ¢ U{mt+l},

J= g u {ntll. (One may put 8.1 Lo be M and hn+1 =b 1= Tn+1 =0
but since that adds only a constiml to the objective function (3)

these are not speciflicd herel)



Thus the resulting problem will be

(7) Min Z = X = Cis Xis + = gi(ai+Si) + Z h,(b.+T.)
iel jeg MY dex j€ed ]

subject to

(8) jiJ eij xij = a; + S; for i €I
9 z X.. = b, + T. for j ¢
(9) Z % P+ T j€s
(10) X3 >0; fori € I, j € J; Si >0 for i € &4 Tj >0 for j € 4

and Sm+1 = Tr1+1 = bn+l = hr1+l =0

Let
(1D) K, = £ (Z e.,. x..) and
Moojer jeg P31
(12) Kp = Z (Z x..)

jeg ier

Here in (7)-(11), X550 Si and Tj are the decision variables.
Constraint (8) for every i € I states that the total time provided
by machines of type i for production of all product types, should
equal to the total available time units a, + S;. Since S, >0
from (10), the total available time is at least equal to the current
level of operation ay (the lower bound at ith row). This type of
statement holds for columns j € ¢’. (Note we don't have a constraint
for column (n+l)). The production system given here has two different

total volumes, one KM the total machine hours available and KP the

total amount of all products required in the system. The objective

function minimizes the total cost in the system, (production costs,
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securing additional time and demands). Though the objective function

(7) can be rewritten from equations (8) and (9) as

(13) Min 2= < T ¢/, x..
iel jeg Y 1]

where c.. = c¢.. + g. e.. + h,

ij ij i 7ij j

the form given in (7) is to be preferred since it is more suitable
when the costs of producing from the machines and meeting more
demands are not necessarily proportional. 1In such a situation we
represent gi(‘) and hj(’) as functions of (ai+Si) and (bj+Tj)
respectively.

h
Since in (m+1)t row,

Cm+1,j = M a high penalty cost and
A is a very large availability, one is always assured of a
feasible solution to problems (3)-(6). However if Xwl h = 0, this
bl

shows there is no feasible solution to the original problem. The

condition x = 0 for j € § is necessary and sufficient for the

1,

existence of a feasible solution. Further x is always > 0

m+1,n+1
(see [117).

Summing the equations (4) for i € T and subtracting from (11)

we can rewrite equation (11l) by

(14) K, = Z ¢, = Z s
Mooy 1

From (19) where s; > 0, it follows that

(15) Ky > = a; = K (say)
1€l

Similarly for the columns, from (9), (10) and (12) we have

(16) Kp - = b. = X T, so that
jer 3 je3



(17) Kp > Zb, =K (say)
P=yead b
(Note bn+1 = Tn+1 = 0).

Again feasibility is always assured of the (m+1)th row with

large a However the presence of x for any j € ¢4 is suf-

m+1 mtl, j
ficient to show that the original problem has no feasible solution.

These positive x provide the fact about those demands j which

m+1, ]
are not satisfied, since they use up the machine hours from a
fictitious machine.

We will now transform the problem given by (7)-(12) to a
Standard Generalized capacitated trasportation problem [1], with
(m+2) rows (machine types) and (n+2) columns (product types). Let

us add a large positive constant N to both sides of (8) and (9) and

rearrange, to obtain the following:

(18) 12 ;3 *ij + (N-Si) = a,+N for i € I, and
19 b .. + (N-T.) = b.+N f j .
(19) o %43 ( J) i or j € 4

Similarly (7), (14) and (16) can be arranged respectively as

(20) Z=Min T Z c¢,: X.. - 2 g, (N-S.,) - = h, (N-T.)
iel jeg Y M qer 7 e 1 J
+ = g, (Wa.) + = h, (D)
ier b t jeJ
: and
(21) s (N-S.) = ()N + = a, -
i€l L ier b “u
(22) > (N-T.) = (n+1)N + X bj - Kp

jeJ ] jeJ



Let the following definitions be made:

P - . = 4 = = - 1
(23) Xi,n+2 = N Si ei,n+2 1 a; a; + N and Ci,n+2 81 for i €1
= N_T - - r - = .
(24) XITH‘Z,j = N Tj, em+2,j 1 bj bj + N and CITH'Z,j - hj forJ €J
(25) a = (n+tl) N+ = b, - K,; b = (m1l)N+ = a. -
mt2 jeJ P n+2 i€l 1 K'M
(26) Cm+2,n+2 = M (a large positive number)
(27) Z = 2 g.(NMa;,) + Z h,(MHn.,) = a constant
© e ? L jeJ 3 J
(28) I’=1 U {m2}, J'=J U {nt+2},

and ¢’ = # U {nt2}.
With these definitions given by (23)-(28), (20)-(22), (18), (19)
and (10) become

inimi = b .. X.. + 2
(29) Minimize Z F17 jer ei3 *ij o

Subject to the following constraints:

(30) > e,. x.. = a/ for i e 1’
jegr 13 TS i

31 = .. = b/ f i € g’
Gy ferr i s
(32) x >0 for i € I/, and j € J'

1]
(33) X; a9 < N for i €1

b

(34) X <N for j € J



REMARK 2. Since M is assumed to be large positive number,

‘o2, 42 T

M o= *mb2 042 " 0 in any optimal solution. Further the constraints
L S 0 and x; ., >0 => S; < N and Tj < N respectively which

b

are always true by our choice of N.
tiow we can think of two possible growths in the system, viz.

when Kp the total volume of products increase from KP to KP + 8.

From (23)-(27), this is equivalent to studying the effects of changing

a to a - 8 and changing b to bn+2 - 8. Since we know the

mt2 m+2 2

current production schedule has solved the problem where all Si =0

and T, = 0, we have the optimal solution Xij and Z with KP = Kb and

J
Ky = K. Then the optimal solution for any other KM or K, can be

P

obtained via the "Rim Operator' theory developed by Balachandran and

Thompson [1,2,3,4]. Specifically changes in K starting with Ka’

M’
can be completely analyzed (since Ky = K, + §) by utilizing the

cell rim operator § Rm+2,n+1 where & = Km - Ka' This cell rim

operator provides the optimum solution of problem P, where the entire

data of P are used except a 4o = a o " 6, from the known optimal

solution of P. (Essentially a parametric analysis when just the
th . . .

(m+2)  rowvalue is changed from a o toa. ., - 8.) Similarly for

changes in K, starting with Kb can be completely analyzed with the

P
known optimal solution of Ky since Kp = Ky + 6, by utilizing the cell

mt1 ,n+2

rim operator & R where, now, § KP - Ky (The n+2th column

total, changes from a_ to a_ - 6.) In our earlier work on

+2 +2
"Operator theory" [2,3,4] we have provided constructive algorithms
and solution procedures for all rim operators for all values of

0 < 8§ < . Further the simultaneous changes of both KM and KP also

can be analyzed by the cell rim operator & R%+2,n+2'
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To start with we have an optimal solution to the "original
problem where X S; =0and X T, =0 (in other words, for
i€l j€J
Ky = K, and K, = K ). Let us call this as the "original optimimum

solution' to proboem (29)-(34). From (23) and (24) we know that

Xi 2 = N for i € T and Xm+2,j = N for j € J and xm+2,n+2 = 0 from
Remark 2. Substituting these values in (29)-(34) where Ky = K,
and KP = Kb we have
(35) Min Z = = Z c.. X,.+[Z -N(CZ g.+ Z h.)]
ier jeg YoM © ier t+  jer 1
\— o
constant
subject to
(36) e eij Xij = a; for i €1
] J
(37) % X.. = b, for j € ¢ and
i€l 1 J
(38) %i3 >0 for i € T and j € J.

The problem (35)-(38) is a ''generalized transportation problem"
and can be solved by four index algorithm [5] and the code developed
by Balachandran and Thompson. (There are other procedures also avail-
able, e.g. see Balas [7], Glover and Klingman [12].) This "original
optimum solution" for the problem (35)-(38) which is uncapacitated,

together with the new values for X: 42 and x provide an optimum

b

mt2,j
solution to (29)-(34). The above set of solutions for xij’ ie1l’

and j € J’ will be called hereafter as a ''basic optimum solution."

The following theorem provides a constructive procedure for generating
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t

such a "basic optimum solution," from the "original optimum

solution'" for problem (29)-(34).

THEOREM 1: Let B denote the optimum basis for (35)-(38) with

u; and vy as the dual variables (see for duals [1,2]). Let the

indices r, s be defined such that

(39) Vo = ° (ur+gr) = @a¥ [-(ui+gi)] and
1¢
(40) oo = - (VS+hS) = max [—(vj+hj)].

jed

Then B’ = B + {r,n+2)} + {(m2,s)} is an optimal basis to the
problem (29)-(34) with the dual solutions uy for i € I’ and

vy for j € g’.

PROOF: First, let us prove that B’ as given above is a basis.
Since B is a basis for the problem (35)-(38) with (mt+l) rows and
(n+1) columns, this will pe a '"one-forest'" consisting of (mtn+l)
cells and mutually disconnected '"one-trees'" [ 1, 7]. Each row and
column contains at least one cell. Since (r,n+2) and (m+2,s) are
cells in B’, they provide one cell in each (m+2)th row and (n+2)th
column. Since cell (r,n+2) is unique in column (n+2) and cell
(m+2,s8) is unique in row (m+2) these cells, when they are joined

th .
column is

as arcs in the one trees where rth row is present and s
present respectively, will still preserve the one tree property.
Further the mutual disconnectedness existed in the ''one-forest"
of the original B is also preserved. Thus B’ also possess the one-

forest. Hence B’ is a basis. If (i,j) € B’, then Xj5 = 0 or take

its upper bounds. Let LB’ and UB’ be the set of cells where X35 = 0
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and those cells that take the upper bounds respectively. Let
the basis structure be defined as (B, LB’, UB’) for the problem.

Now to prove that B’ is optimél, we should show that

(41) (i,j) € B! => €5 = eqy Wy + vy
(42) i,3) ELB'=>'cij > eij u, +'Vj and
(43) (1,j) €UB’'=> iy < eq5 Yy + vy

Since B is optimal to (35)-(38), (41) holds for the cells in B.

For the cell (r,m+2), C. 42 = = By from (23). Further from (39)
’
- 8. = U.+ V5 S0 that c_ o2 =Yt Vo Since €. 2 = 1 from
b 4
(23),
“r,nt2 T Cront2 Yr * V2

thus satisfying (41). A similar argument holds for the cell (mt+2,s).
For the cells (i,j) € LB (42) holds since B is optimal. We con-

structed the solution to (29)-(34) so that x = N for { € I and

i,nt2

X = N for j € J. Hence these cells are at their upper bounds,

m-2,
or € UB’. For (i,n+2) € UB’, with 1 € I, from (39) we have

= (u4gy) S vo4o so that

thus satisfying (43) for such (i,j) € UB’. Similar is true for cells

(m+2,j) for § € J. Sincec =M from (26), (42) trivially

m+2 ,nt2
holds (i,j) € LB satisfies (42), these cells together with cell

(m+2,m+2) make LB’ and thus (42) holds for all (i,j) € LB'.
Q.E.D.
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These results are summarized as an algorithm given below
(Algorithm Al). First we find an "original optimal solution'

using our code [ 5 ] where KM = Ka and KP = K . Later the foilowing

four options are investigated.

(1) K, < Ky <K + N

(ii) Kb < KP < Kb + N

(iii) Both variations in KM and KP where if

K, = Ka + & KP = Kb - & and if

= Kb + 63 KM = Ka - 6§ and

~
[

(iv) KM and KP both increase at the rate of § oy and § @p-

ALGORITHM Al. To find the production growth by solving for optimal

solution of (29)-(34) for all options

(i) K, <Ky <K +N

(ii) K

b = Kp <K, + N

P =
(i1i) Changes in KM and KP simultaneously within the bounds

(iv) given above in (i) and (ii) respectively.

Step 1: Find the "original optimal solution"

Solve the problem given by (35)-(38) by using the '"'generalized
stepping stone method" [1,9] (see Algorithm A4 of [1).) Let Z
denote the optimum value with basis as B. Those which are non-basic,
i.e. Xij = 0, constitute the set of lower bounds called LB say.
Utilizying this optimal solution to (29)-(34) as the same for all

i €71 and j € J. Define Xi 42 T N for 1 € I; xm+2,j = N for j € J

’

and Xm+2,n+2 =0
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Evaluate the duals v and u using (39) and (40) after identifying

n+2 2
the indices r and s. Define the new basis as B’ = B + {r,nt+2)} +

{fmt+2,s)} as the basis for (29)-(34).

OPTION 1: Production growth when extra machine hour capacities

are available:

Application of Rim Operator § for any 0 < § < N.

Rm+2,n+1

Step 2: Let the iteration count K = 1; X1 = X, B1 = B’; Z1 = 2,

= 1 ’ — 3 ’
up g e for i € 17, Vj,l vj for j € J°.

b

Step 3: With the solution of Step 2, apply the cell rim operator

5 R;+2’n+1 as given by Alzorithms A8, Al5, of the rim operator

[2,4] and identify the discrete set of 'corner points," 0 = Hos M1s Mo

14 M such that

i~
j-1
(1) for every interval T pju, < 86 < X W,
. i = .74 i
i=0 i=0
doesn't change, for j = 0 to t and

the Basis Bj

(ii) the last interval contains N, such that

t-1

>
My < N <

= M;, SO that
i=0 i

I ™Mt

0
the optimal solution Zj and the corresponding basis Bj giving

X = {xij} are completely determined for 0 < 6 < N. This is
equivalent to analyzing the production growth KM when § moves from
Ka to Ka + N. The exact calculations procedures are given in

Algorithms A8, Al5 of [2,4]. (A detailed algorithm for the trans-

portion type problem is given in [141].)
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OPTION 2: Production Growth when extra demands for products are

increasing from the current level K to K + N

Application of cell Rim Operator 5 Rm+l,n_2 for any 0 < 5 N.

Steps (2) and (3) are similar to those of option (1) except we

apply cell rim operator & R_ and get a new set of '"'corner
PPLY P w1, nt2 &

points" My This growth path yields the study of KP when § moves

from Kb to Kb + N.

OPTION 3: Simultaneous variation in KM and KP such that

(i) when KM

Il
~
+
(o]
~

]
~

[}
o
o]
H

(ii) when KP = KP + 5 KM = K_ - &.

. . . +
Application of cell rim operator 5 Rm+2,n+2 for any 0 < &6 < NN,
- or + as (i) or (ii) is required.

Again Steps (2) and (3) are similar to those of option (i) except
¥
Rm+2,n+2

"corner points' and their associated Basis B{, Z value and solution

we now apply cell rim operator § and obtain a new set of

X = {Xii} depending upon whether we want to analyze (i) or (ii)

as the case may be so that

lv

(1) when Ka < KM < Ka + N, then Kb > KP Kb - N or

(i) when K < K, < K + N, then K > K, > K, - N.

OPTION 4: Simultaneous increase in KM and KP in the directions (Steps)

of . and «_ such that KM = Ka + aMé and KP = Kb + QPG.

p
Here we increase both Ka and KP so that there is growth on
both volumes in the system (viz. in machine capacity as well as

required demands). This is achieved by applying area rim operator
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A th . th
§ R” such that the (mt+2) row total is decreased by Sy and (n+2)

column total is decreased by b« This can be achieved by using

p-
algorithms A8, Al5 of [2,4]. Once again Steps (2) and (3) are the
same except this area rim operator application and one can get the
"corner points" ui's such that the basis B, associated Z value
and solution X = {xij} can be obtained systematically, such that,

the simultaneous increase of

K, <Ky =<K, +N and

K, < Kp <K + N

can be investigated via area rim operators [2].

REMARK 3: It is to be noted that each cell rim operator is inde-
pendent (see [2]), so that for Cption 4, one could apply Option 1

and to the resultant problem can apply Option 2, or vice versa,

so that results for simultaneous growths can be obtained. This
avoids area rim operator application. Thus a rectangular array

of "corner points'" can be obtained. For instance the first interval
Mo < & < My is obtained utilizing 6 R;+2,n+1 cell rim operator giving
the new basis, Z value and solution X. To this resultant problem

one can apply Option (2) in its entirety so that Ky < KP < KP + N

is investigated for K, < Ky <K + y;. Then we go to the next

interval for 6 R+ such that analysis for Ko+t Hy S Ky =K+t

2,n+1
is obtained and the entire Option (2) is once again obtained and so on

o . : < < .
until we cover the entire range of K, < K, <K + N
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REMARK &: For any Ky, (or KP) such that K_ < Ky £ K, + N we know

the value of § = KM - Ka (or KP—Kb) and an index t, such that

t-1 t
(44) ¥ My < § < % My and
i=0 i=0
t-1
(45) A= b - 'Z “i
1=

The rim operator Algorithm A8 and Al5 [2,4] provides a procedure

of updating X, s for the cells in the two-tree such that

(46) X.. (new) = x,.

. . + m..
1] 1],t mlJ,t A

wherce x. . are the solution X = {x..} at the tth interval, m,.
ij,t 1] 1],t

the multipliers obtained from Algorithm A8, Al5 [2,4] which are
non-zero of the cells in the two-tree and A defined in (45).

The associated total cost Z will be

(47) Z (new) = Z, - » (u

t +

2, t Vn+1,t)

where Ui ¢ and vi ¢ are the duals obtained for ith row, and jth
b J )

column for the tth interval. (Note that e = 1 for (m+2)th row

w2, j

and Vorl.t C 0 for all t since there is no constraint in (n+1)th
3

column.)

The recurrence relation for each interval K will be

(48) Z = Z

k1 = Zke T M (g ke Vet k)

(note, Vntl,k = 0)

(49) X535kt T Kij,k T Mg,k Mk @

= u
(50) Yokl i,k T Mk D

Vi k+1 - Vi,k
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where : is found in Algorithm Al5, [47] and m;, Ny are the multi-
pliers for the duals (see Algorithm A9 of [21]).

Thus the equations (48)-(50) provide an updating recurrence
relation for (K+1)th interval where Kth interval values for Z, X
and u, v are known. We know the first interval value i.e., when
K= 0.

All these discussions hold for every option.

From (47) and (48) it follows that the cost Z for any
0 < 6 <N is given by

t-1

(51) Z=129- Z

[y, (u + v )]
o1 P2 T Vil

- 2 (u +

2.t T Vntl, 0!

where t and X are given by (44) and (45). Thus the rate at which

the cost Z, increases when 6§ is increased is given by - Yo k ”
b4

Vo] k- This marginal cost is thus the negative sum of the duals

for (m+2)th row and (n+1)th column. We also note that Uis i S 0
b

and Vol k C 0 for the generalized transportation problem (see [11]).
b

Thus - u > 0 and so u is a non-decreasing function of K for

w2,k

the operator 5 Rm+2,n+1 so that the marginal cost is non-decreasing

in §, and thus also in KM since KM = Ka + 8.

Now, in the case of Option 2 we go to the operator § Rm+1,n+2
and equation (47)-(50) could be modified by putting mt+l for m+2th row
and n+2 for n+1th column. Now since the "absorbing cell' (mt+l,n+1)

is always in the basis [11], = 0 and all v, > 0. Thus, the

Ymt1 j,t

marginal cost will be a non-increasing function of § since

- Vn+2,k < 0 for the operator & Rm+1,n+2' Thus i1t is non-decreasing

in KP since KP = Kb + 5.
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Similar discussions can be given for Options (3) and (4)
depending upon the corresponding rim operator's properties. These

results lead to the following theorem.

THEOREM 2: The optimal values for the variables Xs 49
3

for j € J as determined by Algorithm Al are non-decreasing

for i €I

and Xm+2,j

functions of § = Ky - Ka for Option (1) and non-increasing functions

of 6 = K, - K for Option (2).

PROOF: 1Tt follows from (44) and (45) that the proof of this theorem

will be complete, if we show that it holds for

t’'-1 t’
(52) Vo, <6< U oy
k=0 K = k=0 K

With » defined in (45) for any t’, 0 < t’ < t that it holds for

0 < X <u. . Since we know that X135, t41 a8 defined in (49) is

the same as that given by (46) for A = M-

From (46), Xij increases for the cells such that m;, are

ij,t

positive. Of course we maintain always x = 0 due to huge

m+2 ,nt2
cost. Thus the proof will depend on showing that no cell (i,nt+2)
for i € T or (m2,j) for j € J has a positive mij' To prove this

assume the contrary that m > 0 where r € I. Since the r,nt2

r,nt+2
"two-tree' associated with the rim operator [2) has exactly two
cells in column (n+2), which are (r,n+2) and (m+2,n+2), these are
the adjacent cells in the '"two-tree' and since mij's are alternately
positive and negative in the adjacent cells in the two-tree both
these specified cells cannot be positive. Since cell (m+2,n+2) has
positive multipliers mij we know (r,n+2) should have a negative

multiplier. A similar argument holds for (mt+2,s) where s € g. Thus

the theorem holds - similar arguments hold for Option (2) as well.
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3. EXTENSIONS AND GENERALIZATIONS

3.1 Capacitated Growth Paths

In certain machine loading problems certain cells X, for
i €T and j € J are constrained by certain maximum capacities
(upper bounds) U; s

]
our original Rim Operator theory was developed for the upper

, so that 0 < xij < Uij' In these cases, since

bounded generalized transportation problem [1,2,4], Algorithm Al
and Theorems 1 and 2 will be still true, though the Algorithm Al has

to be slightly modified to take care of Uij's.

3.2. Convex Costs of Production

The Lheory discussed in Section (2) can be used when the costs of
production g(Si) and h(Tj) are general convex functions that can
be approximated by a convex piecewise linear functions. Consider,
for example, Option (1) only and only one row total ay - If a; = 100

and per unit cost of adding a; are as follows

$5/unit for 0 < S1 < 5

$6/unit for 5 < S, < 10

$7/unit for S1 > 10 .

Then we create 3 fictitious machine types for the first, say
t = 1,2,3; with the same cij's for all j € J, and t = 1,2,3, but

with c -5, -6 and €3 nt3 = -7. Let Sl,l’ 81’2 and

1,n+2 €2.n+2 ~
S1 3 denote the surplus machine hours of type 1 in the ranges of
b

0 =511 22 > <5p 13

Thus we define X1 b2 5 - 51,1; X0 n+2 (10-5) - Sl,2 and

< 10, 10 < S so that S1 = Sl,l + 81,2 + 81,3.

=N-S to get upper bounded constraints (viz. X] 42 = 33
b

*3 2 1,3

< 5 and x N). Further, due to convexity, the optimum

Xy n#2 = 3,042 =
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solution forces,for example Sl,2 > 0 (due to X2,n+2 < 5) if and
only if S11 = 5 (i.e. X) n+2 T 0). Similarly 81,3 >0 (i.e.

X3 b2 N) if and only if §11 = 5 and S12 = 5, (One can use cost
operators | ] for such an analysis instead of increasing the size
of the problem.)

Further in the "Transportation type problems with Ouantity
discounts'" Balachandran and Perry [6] have provided an algorithm
for an objective function which is neither convex nor concave.

Thus even if g(Si) and h(Tj) are non-convex (non-concave) then the
above procedure could be utilized for this growth model.

Again if, the growth rates for availability of machines or
the product's demands increase at prespecified rates, say @ for
Si and/or Bj for Tj the model can be reformulated in this general
frame work with new objective function and right-hand sides for
(m+2)th row and/or (n+2)th column approximately modified. (Details

similar to this are given in [141].)

3.3. Goal Programming Growth
It was imperative in problem (3)-(6) that the minimum demands
bj and availabilities a; are necessarily met. On the contrary, it

'  Thus one

could be treated just as ''goals' or as "expected values.'
may allow a deficit or surplus in each row or column which are non-
negative. Let S{ (Si) and Tj (TE) represent the surplus (deficit)
at row i and colum j respectively so that S+(S_) and T+(T—) be
their respective totals. Then we could assign a per unit reward

(penalty) for the surplus (deficit) yielding the following ''goal

programming [8] problem.



. + -
(53) Min 2= X X ¢,, %..+ Z g. (a, +S; - S.)
ier jeg oY) i Tt 7 L t
+ — - -
+ Z h, (b, +T. - T.) + = (s. S, - sf Sf)
je3 4 3 j j ser LA i1
+ ¥ (t: T. - et Tf) cst sty s st o T 4T T

(where the penalty (reward) is at the rate of t—(t+) for the total
deficit which include priorities. Similary penalties (rewards)

- o+ -+ - .
s , s, t. tj’ s; and s: are defined).

Subject to the following constraints:

(54) ¥ e.,. X.,. = a. + Sf - S. for i €1
jeg B3] i3 j
(55) 5 X,.=b, + Tt - T,  for j € g
— ij j j j
(56) » st =5t
ied
(57) > Si =S
ied
(58) s Th = Tt
jeg
(59) L T, = T and
jeg
s S S . .
(60) Xij’ Si’ Si’ Tj Tj >0 for i €I and j €J

(From (56)-(60), we have S+, S, T+, T~ > 0.)

This problem (53)-(60) can be converted to the generalized capacitated

Transportation Problem due to the following.



(61)

(62)

(63)

(64)

(65)

(66)

(67)

+_ .+
Let g; = 8&; - 8; 5 8
W =n, - ¢t R;
S

Z = Z g. a

© jer * 7
Min Z =2 + =
i€l
+ = bt
jeJ 3]

Add N to both sides of (54) and

= 8; + s
=h, + t, and
] ]
~Z h. b to get (53) as
jeJ
+ o - o
b2 . s . - = . . . .
j€J ClJ X1J * i€T (gl Sl + 8i Sl)

+ o+ - e +

+ hi TE) st sty s s - T T

(55) to yield

- ot - _ .

jEJ eij Xij + (N Si) + Si a; + N for 1 €1
9 X.. + (T-TT) + T = b, + N for j € J
L1 i] j i3

Again (56) and (58)

5 (N-s{) + st
ied

> (N-TH) 4 T =
jeg J
Further (57) and (59)

I

> si + (N-S7)
ied

= T. + (N-T)
jeg

Recalling KM from (11) and K

can be written as

mN and

nN .

can be viewed as

N and

P from (12) (the total volumes) we

add (11), (64) and (65) and subtract from it the sum of (62) over

i, to get
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+ -S7y =
(68) s' + (N-S) = Ky+ N- = a,
1€1

Similarly we get for columns,

(69) ™ + (N-T7) = Kp #+ N - = b,
jeg

Let 2’ =2 + = gh N+ = nl N+ s"N+ t™N; (60) becomes
o o . i . 3j
iecl jedJ

. + +
(70) Min Z2=2'4+ £ Z c¢.. x.. - Z g. (N-S.)
©  der jeg Y M) qer 7 t

+ = g£ s; - =2 nt -t + = nl TS
icl jey J J jeJ
st st o st m-sTy -t - e (w-T).

Since S;, S, T;, T  are defined to be > 0 we have
+ ) + .
(71) (N-Si) < N for i €I, (N-Tj) < N for j €J

(N-S7) <N and (N-T ) < N.

IA

Thus (62) to (70) yield a (m+4) row (n+4) column capacitated

generalized transportation problem as given in Figure 1. Again

Algorithm 1 with very minor modifications can be used after solving
with KM = Ka and KP = Kb and choosing options of relevant interest
. . + +
and applying proper cell rim operators § Rm+4,n+1 or & Rm+1,n+4 as

the case may be.
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.

“ denotes that the upper bounds for these Xij are N

FIGURE 1
Slack Machine
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