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Abstract
A nonnegative integer sequence (dl.dz.....dn) is cailed a degree
sequence if there exists a simple graph on the vertex set V = {1,2....n}

such that deg(i} = di’ for all i. The degree sequence of a threshoid graphn

is a threshoid sequence. Let D_ = Convex Hull {(x.,x.,...,.X }}(x,,...,Xx}
n i'72 n 1 n
is a degree sequence}. It is proved that:

i) A degree sequence f is an exireme point of Dn if and oniy if f 1is
a threshold sequence.

2) Two threshoid sequences f and g are adjacent extreme points of Dn
if and only if f can be obtained from g by either adding 1 to two
components of g or subtracting 1 from two components of g.

3) Dn is determined by the following system of inequaiities:

- —

P X. - L X. £iS| (n -1 - iTi)

ies i ieT "1 ~
for ali set S,Twith @ # S UTC¢ {1,2,...,n}, SN T =2¢
Moreover, this system is totally duai integrai. Furthermore. for

n >4, (S,T) determines a facet of Dn if and oniy if either
[SUT|{ = 1orelseS#6@¢, TZ0@, [SUT| £#£n -1, n - 2.

4) f is a threshoid sequence if and only if the only degree sequences
majorizing f in the sense of Hardy-Littlewood-Pbliya are the
rearrangements of f.

3) Every degree sequence is a convex combination of isomorphic
threshoid sequences (i.e., thresholid sequences that are

rearrangements of each other).



i.  introductiol

A nonnegative integer sequence d = (dl,dz,....dn) is cailed a degree
sequence if there exists a (simpie) graph G = (V,E) on the vertex set
vV ={1,2,...,n} such that deg(i) = di' for ail i. G is said to be a

reaiization of d. Degree seqguences have been tnoroughly studied and the

foilowing are three welil-known characterizations of nonincreasing degree

sequences (d, 2 d, =2 ... 2 d_):
q (l 5 rl)
=N . L i . T e . .
(1) Li=1 ai is even and (al,....an) satisfies the Erados-Gallai inequaiities
4 <k(k - 1)+ 5O min{d..kK). K = 1,...,n [2,5,16]:
“i=1 "1 < i=x-1 it ’ ’ T TmEa
=n .. . . . L. . e e _ .- .
(2) Li-l ai is even and (01,...,an) is majorized (Definition 5.1 below} Dy
its corrected conjugate sequence (51,...,an) given by
d, = i{{i < Kid, 2K - 1} + |{i > kid. 2 k}i [2};
K i i
3 d, - i1,d, - 1,...,d - 1,d, y .. .nd is also a degree sequence.
(3) 2 3 d1+1 a,+2 n) g :

This criterion, when iterated, gives rise to the Havel-Hakimi aligorithm
i8,13].

Let DSn = {(xl,...,x

n)l(xl,....xn) is a degree sequence}. The polytope

of degree sequences is D_1 = Convex Hull (DSn). In {15], Koren proved that:

i

{1) A degree sequence is an extreme point of Dn if and only if it has a
unique realization (see also [9]);

(2) Dn is determined by the following system of linear inequaiities:
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X ISt (n - 1 - |iTi)

. X. - L. Xx. <
Z‘1€S i ieT "1

for all set S,T such that d # SUT ¢ {i,2,....a}, SN T=2¢.

Koren aiso characterized the uniquely realizable nonincreasing aegree
sequences by the property d = d. The proofs in {151 rely on the Erdos-
Galiai inequalities.

In this paper we study the properties of Dn using tnhreshold grapns. In
Sections 2 and 4 we reproduce the resuits of [13] using iinear programming
duaiity and the structure of threshoid graphs and snow that the above system
of linear inequalities is totally dual integral. This approach fits
naturalily the modern trend of using LP duality and some combinatorics to
obtain polyhedral results [20]. We aiso determine the facets of Dn in

Section 4. In Section 3 we study the probliem of adjacency of extreme points

of Dn and show that two exireme points (fl,...,tn) and (gl,....gn) of Dn
with realizations G1 = (V,El) and G2 = (V,E2) (which are necessarily unique)
are adjacent if and only if !El 5] E2! = 1 (® denotes the symmetric

difference).
Finally, in Section 5 we show that the non-majorizable degree sequences
{more precisely, degree sequences d that cannot be majorized by other degree
sequences except for rearrangements of d) are precisely the degree sequences
of threshold graphs. From a well-known result in the theory of majorization
it then foliows that every degree sequence is a convex combination of degree
sequences of isomorphic threshold graphs.

The following definitions are used in this paper. All graphs
considered are finite, undirected and without loops or paraliei edges.

fa,b] denotes an edge joining two vertices a and b, and N{(a) = {blia,b] is
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an edge} is the set of neighbors of a. N(W) = U {N(a)ia € W} for WC V. A

ciigue is a set of pairwise adjacent vertices and a stable set is a set of

pairwise nonadjacent vertices. The size of the largest clique of a grapn
G = (V,E) is written as w(G). The vertex set of each graph discussed here
is assumed to be {(1,2,...,n}, for some n. We denote by ui the i-th unit
vector.

Threshold graphs were introduced by Chvatal and Hammer (3] as a class
of graphs for which there is a simple method of distinguishing stable sets
from nonstablie sets. A graph with vertex set {i,2,...,n} is a threshoid

graph if there exist real weights wl,w W t such that the 0-1

5

, . L . . =n A - .
solutions of the inequality Li—l wixi < t are preciseiy the characteristic

vectors of the stable sets of the graph. The degree sequence of a threshold

graph is cailed a threshold sequence.

Threshold graphs have many characterizations. We present the two that

are used in the sequei.

Theorem 1.1 [3]: A graph is threshold if and only if it has no induced

subgraphns isomorphic to 2K2, P3 or C4, as shown in Figure 1. ]
INSERT FIGURE 1 ABOUT HERE

Equivalently, Theorem i.1 could be stated as:

Coroiiary 1.2: A graph is threshold if and only if it does not contain the

configuration shown in Figure 2, where solid lines represent edges, dotted

lines represent non-edges, and the absence of a line allows for the
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possibility of the edge existing or not. O

INSERT FIGURE 2 ABCOUT HERE

Theorem 1.3 [31: A graph G = (V,E) is threshold if and onliy if there is a

partition of V into disjoint sets K and I {possibly empty) such that

{i) K is a clique;
(2) 1 is a stable set;

{3) There exists an ordering u.,u ..us of the vertices of I such that

or equivalentliy, there exists an ordering vl,vz,....vk of the vertices

of K such that

,) NI g... N NI 5o

N(Vl) NIgcN(v

It is shown in [7] (see also [10j) that we can always cnhoose K with

=
I

@w{(G). A partition satisfying (i) and (2) of Theorem 1.3 is called a

Theorem 1.4 [7] (see also {9i): A nonnegative integer sequence d is a
threshold sequence if and only d = 4. 0

in iight of Theorem 1.4, Koren's results about the extreme points of Dn

can be interpreted to mean that the extreme points of Dn are preciseliy the
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threshoid sequences. For further characterizations and properties of
threshold grapns and threshold sequences see {1, 3, 6, 7, 9, 11, 14, 18,

i9

A

2. Extreme Points

We first review a few facts about the structure of threshold graphs.

Lemma 2.1: Let G = {V,E) be a threshold graph with split partition
V=KUTI, |KI =w(G). Then there exists a v € K that is not adjacent to

any vertex in I.
Proof: Enumerate the vertices of K as VirVgi, v, SO that

N(Vl) NIcg N(Vz) Nic...cN(v

Then v1 is not adjacent to any vertex in I. For if u € N(Vl) N 1, thnen

K U u is a larger clique, contradicting our choice of K. I

We now introduce a partition of the vertices of a threshoid grapn,

which is very similar to the degree partition of {7].

Definition 2.2: Let G = V,E) be a threshold graph with a spiit partition

V=KUTI, |Ki = wG)
If the edges in K are omitted, one obtains a pipartite grapn
B = (K,1;F). Let ko < ki < ... < ko pe the distinct degrees in B of the

vertices in K. By Lemma 2.1, kG = 0., Let s1 <s,_ < ... K< sD be the

[AV]
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distinct nonzero degrees in B of the vertices of I (by Theorem 1.3, the

number of distinct positive degrees in I is p). Set s

0 0, and define for

i = 0,1,-~-yp!

x
I

{v € KidegB(v)

[t}
=
[
~

—
"

{v € KJdegB(v) = s.} .

By this definition all the Ki and Ii are nonempty, with the possibpie
exception of IO. See Figure 8.

It foilows from Definition 2.2 that

N(K. ynNlI=1 ., U Ul
i p-i+1 p
N(Il) = Kp—1+1 U U K.
for i = 0,1, P

Remark: The fact that KO = {v € KiN(v) NI = @} # # was derived from the
choice of K to satisfy {Ki = w(G). It is needed in some, but not ali of the

proofs beiow. We assume it in all cases for uniformity.

INSERT FIGURE 3 ABOUT HERE

Let (CI’C .,c) € R'. Consider the combinatorial optimization

probiem



s.t. {X,,X,,....X_) €D
i < n n

(or equivalentiy, (x,.x ..xn) € Dsq).

The following very simple aigorithm produces an optimal solution:

Ve {l,2, N}

E « @;

for all i,j, i # j, if c; - Cj > 0, add edge {i,ji to E;
(XI’XZ’ .xn) «~ degree sequence of G = (V,E)

Remarks:

2.4 1t is clear that the aigorithm is correct: adding the edge {i,ji adds

c, + Cj to the objective function.

2.5 If Ci + Cj = 0 for some i,j, i # j, we have tne freedom of not adding
the edge [i,j] and still obtain an optimali soiution. This freedom is

enough to obtain all graphs with optimal degree seqguences.

2.6 1In particular, the following conditions are eguivaient:

(a) ¢, =+ c; * 0 for all i,j, i # j;

{b) There is oniy one optimali degree sequence:
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(c) There is onliy one graph with an optimal degree sequence.

2.7 The algorithm can be thought of as the greedy aigorithm on the uniform
matroid on the edges with edge costis c, + Cj' The aligorithm can aiso
be interepreted as the "greedy aigorithm" described in {22, Section
19.2] applied to Dn' In {22] it is proved that the "greedy aigorithm"
on a poiymatroid works for all c € R®. Here it works on Dn’ wnich is

not a polymatroid.

Theorem 2.8: A degree sequence is an extreme point of Dn if and oniy if it

is a threshold sequence.

Proof: ("Cnly if"): Every extreme point of Dn is the unique optimum for

some objective function Z?=1 Cixi' so Algorithm 2.3 must produce it on input

(c .,cn). But the aigorithm always produces threshold grapns. Indeed,

1

write V = K U I where K = {ilci 20}, I {ilci < 0}. Then XK and I satisfy

the condition of Theorem 1.3.

("If"): Let d = (dl,dz,....dn) be a threshoid sequence and G = (V,E)

be a realization of d. Let Ki’ Ii’ 0 £1 £ p e as in Definition 2.2.

Choose ¢ = (c.,c

, 2,....cn) as folilows (see Figure 4):

—t
—

m
~

T
-2p -2+ 2] i€l
INSERT FIGURE 4 ABOUT HERE

It is easy to check that Aigorithm 2.3 with input (01'09""'Cn)
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outputs precisely the grapn G = (V,E) and its degree seguence

d = (d,,..

i

..dq}. Moreover, by Remark 2.6, d is the oniy optimal sequence.

Tnerefore d is an extreme point of Dn' i

Corolilary 2.9 78, i3j: A degree sequence has a unique realization if and

only if it is a tnreshold seqguence.

Proof:

he "if" part foilows from Theorem 2.4 and Remark 2.6. For the

"oniy if" part, let G be a non-threshold grapn. Then by Coroliary i.2, G

has a forbidden configuration (see Figure 3}, and an interchange gives a

different graph with the same degree sequence. O

Remarks:

2.11

INSERT FIGURE 5 ABOUT HERE

The "if" part also follows easily from the forbidden configuration
characterization of threshoid grapns and from the fact that all
realizations of a degree sequence can be obtained from each other
by interchanges along such configurations (see Berge i2}. Chapter
8, Theorem 5).

A threshoid sequence can be recognized and its realization
constructed in time O(n log n) {37].

The number of extreme points of Dn (i.e., the number of labelled

n-vertex threshold graphs) has been determined in [1].



3. Adjacency
In this section we develop criteria for two extreme points of Dn to be
adjacent and produce a formula for the number of adjacent threshoid

sequences to a given threshoid sequence.

Lemma 3.1: Let T, = (V'El) and T2 = (V,Ez) be two threshold graphs with

degree sequences f and g, respectively. If ;El 5] E21 > 2, then f and g are

not adjacent extreme points of Dn'

Proof: Assume that f and g are adjacent extreme points of Dn. Then there

-

.- n . .. .
...,cn) such that . Cixi is maximized over DSn only

exists a c = (c.,c
i i=1

by f and ¢.

Choose e € El (5] Ez. Without 1oss of generality e € Ei' Consider

..,dn). We have G, # T

G, = {(V,E, U e) with degree sequence d = (d 3 5

2 d

9

because e € E2 Ue and e £ Ez. Aiso G3 # T,, as otherwise E, = E2 U e and
4

E. ® E, = {e}, contradicting iE, 8 Ezl z
4

[y
N

t11

Let e = [i,j]. Since e € and f is an optimal degree sequence,

. n n
c., + ¢. 2 0 by Aigorithm 2.3. Hence }, c.d, 2%, . c.g.. As is
j y Aig Li=y ©394 = byjo; €38 £
optimali, d is optimal too. Moreover, d # f,g since the threshold sequences

f.,g have the unique realizations T. and T2, respectively. This contradicts

1
the fact that f and g are the oniy optimal degree sequences for ¢, proving

the lemma. ]

Lemma 3.2: Let G = (V,E) be a threshold graph with a spiit partition

V=KUTI as in Definition 2.2.



13
{a) Let X,y € I. Then (V, E U [x,y]) is a threshold graph if and only
if x,v € Ip and {KOQ =1 (i.e., deg X = deg y = |Kji - 1).

{b) Let x,v € K. Then (V, E - {x,v]) is a threshold graph if and only

if

tv
no

(x,vy € Ky). if (K,

(x € K

]
—_

y € Kl) or (x € Kl' y € Ko), if !KO!

0 *
Proof:

{a) ("Cnly if"): First assume that x € Ii. y € Ij and 1 < j. Since KO
is nonempty, there exists a z € K with {z,y] € E. As X has more non-

neighbors than y, there exists a w € K, 2z # w such that [x.w]l € E (see

Figure 6). Adding edge ix,y] closes a forbidden configuration.

INSERT FIGURE 6 ABOUT HERE

Therefore, x,y € Ii' for some i. Now assume that i < p. Vertices x and y
have the same degree and so, by Theorem 1.3, they have the same neighbors in
K. By our assumption there exist w,z € K, w # Zz such that both w and z are
non-neighbors of both X and y. We reach the same contradiction as above.

Thus X,y € Ip' rinally, {K.i = i, as assuming iKoi > 2 gives rise to the

0
same contradiction once more.

{("If"): Let KO = {z}. Replace K by K' = K - {z} U {x,y} and I by I' =

I - {x,y} U {z}. It is easy to check that G' = (XK' U I', E U ix,y])

satisfies the condition of Theorem 1.3, proving that G' 1is threshoid.
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(b) ("Only if")
Case 1: lKoi > 2. Assume that x € Ki’ i>21, vy e Kj' jzo0, i273].
This means that there exists a z € Ko, Z #yv and a w € I such that ix,w] € E

(Figure 7). Dropping {x,y] opens up a forbidden configuration. Therefore,

X,y € KO'
INSERT FIGURE 7 ABOUT HERE
Case 2: lKo] = 1. Let Ko = {z}. First assume that x € Ki' y € Kj'
i,j 2 1. There exists aw € I with {x,w] € E. We reach the same

contradiction as in Case 1.
Now assume without loss of generality that y € KO (hence y = z) and

X € Ki' i 2 2. Choose z, € K, and w € I with {x,w] € E and [zl,w] £ E
1

(Figure 8).

INSERT FIGURE 8 ABOUT HERE

Dropping [x,v] opens up a forbidden configuration. Therefore,

(x € Ko, vy € K.) or (x € K,, v € K.).

1 1 0

("If):
Case 1: iKO! > 2 Replace K by K' = K - {x,y}, and I by
I' = 10U {x,v}.
Case 2: ;Koi = 1. Assume without loss of generaiity that x € Kl’
y € K.. Repiace K by K' = K -~ {y}, and I by I' = I U {y}. 1In both cases it
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is easy to check that G = (K' U 1I', E - ix,y]) satisfies the condition of

Theorem 1.3, proving that G' is threshold. 0

Lemma 3.8: Let G = (V,E) be a threshold graph with split partition

V = KU I as in Definition 2.2.

o3}

(a) Let x € Ir and vy € K_, [x,y] € Then (V, E U ix,vl) is
threshoid if and only if r + s = p.

{b) Let x € Ir and y € KS, [x,y] €

=]

Then (V, E - [x,y]) is

threshoid if and only if r + + 1.

4]
1]
io]

(a) ("Only if"): Since [x,y] € E, r + s £ p. Assume that

r+s <p-1. Pick z € Ir and w € Kp—r' Then [x,w] € E, [z,y] ¢ E and

+1

{z,w] € E {(Figure 9). Adding edge {x,y} closes a forbidden configuration.

INSERT FIGURE 9 ABCUT HERE

{"If"): One can easily verify that (KU I, E U {x,y])} continues to

satisfy the condition of Theorem 1i.3.

(b) Similar to (a).

[

Lemma 3.4: Let G = (V,E) be a threshold graph and [x,y] € E. If
G' = (V. E U ix,y!l) is also a threshold graph., then G has a split partition

V=KUTI such that (x € I, vy € K) or (x € K, y € 1), {Xi = w(G).
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Proof: Let V = K U I be a split partition of G as in Definition 2.2. 1If

x,v € I and G' is threshold, then by Lemma 3.2 X,y € Ip and lKOJ = 1. Let
KO = {z}. Replacing K by K -~ {z} U {x} and I by I - {x} U {z} we get
another spiit partition with the required properties. O

Theorem 3.5: Let T1 = (V,El) and T2 = (V.Ez) be the (unique) realizations

of the threshold sequences f and g, respectively. Then f and g are adjacent

extreme points of Dn if and only if lEl 5] E2] = 1.

Proof: The "only if" direction is Lemma 3.1.

("If"): Let E1 o) E2 = {e}. Without loss of generality, E1 = E2 U {e}.

From Lemma 3.4 we can assume that T2 has a split partition V = K U I such

that x € I, v € K, where [X,yi = e. Let x € Ir and y € KS. By Lemma 3.3,
r + s = p. Run Algorithm 2.3 on the input ¢ = (cl,cz, .,cn) defined as
foiiows (see Figure 1i0):

ci = -2p + 2r - 2, i=x

ci =2p - 2r + 2, i=y

c; = -2p + 2j - 2, i¢€ Ij, jzr +1

ci = -2p + 2j - 4, ie€ Ij' i#x, j&r

¢, = 2j + 1, ie Kj, izy, jfp-r

ci = 2j + 3, i e‘Kj, jZzp-r + 1.

INSERT FIGURE 10 ABOUT HERE
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It is easy to verify that the algorithm outputs T1 and f. Furthermore,
since c. + cj = 0 if and only if {i,j} = {x,y}. The only other optimal

solution is g by Remark 2.5. Therefore, f and g are adjacent extreme points

of Dn' {J

We now develop a condition for adjacency of two threshold seguences

that does not refer to their realizations as threshold graphns.

Lemma 3.6: Let f = (f

3.6 1,...,fn) be a threshold sequence with reaiization

n

T (V’El) and g = (gl,...,gn) be a degree sequence with realization

G = (V.Ez) such that f = g + ui - uj for some 1 # j. (ut is the t-th unit

vector.) Then [i,j] € El'

Proof: The proof is by induction on min(gi,gj). Let q be the number of
positive components of g.

Basis: min(gi,gj) = 0. Without ioss of generality, gj = 0. The
number of positive components of f is g + 1 [q + 2] if g; is positive
{zerol. The largest degree in G is at most ¢ - !, and the largest degree in
T is g (g + 1j by Theorem 1.3.

Since max, €y < g - i, we pave fk <gqg-31 for k # i,j. Therefore,

a {q+ 17 = max(fi,fi), so one of the non-isolated vertices i,j of T has

J

iargest degree in T. Therefore, {i,jl € El by Theorem 1i.3.

Induction step: min(gi,gj) > 0. In this case the number of positive

components of f is aiso gq. 1If fi or fj is q - i, then clearly [i,]] € El'

if not, fQ =g -1 for some & # i,j by Theorem 1.3. Then gQ =q-1, so &

is adjacent to all non-isoiated vertices in both T and G. Deliete & from
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both T and G and apply induction to the resulting induced subgraphs. [

Remark: One might wish to generalize Lemma 3.6 by relaxing one of its
assumptions. Instead of assuming that f = g + ui + uj for some i # j, we
wish to assume only fk > gy for all k, and to conclude that by dropping zero
or more edges in the (unique) realization of f we can obtain some
reaiization of g. Under the additional assumptions that (a) g is a
threshold sequence and (b) f1 > ... 2 fn and g > .02 g, the conclusion
is true [8]. However, (a) is not enough without (b), as can be seen from

the examplie f = (5,5,5,4,4,3), g = (4,1,0,2,2,3).

Theorem 3.7: Let (fl,...,fn) and (gl,...,gn) be thresnoid sequences. Then
they are adjacent extreme points of Dn if and only if there exist indices

i # j such that f - g = £ (ui + uj).

Proof: The "only if" part follows easily from Theorem 3.3.

("If): Assume without loss of generality that f + 1, k=1,j.

k - %k

From Lemma 3.6,

=

i, il € El' where T1 = (V,El) is the realization of
(f1""'fn)' from the uniqueness of reaiizations of threshold sequences, it

follows that T, = (V,E

5 - (i,j]) is the realization of (gl,gz,...,g ), and

i n

the resulit follows from Theorem 3.3. {
Below we obtain the threshoid sequences adjacent to a given one without
referring to its realization. For this it is convenient to use the

following definition.

r!
®
ot

Definition 3.7 :7]: Let f = (f_,...,fq) be any degree sequence.
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§. <48, ... < 6m be the distinct nonzero integers occurring in f. Set

§. = 0. The degree partition of f is defined as D = (D(0),...,D(m)) where

we put

If f is a threshold sequence, then D is closeiy related to Definition

2.2. 1Indeed, if G = (V,E) is the realization of f, let P = (IO,...,Ip,
KO,...,Kp) where Ki,Ii are as in Definition 2.2. A littie reflection shows
that if iKol > 1, then D = P, and if [KOi = 1, then D is obtained from P by
merging KO with lp. Thus, if [Kog = 1, then
D(i) = 1., 0<is<p-1
D(i) = KO U lp, i=p
= i< <
D(1i) Kl—p’ p+1<isnm
m = 2p
and if QKOi > 1, then
D(i) = Ii’ 0<1i=<p
= - < <
D(i) Kl—p—l’ p 1 <i<m
m=2p + 1

Theorem 8.8: Let f = (f, ,f ..fn) be a threshold sequence. Then the

extreme points f' = (fi,fé,...,fﬁ) of Dn adjacent to f are given by:

{a) f' =f ~+ ui + U,
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where i € D{r), j € D{m - r), 0 £r < L(m - 1)/2J
or i,j € D(L(m + 1)/2]), i # j, meven;
(b) f' =7¢f - 4y - uj

wnere i € D(r), j €D{m -r + 1), 1 £r g Lm/ZJ

or i,j € D(L(m + 1)/2]), i # j, m odd.

Proof: Let T = (V,E) be the reaiization of f. Case {a) corresponds to
adding an edge to E and Case (b) corresponds to dropping an edge from E. We
prove the resuit for Case (a). Case (b) is similar.

First assume that m is odd. From Lemmas 3.2 and 3.3 we know that we
can add an edge between Ir and K where O < r < p and no other edges.
From Definition 3.7, this is the same as adding an edge between D(r) and
D(m - r), 0 2r < {(m- 1)/2J.

Now assume that m is even. It folilows from Lemmas 3.2 and 3.3 that we

can add an edge between

b

1A
3
1A
jo]

(i) I_ and K , 0
r p-r

/ .
{2) Ip and KO

—_
w

} any two vertices in ID

. — sy T o . . . . .
As m is even, !KO’ 1 and KO U lp D(L(m 1)/2J)' The result thus

foliows. ]

Using Theorem 3.8 we obtain the foliowing result. We thank K. N.

Srikanth for raising this question with one of us (M.S.).
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Theorem 3.9: Let f = (f ...,fn) be a threshold sequence with a degree

1 ’
partition as in Definition 3.7. Then the number of extreme points of Drl

adjacent to f is given by the expression

(m - 1)/2] m/2 d
ZL ; didm—i * ZL Jdidm—i+1 * ( !
i=0 i=1 2

where q = L(m - 1)/2J. ]
We can now determine the threshold segquences with the largest and
smaliest number of adjacent sequences.

Theorem 3.10: Let f = (fl’f ..,fn) be a threshold sequence with a degree

2’
partition as in Definition 3.7.

(a) The number of extreme points adjacent to f is a maximum, equali to

(2), if and onliy if
fi =0, for all i (stable)
or
fi =n -1, for ail i (ciique)
or
n - i for some j
fi = (star)
1 for i # j
or
0 for some i
f, = {costar)

n- 2 for i # j

(b} The number of extreme points adjacent to f is a minimum, equal to

n, if and only if



d. =1, 1%0, [(m+1/2]
d, =2, 1= [(n+1)/2
i = - 30 -

o~ "7 ka1 9

Proof: Let G = (V,E) be a realization of f. Let V = K U I be as in
Definition 2.2.
{a) The number of ways in which we can add or drop an edge preserving

(n

thresnoidness 1s at most 2). It is equal to (9) if and onliy if every

present edge can be dropped and every absent edge can be added. From Lemma

3.2 it folliows that p £ 1.

< 1. This

Case 2 (p = 0): We can similarly show that min(iKol,!Iol) <

corresponds to G being a clique. a grapnh with no edges, or the compiement of

a star.

{p)
Case i1 (m is even): 1In this case m = 2p and dp 2 2. From Theorem 3.9, the

number of extreme points adjacent to f is
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This lower bound is achieved if and onliy if

. . . . 2p .

d = = =n - i

b 2,d;, =1, 1#0,p, dy=mn-E7, d,
The vaiue of the bound is then do +2p - 1 = (n - Z§21 di) + 2p + 1.
Case 2 (m is odd): In this case m = 2p + 1 and dp+1 > 2. the rest of the

(

analysis is simiiar to Case 1.

[1EN

Linear Description and Facets

In this section we use linear programming duality and Theorem 1.3 to

provide a linear description of Dn'

Lemma 4.1: Let S,T be subsets of {1,2,...,n} such that SN T = @¢. Then the
inequaliity

.1 " .- 2. . < i - -
(4.1) Zlesxl Zier ¥y S ISI (n -1 iT])

is valid for Dn' Moreover, the degree sequence of G = (V,E) satisfies (4.1}
with equality if and oniy if

(a) i,j €S, 1% j=>7[i,j]l €E
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(c) iesS, j&€3SUT =>[i,ji €E
{(d) i€T, je€SUT =>1{i,ji ¢ E (See Figure 1ii).

Proof: To show the vaiidity of (1), we may assume that x is the degree

sequence of G = (V,E). Set C = {[i,j}ii € S. j € T}. 1t is easy to see

that
(e) Zies X, 2 iSi {n-1-iT{ + IC}), equality holding if and only if
{a) and (c) hold, and
(£) —zieT X4 < -iCl, equality hoiding if and oniy if (b) and (d} holid.
By adding (e) and (f) we obtain (4.1) and the "moreover" part. .

INSERT FIGURE 11 ABOUT HERE

Theorem 4.2: Dn is determined by the linear inequalities

{(4.2)

i~

-7 < iqQi T
ies Xi T Ljer ¥; S ISL (n -1 - 0TI)

for ali set S,T such that @ # SUT € {1,2,...,n}, SN T = @.

. -0 - . . Lo
Proof: Let c = (cl,c ,...,cn) € R”, and consider the linear program

2

=N
{4.3 max ;.. C.X,.
! ) i=1 "i71

subject to (4.2}.
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Since it is known that Algorithm 2.3 maximizes

theorem will be proved if it is shown that the

=1l

, c.x. over D _, the
L1=1 171 n

solution produced by the

aigorithm on input c is an optimal soiution of (4.3). Denote the graph
produced by algorithm 2.3 by G = (V,E) and its degree sequence by d. By
Lemma 4.1, d is a feasibie solution of (4.3).
The duai of (4.3) is:
(4.4) min X (S| (n -1 - 1T} yg 4
g=suUre{1,...,n} ’
SMr=g
s.t.
X yS,T - ' ? yS,T =c;, 1= 1,...n
##sUrc{1,...,n} @£SUTC{i, ... ,n}
SMT=g SMT=¢
ies ieT
ys T > 0 for ail S,T such that @ # S UT € {1,...,n},
SNT=4¢g.
To show that d is an optimal solution of (4.3), it suffices to produce

a feasible solution y to

siackness conditions:

(4.3) y > 0 only if ¥

S,T ~ieS "1 ieT 1

(this uses oniy weak duality;

optimal to (4.3), then such a y exists;

construct y explicitly.)

Set K = {ijc; 2 0} and I = {ilc, < 0},

without loss of generality that I = {i,...,r},

we do not need this result,

(4.4) that satisfies in addition the complementary

strong duaiity asserts that if in fact d is

as we

We may assume
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c_.. <c¢ £ ... £c¢c_and jc_| £ 1c_ i % < je_ i
r+i r+2 n r r-i i
From the nature of Algorithm 2.3 it is clear that
{4.6) N(1) € N(2) € ... € N(r)
N(r + 1) N I ¢N{r+2)NI¢g ... €N(n)n-it.
Consider the following pairs of sets (Si,Ti) i £1i<n

(4.7) S, = {i, i + 1,...,n}

and

w
1]

N(i)

T. = {1,2,...,1i}

Using Lemma 4.2 and (4.6), it can easily be verified that for the above
choice of sets, Si'Ti’ i=1,...,n, d satisfies the corresponding inequality
in (4.2) with equality (see Figure 12). We will find a feasible soiution v
of (4.4} such that yS,T > 0 only if (S,T) = (Si,Ti) for some i. The above

two statements will then guarantee (4.3).

INSERT FIGURE 12 ABOUT HERE
Since Si c K, Ti €I for 1 <iZ<£nand we imposed the condition Vg 7 = 0
unless (S,T) = (Si,Ti) for some i £ 1 £ n, the constraints (4.4) to be

satisfied by ys T 1 <£1i<n, read:
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For each j € {1,....n}, iet Pj be the set of all indices i such that Vg T
i'i
appears in the j-th equation of (4.8). Then for j € I we have, by (4.6) and

(4.7)

—_—
S
©

—
0

1}

{ijj € T,} = {1 € Iji1 2 j} U {1 € KIii,j] € E}

{i €Ifi2j}U{ieKic, < lCJ!}.

and for j € K, again by (4.6) and (4.7)

(4.10) PJ. = {i eKijes;})={iekiis=jrU{ierllli,j]eE}
= {i € Kli € j} U{i € Ile 2 lCiI}v

Define

_ Cy t € K

C =

t
lct| t el
Let m(1),...,m{(n} be the rearrangement of 1,...,n such that
(a) c c c
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(b) if ¢ .. =¢_, ... 1i# j, then

>0 if w(i), m(j) €K
(i -~ J)m{i) - ﬂ(j){

<0 if w(i), Tw(j) €1

mw{i) < w(j) if w(i) € 1, m(j) € K.

Then Pn(j) = {m(i),...,m(j)} by (4.9) and (4.10).
We can now rearrange the n equations (4.8) so that the t-~th new
equation is the m(t)-th equation of (4.8), and also arrange the n variaples

Ys ’T-..--.Ys T so that the t-th new variable is YS K . Then the
11 non m(t) mw(t)

new system has the form Ay = b where the coefficient matrix A has zeros
above the main diagonal and ones everywhere else, and the components of b
are nonnegative and nonincreasing. This system has a unigue, nonnegative

solution y. This compietes the proof. ]

Corollary 4.3: The system {4.2) of linear inequalities is totaliy dual

integral; that is, whenever Cl""’cn are integers, the dual of (4.3) has an

optimum solution in integers. ]

For more information on totally duai integral systems, see i4, 20, 2il.

In order to identify the facets of Dn' we need to Know its dimension

and that of a reiated polytope. For m 2 1, n 2 1. let Km n be the compliete

bipartite graph with dipartition {1.2....,m}, {m + i, m + 2,..., m - n}, and

iet Dm n be the convex huil of the degree sequences of the spanning

»

subgrapns of Km I {just as Dn is the convex hull of the degree sequences of
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the spanning subgraphs of K“, the compiete graph on {i,...,n}).

Proof:

(b)

(c)

Theorem 4.

dim D,
1

1
o
o,
[N
3
o

[t}
[

2
dim D =m+n-3iformz=21, n 2 i;
m,n
dim Drl =n forn23
Clear.
. - . .m ~m+n .
Since D lies on the hyperplane %, . x. = ¥. . X., we have
m,n i=1 71 i=m+1 1
dim Dm n <m+n - 1. To prove the opposite inequaility, consider
’

any spanning tree of Km n and let A be its edge-vertex incidence

matrix. The m + n - 1 rows of A are linearly independent, and

Hence dim D >2m+n - 1.
m,n

’

each of them lies in Dm,
Koren {15] proved (c) by showing that Dn has interior points for
n 2 3. We prove it as follows: for n odd, iet H be any
Hamiltonian cyclie in Kn’ and for n even, lIet H consist of any
cyclé through n - 1 vertices and a singie edge at the remaining
vertex. Let A be the edge-vertex incidence matrix of H. 1In each
case A is nonsinguiar and its rows iie in Dn' Hence

dim D_ > n. J

n

4:

For n 2 3, the facets of Dn are given by:

>
v
o
[
il
[y

.,n (only if n > 4).

>
1A
=]
|
-
[
]

1,...,n {only if n 2 4).
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- -3 < - - M ayrimtn +ha
(c) Lies X, LieT xi < JS} (n i iT}{) for all sets S,T such that
S=Z=¢g, T8, SNT=¢, SUTC {1,...,n}, |SUTI
=2,3,...,n - 3,n.
Proof:

By Theorem 4.2, every facet of Dn has the form

{4.11) L. X. -~ ¥%. X,

1A

iSi (n -1~ 4T})

for some sets S, Twith @ 28U T¢c{1,...,n}, SNT= g.

Let DS T denote the set of degree sequences satisfying (4.i1) with
equality. Thus by (c) of Lemma 4.3, (4.11) is a facet of Dn if and only if

dim Ds T = n-1. ¥From Lemma 4.1 it foilows that dim = dim Di -

SE.UTI

dim D,=—=,, where dim D means 0 if either S or T vanishes. Thus for
i SUT | 1S{,IT]

D
S.T

S =@, (4.11) is a facet if and only if 1T!

n -1 and {T| > 3, which

corresponds to (a). Similarly for T = @, (4.11) is a facet if and only if

!§! = n ~ 1 and ]§| > 3, which corresponds to (b). Finaliy for S # &.
T#9, (4.11) is a facet if and only if iS| + [T|] ~ 1 + dim DiEUFI =n - i,
or equivaliently dim D|§Gfi = {SUTI|, which holds if and oniy if

|[SUTi = 0,3,4,...,n by Lemma 4.3. This case corresponds to (c}. O

5. Threshold Sequences and Majorization

Definition 5.1: For any real sequence f = (fl,...,fn), iet

f[11 > f[z] > ... 2 f[ni denote the componenis of f sorted in a

nonincreasing order. We say that f majorizes g, denoted f 2 g, when

~ 5
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k K
SN ,
i-1 Triy 2 Zj-g 8

iQ

holds for each kK = 1,...n, with equality holding for

1

—

[o—]

K = n. We say that f strictly majorizes g, denoiled f > g. when f 2 g and at

least one of the above inequalities for k = 1,...,n - 1 is strict. This
means that the common sum of the components of f and g is distributed more

evenly in g than in f.

Remark 5.2:
(a) 1If f and g majorize each other, then f is a rearrangement of g,

and conversely.

—
o
~—
i

f £ > g, then f is not a rearrangement of g.
{c) Majorization and strict majorization are transitive.

{d) For a wealth of characterizations and applications of

majorization, see {12, 17]. [17] denotes majorization by >, not
by 2.
Definition 5.2: Let f = (fl,fz,...,fn) be an integer sequence and assume

that fi > fj + 2 for some i,j. Then the sequence g = { ~ ui + uj is said to

J (ut is the t-th unit

be obtained from f by a unit transformation from i to_

vector). 1In that case, ciearly f > g. Converseliy,
Theorem 5.3 {12, 17}: If f and g are integer sequences such that f 2z g,
then some rearrangement of g can be obtained from f by a sequence ({(possibily

empty) of unit transformations. 1

Definition 5.4: Let G = (V,E) be a graph and let i,j,k € V be such that

deg k =2 deg i + 2, [i,j] € E, |j,Kj € E. Then the operation of dropping
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from G the edge {j,k]l and adding the edge (i,j} is calied a jusi rotation

from k to i (see Figure 13}.

INSERT FiGURE 13 ABCUT HERE

The adjective "just" is used in the sense of the "rich" vertex (k) giving

some of its degree to the "poor" one (i). Thus, the degree seguence of G

strictly majorizes the resuiting degree sequence.

Lemma 5.5: A just rotation cannot result in a threshold graph.

Proof: Note that deg k > deg i in the resulting graph, yvet i has a neighbor

i that is not a neighbor of X. This would contradict Theorem 1.3 if the

v

resulting graph were threshold. i

Lemma 3.6: Let d be the degree sequence of a graph G = (V,E), ana let d'
result from d by a unit transformation. Then some just rotation in G

results in a graph with degree sequence d'.

Proof: Let d' result from d by a unit transformation from k fto i. Then
K > d, + 2 in G, and therefore there is a vertex j such that {i,j] € E,
{j,k] € E. Hence G has a just rotation from k to i, resulting in a graph

with degree sequence d'. |

We now characterize the threshold sequences by the property of non-

majorizability.
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Theorem 5.7: A degree sequence d is threshold if and oniy if d is not

strictiy majorized by any degree sequence.

Proof: ("If"): Assume d is the degree sequence of the non-threshold grapn
G = (V,E). By Corollary 1.2, G has vertices i,j,k,& with {i,j],[%.,k] € E,

[l»k]v[k:J] é E (Figure 14)

INSERT FIGURE i4 ABCUT HERE

Without loss of generality, deg i £ deg k in G. Let the graph H result from
G by deleting edge [i,j] and adding edge {j,ki. The reverse operation is
then a just rotation in H, hence the degree seguence of H strictiy
majorizes d.

("Only if"): Assume f > d and iet G realize f. By Theorem 5.3, there
are sequences f(o),f(l),...,f(t) such that f(o) = f, f(t) is a rearranéement

)

. . . i . i -+
of d, and some unit transformation on f( produces f(l+1) for

i=0,...,t-1. By Lemma 5.6 it follows that some sequence of just
(t)

rotations in G results in a graph with degree sequence f

()

By Lemma 3.3,
is a non-thresholid sequence. Therefore, d is a non-threshoid

sequence. OJ

Corollary 5.8: Every degree sequence is a convex combination of the

rearrangments of a single threshold sequence (i.e., of the degree sequences

of isomorphic threshold graphs}).
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Proof: Let d be a threshold sequence. If d is a thresnoid, there is
nothing to prove. Otherwise, d is strictly majorized by some degree
sequence d' by Theorem 5.7. Continue this process as long as possibie. The
progression d,d',d",... has no repetitions by Remark 3.2 because each term
is strictly majorized by the next one. It must terminate, because each of
its terms is a sequence of n nonnegative integers with the same sum. By
Theorem 5.7, the last sequence f is threshold and it majorizes a by
transitivity. The result then foliows from the well-known fact that f
majorizes d if and only if d is a convex combination of the rearrangements

of f [12, i7]. 0
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Fig. 1: The forbidden induced subgraphs of threshold graphs.
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ig. 2: The forbidden configuration of thresnhoid graphs.

|



clique stable

Fig. 3: A typical threshold grapn. A iine between Ki and 1,
{or between Ki and Ki) indicates that every vertex of Ki

v

is adjacent to every vertex of Ij (Ki).



Fig. 4: TIilustrating the objective function for the

"if" part of Theorem 2.8.



An interchange.
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Fig.
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Illustrating the proof of Lemma 3.2.



Fig. 7: 1Illustrating the proof of Lemma 3.2.
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I1lustrating the proof of Lemma 3.2.
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ig. 9: Illiustrating the proof of Lemma 3.3.
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Fig. i0: Weights in the proof of Theorem 3.5.
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Fig, 11: S: <Cligque. All edges between S and SUT present;

T: Stable. All edges between T and SUT absent.



r+1

Fig. 12:

or r+1 o or

Iiiustrating the choice of duai variabiles

in the proof of Theorem 4.2.



ig. 13: A just rotation.

o
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degk > degi degk 2degi+ 2

Fig. 3i4: TIllustrating the "if" part of Theorem 5.6.



