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Introduction

In a previous paper (Fershtman and Kamien (1987)) we studied an infinite
horizon model of dynamic duopolistic competition under the assumption that
current price does not jump instantaneously to the price indicated by the
demand function for each level of output. The evolution of the price over
time is governed by a kinematic equation that specifies, for every given level
of output, the change in price as a function of the gap between the current
price and the price indicated by the demand function for each output level.
The main objective of that paper was to investigate the relationship between
the speed at which the price converges to its value on the demand function and
the resultant stationary subgame perfect Markov equilibrium price.

In this paper our main>purpose is to present a complete analysis of the
feedback Nash equilibrium of a finite horizon linear quadratic differential
game with a control constraint. In particular we are interested in the
relationship between the finite horizon equilibrium strategies and the
infinite horizon equilibrium strategies. We examine several "turnpike
properties” and demonstrate that if we require that at the equilibirum these
properties are satisfied we can reduce the feedback equilibriums set.

The infinite horizon assumption simplifies the analysis of the linear
quadratic differential game for under it the equilibrium feedback strategies
are autonomous decision rules that specify the control (output rate in our
case) as a function of the observed state variables regardless of the time the

decision is taking place. See also Driskill and McCafferty (1987) and



Reynolds (1987a,b) and for a more detailed discussion on the autonomy of the
solution in an infinite horizon problem see Kamien and Schwartz (1981, p.
238). In the finite horizon case the existence of a doomsday calendar implies
that the feedback equilibrium strategies are nonautonomous and this
nonautonomy, of course, complicates the analysis. 1In both the finite and
infinite horizon cases the equilibrium strategies are not unique. In the
infinite horizon case we can use the asymptotic stability property to reduce
the equilibria set. For the finite horizon game, we show in this paper, that
one can use '~ turnpike properties”™ to reduce the equilibria set. Specifically,
we show that not all the perfect Markov equilibrium satisfies the following
turnpike property: for a time horizon long enough the finite horizon
equilibrium output strategy stays in the neighborhood of the stationary
equilibrium strategy except for some initial and final time.

Introducing price stickyness or quantity stickyness into the analysis of
dynamic oligopoly introduces a time dependent structure into the model. The
multiperiod oligopoly game ceases to be a game which identically repeats
itself over time since the profit function at each period depends on the
history of the game as well as on the players current choice of actions.}

Discussing the dynamic oligopolistic interaction with time dependent
structure gives rise to many analytical problems. While the repetition of the
one shot equilibrium is a perfect Markov equilibrium for the repeated game
such a repetition is meaningless in games which are structurally linked. For

many classes of such games it is yet impossible to calculate and to analyze

the perfect Markov equilibrium and thus specific analytical assumptions must

lgarlier works on dynamic duopoly with sticky prices includes that of
Roos (1925, 1927), and Simaan and Takayama (1978). For a model of quantity
stickyness see Driskill and McCafferty (1987).



be made for the sake of tractability. 1Tt is only fair to say that the
differential game theory is waiting for a breakthrough in the theory of
partial differential equations.

In the next section we present our model and summarize our results for
the infinite horizon case. 1In the following section we derive the feedback
equilibrium strategies and demonstrate their symmetry. Section 3 contains our

turnpike results. A brief summary completes the paper.

l. Dynamic Duopoly with Sticky Prices

Under the sticky prices assumption, price in the market does not jump
instantaneously to the price indicated by the demand function. The evolution
of the price over time is governed by a kinematic equation that specifies for
every given market output the changes in price as a function of the gap
between the current price and the price indicated by the demand function for

each level of output. Formally the evolution of price is governed by

(1 p = g = sfla - (u

. 1+u2)-p];p(0)=p0

where p(t) is the price at time t, u;(t) is the output of firm i at time t,

a - (u1 + u2) = E(t) is the price on the inverse demand function for the given
level of output, and 0 < s < » denotes the speed of price adjustment. A
finite s implies that it takes time for the market to react to changes of
quantities. As s + « the price converges instantaneously to the price
indicated by the demand function. This can be seen by rewriting (1) as

p(t) = a - ul(t) - uz(t) - (a - ul(O) - u2(0) - po)e_St

N Ite—s(t—r)

0 [, (0) + uy(0)])dr



and observing that lim p(t) = a - ul(t) -u2(t).
S+

Thus it is evident from the above demand function that the firms face a
downward sloping linear inverse demand function but the decline in price along
it, as the output level increases, is retarded when s is finite.

Alternatively, one can think of a market in which consumers' utility
functions depend on both current consumption and past consumption of a good,
see for example Ryder and Heal (1973). 1Integrating (1) with p(0) = a yields:

p(t) = a - s f; e—s(t—T)

+ u d
(ul(r) 2(T) T
which implies that the current price is a function of all the time path of
consumptions where recent consumption of the good has a more depressing effect
on its current desirability than earlier consumption does.

Total production cost is assumed to be quadratic in ouput and identical

for each firm
1 .
(2) c(u.) = cu, + = u%, i=1,2
i i 2 i
The objective of each firm is to maximize its discounted profits.

i T -rt 1 2 .
(3) J = IO e [pui cu; - 5 ui]dt, i=1,2
subject to (1) and u; > 0.
The problem now is formulated as a finite horizon linear quadratic

differential game. There are two major strategy spaces that have been



discussed in the differential games literature. One is the open-loop strategy
space in which players choose path strategies; the other is the closed-loop or

feedback strategy space in which players choose decision rule strategies.2

In
most cases, including the game we consider, the Nash equilibrium in open-loop
strategies is not subgame perfect (see Fershtman (1987) for a discussion of
classes of games for which the open-loop equilibrium is subgame perfect).

Thus, we restrict our attention in this paper to the (subgame-perfect)

feedback Nash equilibrium.

Definition l: The feedback strategy space for player i is

S; = {ui(t,p)lui(t,p) is continuous in (t,p), u;(t,p) > 0 and

lui(t,p) - ui(t,p')li m(t)[p - p'l for some integrable m(t) > 0}.

Definition 2: A feedback Nash equilibrium is a pair of feedback strategies

* *

(ul,uz) S Sl x 82 such that

i * % i * . .
J (ui,uj) > J (ui,uj), Yu, € 8., 1=1,2, 3 #1

for every possible initial condition (po,to).

In our previous work (Fershtman and Kamien (1987)) we investigated the
above dynamic duopoly problem assuming an infinite horizon and proved the
following results:

(a) The following strategies comnstitute an asymptotically stable feedback

Nash equilibrium for the infinite horizon game

2for a detailed discussion of strategy spaces in differential games see
Basar and Olsder (1982).



N 0 > P <P
(4) ui(p) = ~ 1
(1 - sk )p+ (sE_-c), p>p,

1,2

where
/ 2 2
_r +6s -V (r+ 6s8) - 125
(4a) K, = s
—asKao + c - ZSCKm
(4b) E, = 5
r - 3s Kw + 3s
N c - sz
(4c) p =

1 - sK

(b) A second equilibrium is defined by the strategies (4) but by letting

2

/ 2
' _r+6s + VY (r+ 6s) - 12s
(4a') K= -

(¢) For each such equilibrium strategy there is a unique stationary

equilibrium price, i.e., there is a price level p such that if a game starts

at p(0) = p the equilibrium price path is p*(t) P. This price level is

given by

_ a+ 2(c - sz)
P T =Ky +1

Notice that this stationary equilibrium price does not depend on the initial
conditions of the game.

(d) only the equilibrium specified in (a) satisfies the global asymptotic
stability property. This property implies that regardless of the initial

value of the state variables (price in our case) the equilibrium path



converges to the stationary equilibrium. It was investigated for capital
accumulation growth models (see, for example, Brock and Scheinkman (1976)) and
for capital accumulation games (see Fershtman and Muller (1986)).

(e) Letting the speed of adjustment goes to infinity, the price
stickyness disappears. We showed the the static Cournot equilibrium price is
the asymptotic limit of the open loop Nash equilibrium, which is not subgame
perfect, while the stable closed~loop Nash equilibrium price converges to a
value below it.

From the above results it is evident that in the infinite horizon case
the equilibrium strategies are time autonomous. K_ and E_, are constants that
depend on the parameters of the problem, u:(p) is a linear function of p that
prescribe an output rate for every p independent of t, and the critical price
; is also time autonomous. In the finite horizon case the existence of a
doomsday calendar implies that the equilibrium strategies are nonautonomous.
The output rate depends on the date t as well as on the price and the critical

price p is now a function of t.

2. The Finite Horizon Feedback Nash Equilibrium

Qur first task is to find the equilibrium strategies and the resultant

equilibrium price trajectory.
Theorem ]1: Consider the following strategies

(1 = sK(t)))p — ¢ + sE(t) if p » ;(t)

(5) up(t,p) = { .
0 if p < p(t)
where
(a,-a,)3s*(T-0)
al(l - e )
(6) K(t) = 5
L ix_L e(al—a2)3s (T - t)

%



T f§[3szK(E)—3s—r]dg

(7) E(t) = - ft e [sak(1) + 2sckK(71) - cldt
and

- _ ¢ - sE(t)
(8) P(E) = Tk ()

where %y and ay are the two solutions of the quadratic equation
* X
3s?K - (6s + r)X + 1 = 0. Then (uj,up) constitute a symmetric feedback Nash

equilibria for the above finite horizon game,

Proof: Using the value function approach (see Starr and Ho (1969)) the
feedback equilibrium strategies (u:(t,p),u;(t,p)) must satisfy at every t the

following Hamilton-Jacobi-Bellman equations.

(9) -vi(t,p) + rvi(t,p) = Max {(p - c,)u,
t 1 1
u. 20
1
L s s, pla - p - (oo +udl), i,5 = 1,2, 5 ¢ 4
2ui Sp ,P p ui uj y L,] = 1,2, ]

where Vl(t,P) is the value for firm i of the game that starts at time t at the

. i _ i i _ i
price p, V, = 9vV*/9p, and V{ = av-/at.

Notice that the right side of (9) is concave with respect to u Assume

io
for the moment that there is an interior solution to this maximization

*
problem.3 In this case u;

; that maximizes this expression is given by

3we ignore at this stage the constraint u, » 0, We will elaborate on the
implications of this constraint and on the modification that should be made in
the solution later on.



* .
(10) ui(t,p) = p(t) - ¢c - sVé(t,p), i=1,2
with the boundary condition Vé(T,p) = 0., Substituting (10) into (9) yields
i i i 1 i,2

(11) Vt(t,p) - v (t,p) + (p- c)(p - c - sz) - E(p - c - sz)

i i 3 .. . .

+ Visla - (2p -~ 2¢ -8V -5sV') - p] =0, for i,j = 1,2, j # i.

p P p
The above equation presents a pair of partial differential equations. By
solving this system and finding the value functions (Vl(t,p),VZ(t,p)) we can

use (10) to find the equilibrium strategies. We consider the quadratic value

function

(12) vige,py = % Ki(t)pz - B (p + g, (1), 1= 1,2.

Differentiating (12) with respect to t and p yield

(13) Vi(t,p) -

|
N —
e
—~
(md
~
a]

- Ei(t)p + gi(t), i=1,2

(14) V;(t,p) K, (£)p - E ()

Substituting (14) into (10) yields that

(15) u:(t,p) = (1 - sk, () p=c+ sE (), 1 =1,2
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Substituting (13) and (14) into (11) yields

2

l - L] * 2
(16) 5 Kpo - Ejp+ g - 1Kp /2 + rE;p - 18, + (p c)(p-c- skip+ SEi)

1 2
- = - - - - + - +
2(p c - sK.;p+ SEi) + S(Kip Ei)[a 3p + 2¢ + sK.p - SE;
+ sij - sEj] =0, fori,j=1,2,1i#%]j.

» . s * 3 3
Lemma 1. The equilibrium output strategies u;(t,p) are symmetric, i.e.,

* *
up(t,p) = uz(t,p), for every (t,p).

Proof. Since (16) must be satisfied for all values of p, the coefficients of

p2,p and the constant terms have to be zero. This implies, after some

algebraic manipulation, that
. 2 2 . . . .
(17) K, + (s"K, + 28K, —r - 6s)K, +1 =0, i,j = 1,2, i #j.
i i j i
. 2 2 . . . .
(18) E, - (r+3s-sK, -sK,)E, —-(a+2c-5sE)sK, +c=0, 1i,j=1,2, 1% j
i i joi J 1
(19) g. - g, + 52 - 2scE, - saE, + .SSZE? + SZE.E. =0, i,j=1,2,1# j.
i i i i i i’

From (17) upon subtraction we have

(20) R, -k + (- Kz)[sz(Kl +K,)) = (6s + D] = 0

Let v = K} + K, and w = K; - K,, which implies that w=K -K

1 X Then (20)

can be rewritten as
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(21) W(e) + w(t)[s™v(t) - (65 + )] = 0
which is a first order differential equation whose solution is
t 2
fo[(6s+r)-s v(t)ldr

(22) w(t) = Ce

where C is the constant of integration. To evaluate it we must make use of the

boundary condition V;(T,p) =0, i=1,2,, which, because it has to hold for

every p, implies that K,(T) = KZ(T) = 0. Thus, w(T) = K, (T) - KZ(T) 0 and

the constant of integration C = 0. It follows, therefore, that w(t) 0 and
Kl(t) = Ky(t) ¥ 0 < t < T. The same type of argument can be applied to
establish that El(t) = Ez(t), given that we have already established that
Ki(t) = K,(t). Finally, it follows that g1(t) = go(t). Thus,

1 (t,p) = uy(t,p).

We mow let Kj(t) = K,(t) = KR(t), Ej(t) = Ep(t) = E(t) and

gl(t) = go(t) = g(t) and rewrite (17), (18) and (19) as

(23) k= -3s%k% + (6s + 1)K - 1
(24) E =(r + 3s - 3szK)E + (sKa + 2sKc - ¢)
(25) g - rg + .5¢% - 2sFc - sEa + 1.552E2 =0

Expression (23) is a Riccati equation. Let a; and a, be the two solutions

[6s + ¢ £ //(65 + r)2 - 1252]/652 of the quadratic equation

352K2 -~ (bs + r)K + 1 = 0. Without loss of generality, let us assume that

ay < Gy K(t) = a; and K(t) = a, are both particular solutions of (23).
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A general solution of (23) is given by (see Ford (1955))

K(t) - « -(a,-a )3szt
(26) = L Ae L2
k(t) - az ’

where A is the constant of integration. Since Vé(T,p) 0 for every p, this

boundary condition implies that at time T, K(T) = E(T) g(T) = 0. Evaluating

(26) at t = T yields

oy —(al—a2)3szT
(27) ol Ae
2

Rearranging (27) yields

o) (al—a2)3szT
(28) A=—c¢

%

Substituting (28) into (26) yields that

(al—a2)3sz(T—t)

(29) R(t) - a. = e (R(t) - az)

QI R
—

N

Rearranging (29) yields equation (6).
Given K(t) we can solve (24) to find E(t). The general solution of (24)

is

—fg[352K(£)—r—35]d5 —fg[r+3s—352K(E)]dE

(30) E(t) = e [c+ [;e

[sak(T) + 2sckK(t) - cld=t

Using the boundary condition E(T) = 0, we can find C, the constant of



_13_

integration

f8[3szK(E)—r—3s]dg

(31) c=-fy e [sak(7) + 2scK(t) - cldt

Substituting (31) into (30) yields

~f13s K(E)-r-3s]de
(32) E(t) = e

T f8[3szK(g)-r—3s]dg
. f e [sakK(1) + 2sck(t) - cld«

t
which can be rewritten as (7).
From (10) and (14) it is evident that the condition for having an

interior solution to the right side of (9) is that
(33) p(t) > EL{}JEE&El

If the above condition does not hold it means that p is too low and the firms
should stop production, i.e., u; = 0. Denote this critical price as p(t).
Notice also that equation (15) satisfies the constraint u; > 0 only if

p(t) > a(t). Clearly for p < B(t) the quadratic value function (12) is not

appropriate since it will not satisfy the Hamilton-Jacobi condition (9).

Now it only remains to define a value function for p(t) < ﬁ(t) that will
satisfy (9). Clearly when u; = 0 the instantaneous profit function is zero.
However, the price as indicated by (1) goes up. The firms will start to
produce when the price reaches the critical level ﬁ(t). Let E(p,t) be the

time that it takes to reach the critical price from the price level p at

time t. Now for every p(t) < ﬁ(t) let
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(34) Tie.p) = e TEPOGI 0 4 t(p,0)), & + t(p,0))

be the value function. The intuition of this value function is
straightforward. For every p(t) < ﬁ(t), instantaneous profits are zero. The
firm has to wait for ﬁ(p,t) until it will start to make some profit and the
value of the game starting at ﬁ(t) is already discussed. ©Now it only remains
to prove that this value function satisfies the Hamilton-Jacobi condition.
Substituting u; = 0 1 = 1,2, into (9) yields that the condition the value

function (34) must satisfy is
(35) -¥(e,p) + ¥ (e,p) = sv;<t,p)<a - p)

Using the kinematic equation (1) it is evident that if u; = 0 and the price at

time t is p(t) then for every 1 > t
(36) p(1) = p(r)e S{T8) o 4q = mslrmt)y
From the definition of E(p,t) it is evident that

(37) p(t + £) = p(0)e %t & a(1 - %Y

Differentiating (37) yields that

?

lcl

(38)

o
jav)
»

(a - p(t))se S



_.15...

.
A A

dat _ p
(39) Ic = n

(a - p(t))e St - p

Differentiating (34) with respect to p and t yield

A ~
.

4 ~i _ o-rtdt, i it i
(40) Vp(t,p) e dp[ v o+ Vpp + vt]

~1 -rt i i: i dE —rg i:
41 1 - + —_—
(41) Vt(t,p) e [-rV Vp + thit + e [v P

i
+ Vt]
Substituting (38) and (39) in (40) and (41) it is straightforward to check

that

A

(42) sv;<t,p><a - p) + V§ = e Tt

~

t, 1

Since re "'y! = rvl, condition (35) is satisfied and the value

function Vi satisfies the Hamilton-Jacobi condition. Q.E.D.

Notice that Theorem 1 does not define a unique pair of equilibrium
strategies. Switching a; and @, in equation (6) will give us different
formulas for K(t). Since K(t) is not uniquely defined and E(t) is a function
of K(t) it is clear that E(t) is also not uniquely defined. This problem of
multiplicity of equilibria occurs also in other models that involve dynamic
economic interaction via linear quadratric differential games. 1In the next
section we demonstrate that by investigating the turnpike properties of the
equilibrium path we can identify one equilibrium that satisfies some desirable

properties that are not satisfied by the other equilibrium

3. Turnpike Properties of the Feedback Equilibrium Strategies

In the capital accumulation growth literature the asymptotic properties
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of optimal paths are usually referred to as "turnpike properties.” We borrow
the turnpike terminology and discuss the asymptotic properties of the
equilibrium strategies. 1In particular we are interested in the following
three properties: (i) the equilibrium of the infinite horizon game converges
to the unique stationary equilibrium regardless of the initial conditions;
(ii) for a time horizon long enough the finite horizon equilibrium stays in
the neighborhood of the infinite horizon equilibrium except for some final
time; (iii) for a time horizon long enough the finite horizon equilibrium
stays in the neighborhood of the stationary equilibrium except for some
initial and final time.

The first turnpike property is actually the asymptotic stability property

that was discussed in Section 1. The second turnpike propety is proven below.

Theorem 2. For every ¢ > 0 and T there is T, such that for every T > T, each
of the two equilibrium strategies of the finite horizon game are in ¢

neighborhoods of an infinite horizon equilibrium strategies for every

0<t< T,

Proof: We will prove the above turnpike property for just one of the
equilibria. The proof for the second equilibrium will follow immediately.

The equilibrium strategies of the finite horizon game are given by
* >
ui(t,p) = (1 - sKT(t))p + (sET(t) ~c), i=1,2

Note that we deviate here from our previous notation and write Kp(t) and Ej(t)
to emphasize that these two functions depend on the horizon of the game. For
the infinite horizon game the equilibrium strategies are given by the same

expression when K  and E_ replace K and Eq. Thus the proof will be carried
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out by comparing Kp and Eq with K, and E_.

By investigating (6) it is clear that for every g) > 0 and T; there is
T, > T, such that EE%I IKT(t) - a1|< € for every T > Tp. This is true
because for any given t < Ty, KT(t) + a) as T » =. Now observe that a; is a
stationary solution of (17) and from (4a) it is evident that K = Oy

The solution of ET(t) is given by (7). Using the above result, it is
evident that for a given t < T, Ef(t) » E, as T » =. Thus for every g, and T|
there is Tp > T; such that Sup ‘ET(t) - Em|< €, for every T > T,. Clearly, by
choosing €] and ¢, to be sugézciently small, we can find T, such that for
every T > Ty and 0 < t < T the equilibrium strategies for the finite horizon

game will be in the e—neighborhood of the infinite horizon equilibrium

strategies. Q.E.D.

From the above theorem it is evident that the equilibrium price path

satisfies the same turnpike property.

Proposition 1: For a time horizon long enough each of the two finite horizon

price equilibrium paths stay in e-neighborhood of an infinite horizon price

equilibrium path except for some final time.

Proof: The proof is straightforward from Theorem 2. The equilibrium price at
time t is determined by the quantity strategies that have been played until
time t, and since these strategies satisfy the above turnpike property it
follows immediately that the equilibrium price path satisfies the same
property.

Q.E.D.

The exact finite horizon price equilibrium path can be found by

substituting the equilibrium strategies (5) into the kinematic equation (1)
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and solving the resultant differential equation using the initial condition to
solve for the constant of integration. Following these steps yields that if
pPo 5(0) the equilibrium price path is

fgs[2sl((£)—3]dg . ~[gsl2sk(e)-3]dg
(43) pT(t) =e [pO + foe [a + 2(c - sE(1))]sdt

If Py < ;(O) then for 0 € t < E(pO,O)

-st st

(44) pT(t) = pye +a(l-e )

and for t > E(pO,O) the equilibrium price path is given by (43) when
;(E(pO,O)) is regarded as the initial price and E(pO,O) is regarded as the
initial time.

As was indicated before, there are two equilibria of the finite horizon
game. Each of these equilibra "tend” to a different infinite horizon
equilibrium. If we let a; < oy then the equilibrium strategies given by
(5)-(8) "tend" to the asymptotically stable infinite horizon equilibrium given
by (4)-(4c). Switching a; and a, in (6) yields, in this case, equilibrium
strategies that "tend” to an infinite horizon equilibrium which is not
asymptotically stable.

The asymptotic stability property of the infinite horizon equilibrium and
the turnpike property discussed in Theorem 2 lead to the following turnpike
property: for a time horizon long enough, the finite horizon equilibrium path
stays in an e-neighborhood of the stationary equilibrium except for some
initial time and some final time. This property was discussed in the optimal

economic growth literature (see Cass (1966)). Since for this turnpike

property we need both asymptotic stability and Theorem 2 we can conclude that



only the finite horizon equilibrium that tends to the asymptotically stable

infinite horizon equilibrium satisfies the above turnpike property.

Summary

We have analyzed a finite horizon differential game model of duopolistic
competition through time under the supposition that prices do not adjust
immediately to their level on the demand function for each level of output.
We have shown that the duopolists' equilibrium strategies are symmetric and
that for a sufficiently long time horizon they approach the infinite horizon
equilibrium strategies arbitrarily close. They diverge from the infinite
horizon equilibrium strategies as the finite horizon nears and end gaming
begins., Thus, the strategies in the finite horizon model exhibit a turnpike

property.
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