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Abstract

Consider a market with m sellers, each having a single item to sell, and
m buyers, each desiring to buy at most one item. Each trader has a
reservation value for the item independently drawn from the unit interval;
sellers’ values have distribution Fj and buyers’ values have distribution Fj.
Sellers and buyers simultaneously submit offers and bids. These offers and
bids determine a closed interval in which a market-clearing price may be
selected. 1In the buyer’s bid double auction (BBDA) the price selected is the
upper endpoint of this interval. Trade then occurs at this price.

We consider Bayesian Nash equilibria in which all sellers use one
strategy and all buyers use a second strategy. Each seller in the BBDA has a
dominant strategy to set his offer equal to his reservation value. 1In
response to these dominant strategies each buyer has an incentive to bid less
than his reservation value. This strategic misrepresentation causes the BBDA
to be ex post inefficient. We show that the amount of misrepresentation by
buyers must be small when the market is large. 1In fact, we prove that under
all equilibrium responses of the buyers to the sellers' dominant strategies
the difference between a buyer's bid and his reservation value is 0(1/m),
regardless of the distributions F; and F9. Thus, competitive pressures as the
market grows quickly force buyers towards truthful revelation and the
equilibrium towards the ex post efficient, perfectly competitive allocation.
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1. Introduction

A goal of a market is to implement a Pareto efficient allocation of
resources. Classical general equilibrium theory focuses on the existence of
prices that implement an efficient allocation. Solving for such prices
requires information about traders’ preferences. This information is
typically not possessed by any one individual or institution, for each
trader typically has some private information about his own preferences.
The market must somehow elicit the necessary private information if it is to
implement an efficient allocation.

A major obstacle to accomplishing this is the incentive that traders
may have to misrepresent their private information. In a market with prices

this strategic behavior takes the form of distorting supply and demand in
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order to influence price. This behavior may cause ex post inefficiency,
i.e., all potential gains from trade are not realized. Intuitively
strategic behavior is only significant in small markets, for the ability to
affect prices decreases as the number of traders in the market becomes
large. In the limiting case of a market with a continuum of traders
strategic behavior vanishes and traders willingly reveal their private
information. Appropriate prices can then be calculated and efficiency
results.

This paper develops the intuition that the number of traders is
critical to the performance of a market by using Harsanyi’s notion (1967-68)
of a Bayesian game to model the impact of private information upon a simple
market. Consider a market with m sellers, each having a single item to
sell, and m buyers, each wanting to buy at most one item. Each trader has a
reservation value for the item that is independently drawn from the unit
interval; a seller’'s value is drawn from distribution F, and a buyer’s value

1

is drawn from distribution F2. A trader privately knows his own reservation
value. Each trader is risk neutral.

The items are reallocated according to the following rules. Sellers
and buyers simultaneously submit offers and bids. These offers and bids
determine a closed interval in which a market-clearing price can be
selected. We choose as the price the upper endpoint of this interval.

Trade then occurs at this price between those buyers whose bids are at least

as great as it and sellers whose offers are strictly less than it. We call

this procedure for allocating resources the buyer's bid double aguction

(BBDA) because in the one buyer-one seller case the buyer’s bid determines

the price whenever trade occurs.
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We consider Bayesian Nash equilibria in which all sellers use one
strategy and all buyers use a second strategy. Each seller in the BBDA has
a dominant strategy to set his offer equal to his reservation value because
he can not influence price when he trades. In response to these dominant
strategies, each buyer has an incentive to bid less than his reservation
value, which causes the BBDA to be gx post inefficient. We show, however,
that the amount of misrepresentation by buyers must be small when the market
is large. 1In fact, we prove that under all equilibrium responses of the
buyers to truthful revelation by the sellers the difference between a
buyer’s bid and his reservation value is O0(l/m), regardless of the
distribution of the reservation wvalues. Thus, as the market grows large,
competitive pressures quickly force buyers towards truthful revelation and
the equilibrium outcome towards an ex post efficient, perfectly competitive
allocation.

Two aspects of this result deserve emphasis. First, our rate of
convergence is exact, not asymptotic. It allows comparison of the efficiency
of equilibria of different sized markets, no matter how small or large. As
our examples illustrate, the gain in efficiency is dramatic even as the
number of traders varies over a small range, e.g., fromm = 2 tom = 16.
Second, our result applies to all Bayesian Nash equilibria in which the
buyers symmetrically adopt the same response to the sellers’ dominant
strategy of truthful revelation. Large misrepresentations simply cannot be
equilibrium behavior in a large market, regardless of which equilibrium is
chosen.

Our result is analogous to a classic result in general equilibrium

theory. Building on Debreu and Scarf’s (1963) result on the convergence of
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the core to the Walrasian allocations, Debreu (1975) and Grodal (1975)
showed that as a regular Arrow-Debreu economy is replicated, the maximum
distance between a core allocation and its nearest Walrasian allocation is
0(l/m), where m is the number of replications.1 Beyond the obvious fact
that the same rate holds, both results show that in a large market all
equilibrium outcomes are close to a Walrasian outcome. Some differences,
however, between these results should be kept in mind. Our model confronts
the inefficiency that private information and individual incentives causes,
while the cooperative approach assumes that the outcome of trade is
efficient. Additionally, our result concerns an explicit procedure for
arriving at an allocation. The core results fail to explain how the core is
reached. It is important to note, however, that the Arrow-Debreu framework
is much richer than our elementary model.

The questions that give rise to this work have been articulated by
Hayek (1945), Arrow (1959), and Hurwicz (1972) among others. Hayek
emphasized the importance of modeling the impact of private information upon
an economy: the resource allocation problem

.1s thus in no way solved if we can show that all the facts,

if they were known to a single mind (as we hypothetically assume

them to be given to the observing economist), would uniquely

determine the solution; instead we must show how a solution is

produced by the interactions of people each of whom possesses only

partial knowledge (1945, p. 530).

Arrow (1959) criticized general equilibrium theory for failing to explain
how Walrasian prices are formed. Hurwicz has been a pioneer in formally

evaluating the informational and incentive feasibility of economic

mechanisms:

1See Hildenbrand (1982) and Dierker (1982) for surveys of this topic.
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On the informational side, the question is whether the mechanism

allows for the dispersion of information and limitations on the

capacity of various units to process information. On the

incentive side, there is the problem whether the rules prescribed

by the mechanism are compatible with either individual or group

incentives (1972, p. 298-9).

Because we model the BBDA as a Bayesian game, our result reflects the role
that private information and individual incentives play within an explicit
process of price formation. We do not, however, deal with limitations on
rationality and information processing. Nevertheless, our result that all
equilibrium strategies of the BBDA in a large market are close to truthful
revelation suggests that cognitive limitations are unimportant in large
markets.

An important precursor of our result is Roberts and Postlewaite’s
(1976) study bf the noncooperative incentive that an agent within an Arrow-
Debreu exchange economy has to act strategically. In their model each agent
first reports an excess demand function, a competitive equilibrium is
computed based on the reports, and finally goods are allocated according to
the computed solution. They show that as a generic economy becomes large
each agent’s incentive to misreport his excess demand function vanishes.
Their result, while related, is different from our result because it does
not concern equilibrium behavior by the agents and it does not state a rate
at which the incentive to misreport vanishes.

Chatterjee and Samuelson (1983) did important early work on the
bilateral double auction using a Bayesian game model. Leininger, Linhart,
and Radner (1986) and Satterthwaite and Williams (1987) extended the
analysis of Chatterjee and Samuelson and demonstrated a great multiplicity

of equilibria in the bilateral case. The mathematical techniques of this

paper follow naturally from the techniques developed in Satterthwaite and
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Williams (1987). Wilson (1985a) showed that double auctions achieve
Holmstrom and Myerson's (1983) standard of interim incentive efficiency if
the market is sufficiently large. This paper complements Wilson's result by
showing that not only do large markets achieve interim incentive efficient
performance, they converge at a specified, rapid rate to ex post efficiency.

Myerson and Satterthwaite (1983) developed techniques for computing
optimal trading mechanisms when reservation values are private on both sides
of the market. For given distributions Fl and F2 the optimal mechanism
maximizes the ex ante expected gains from trade subject to the constraints
of private information and strategic behavior. Gresik and Satterthwaite
(1986, Th. 5) showed that if the ex ante optimal mechanism is used, then the
maximal gap between the reservation values of a buyer and a seller who are
ex post inefficiently excluded from trade is at most O((4n m)l/z)/m). They
conjectured that the tighter 0(l/m) rate of our result holds. Our
convergence result improves upon their’s in two ways. First it verifies
their conjecture, for the order of the optimal mechanism’s bound must be as
small as the order of the BBDA's bound. Second, our result concerns a
realistic trading procedure. The rules of the BBDA are stated in terms of
the bids and offers; the Bayesian game framework is used not to define the
BBDA, but to analyze the outcome of trade under this procedure when there is
private information. By contrast, an optimal mechanism is defined in terms
of the distributions Fl and F2;

optimal mechanism’s rules for allocating the items. As Wilson (1985b) has

changing the distributions changes the

emphasized, the rules of real-world trading mechanisms are independent of

the underlying distributions.
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Finally, McAfee and McMillan (1987) have surveyed the literature on
one-sided and double auctions.2 Their survey shows both the debt that our
paper and other papers on double auctions owe to the literature on one-sided
auctions and the distance that the double auction literature has to go
before it reaches an equivalent level of sophistication. For example, our
results are for the independent private values model only. Consideration of
Milgrom and Weber’'s more general model (1982) of affiliated values has as

yet proved intractable.

2. Notation, Model, and Preliminary Observations

Consider a market with m buyers (m = 2) and m sellers in which each
seller wishes to sell an indivisible item and each buyer wishes to purchase
at most one item.3 Each seller has a reservation value independently drawn

from the distribution Fl’ and each buyer has a reservation value

independently drawn from F2. A trader's reservation value is his own
. . . . . . . 1 ] .
private information. Each distribution Fi is a ¢ function whose density fi

= Fi is positive at every point in (0,1) and zero outside {[0,1]. The

distributions F. and F, are common knowledge among the traders. We use v

1 2 1

to denote a seller’s reservation value and v, to denote a buyer's

reservation value. A seller’s utility is zero if he fails to sell his item

In a one-sided auction a seller with a known reservation value is
attempting to maximize his revenue in selling an object(s) to a set of
buyers whose reservation values are private. Thus the distinction between a
one-sided auction and a double auction of the type we are studying is that
in a double auction both buyers and sellers have private information while
in a one-sided auction only the buyers have private information.

We have excluded the bilateral case (m = 1) because its analysis is
different from the m = 2 case. See Satterthwaite and Williams (1987).
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and p-v, 1f he does sell and the market price is p. Similarly a buyer's

1

utility is zero if he fails to buy and V,-P if he does buy.
These are the common knowledge rules of the BBDA. Every trader
simultaneously submits a bid/offer. These bids/offers are arrayed in

increasing order s and the price p is set at s

(1) =< S(Z) <...=% S(Zm)

Trade occurs among sellers whose offers are strictly less than p and buyers

(m+1)°

whose bids are greater than or equal to p. When ties occur, p may not be a
market-clearing price. In order to explain exactly who trades under the
BBDA we refer to Table 2.1.

Let s be the number of sellers whose offers exceed p, k be the number
of sellers whose offers equal p, t be the number of buyers whose bids exceed
p, and j be the number of buyers whose bids equal p. There are m-s-k offers
and m-t-j bids less than p. Note that s+k+t+j = m traders bid/offer at
least as much as p, since p = s(m+l)' Therefore
(2.0D) t+j = m-s-k,
which means the demand t+j at the price p is necessarily at least as large
as the supply m-s-k.

Consider the case where a single bid/offer uniquely determines S(m+1)'
i.e., j+k = 1 and t+s = m-1. In (2.01) bring s+k to the left-hand side; the
left-hand side then sums exactly to m and (2.01) holds with equality. 1In
this case, supply exactly equals demand and every buyer whose bid is at
least p purchases an item and every seller whose offer is less than p sells
his item. Next consider the remaining case where at least two bid/offers

equal s i.e., j+k 2 2 and demand t+j strictly exceeds supply m-s-k.

(m+1)’
The BBDA then prescribes that the supply of m-s-k items is allocated

beginning with the buyer who bid the most and working down the list of
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"buyers whose bids are at least p. If in this process a point is reached
where two or more buyers submitted identical bids and the‘remaining supply
of unassigned items is insufficient to serve them, then the available supply
is rationed among these bidders using a lottery that assigns each an equal

chance of receiving an item. This completes our definition of the BBDA.

Table 2.1. Determination of the market price.

Sellers Buyers
# bids/offers > s(m+l) s c
# bids/offers = S(m+l) k h|
# bids/offers < S(m+l) m-s-k m-t-j

We adopt the Bayesian game framework to analyze the outcome of trade.
Within this framework a trader’s reservation value is his type and his
strategy is a function that specifies a bid/offer for each of his possible
types. An equilibrium consists of a strategy for each trader such that, for
each of his possible reservation values, the bid/offer his strategy
specifies maximizes his expected utility given the other traders’ strategies
and the distributions of their reservation values.

We now identify some basic properties of equilibria in the BBDA. The
most fundamental property is that a seller can not marginally influence the
price p by altering his offer in any case where he sells his item. This
follows from the BBDA’s rule that a seller only sells if his offer is

strictly less than the price p = It follows that sellers have no

S(m+1) "
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incentive to act strategically, i.e., each seller’'s dominant strategy is to

. . . 4 .
submit his reservation value as his offer. Let S denote this strategy:

(2.02) é(vl) =V

for all vy o€ [0,1].

Theorem 2.1: In the BBDA, S is a dominant strategy for each seller.

Proof: Select a strategy for each buyer and for all but one of the sellers,

and let vy be the reservation value of the exceptional seller. This seller

would be no worse off by submitting an offer of b = vy rather than b’ > vy

because: (i) if he sells the item with the offer b’ at a price p > b', then

he also sells it with the offer of b = vl at the unchanged price p; and (ii)

if he fails to sell the item with the offer b’ = p, he can only gain if he

instead offers b = vy for the price whenever he trades necessarily exceeds

his offer. A similar analysis shows that the seller is no worse off with

the offer of b = Vi than an offer b" < vl. Q.E.D.

-~

We assume throughout this paper that all sellers adopt the strategy S.
We also assume that all buyers use the same strategy. We denote the common

strategy of the buyers as B: [0,1] - R and we denote a set of strategies

where each seller plays S and each buyer plays B as <S,B>.

In order to further establish the properties of equilibria <S,B> we
need additional notation:
n(vz,b;B) = a buyer'’s expected utility when v, is his reservation

value, b is his bid, and B is the common strategy of the

other buyers;

A standoff equilibrium also exists in which all buyers bid zero, all
sellers offer one, and no trade occurs.
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P(b;B) = the probability a buyer will trade when b is his bid and
B is the common strategy of the other buyers;
C(b;B) = the expected payment of a buyer when b is his bid and B

is the common strategy of the other buyers.
Note that n(vz,b;B) = V2P(b;B) - C(b;B) and that P(+;B) is a probability
distribution on the interval [0,1]. Finally, P(+;B) is strictly increasing

on this interval because (i) the density £, is positive on (0,1) and (ii)

1

each seller uses his dominant strategy S.

Theorem 2.2: Let <;,B> be an equilibrium in the BBDA. The function B

must have the following properties: (i) 0 < B(vz) for all v, € (0,17;

(ii) B(Vz) < Vs for all v2 e [0,1); (iii) B(vz) is strictly increasing

on [0,1] and differentiable almost everywhere.

Proof: An important preliminary observation is this. Select a buyer.
Suppose each seller uses S and the other m-1 buyers use the strategy B,
where no restriction is placed on B. For any p € (0,1), if the selected
buyer bids p, then there is a positive probability that the price will be p
and the selected buyer will receive an item at this price. This is true
because, given any array of bids from the m-1 buyers using B, a positive
probability always exists that the offers of the m sellers will fall such
that exactly m of the bids/offers of these 2m-1 traders are strictly less
than p, i.e., p = s(m+l)'

This observation immediately implies (i) and (ii). 1If a buyer with
reservation value Vo > 0 bids b" < 0, his expected utility is zero because
no seller’'s offer will be less than b". Bidding b’ ¢ (O,vz), however,
provides him with a positive probability of a profitable trade. This proves

(1). 1If a type Vo buyer (V2 < 1) bids b > v then a positive probability

2 )



12
exists that the price will be in (v2,b] and he will trade at a loss.

Reducing his bid to b = v, eliminates these losses without eliminating any

2

profitable trades. This proves (ii).5

We use an argumént from Chatterjee and Samuelson (1983, Th. 1) to show

that B must be nondecreasing. Let VE > vé. Because <§,B> is an

equilibrium, we have

v
o

(2.03) w(vé,B(vé);B) - W(Vé,B(VE);B)

and

v
o

(2.04) x(vy,B(v3);B) - n(vy,B(vy);B)

Adding these inequalities, we obtain

(2.05) ﬂ(VE,B(Vg);B) - 1r(v2,B(v§);B)
+ n(vé,B(vé);B) - n(vE,B(vé);B) = 0.

Recall that n(vz,b;B) = v2P(b;B) - C(b;B). Therefore (2.05) becomes

(2.06) (VE - vé)P(B(vE);B) + (vé - VE)P(B(Vé);B) = 0,

or equivalently

(2.07) (VE - Vé)[P(B(VE);B) - P(B(Vé);B)] = 0.

By assumption, VE > vé; therefore, P(B(VE);B) > P(B(vé);B). Since P(+;B) is

increasing, we conclude that B(VE) > B(vé).

We now show by contradiction that B cannot be constant over any
interval with non-empty interior. Suppose that B(vz) = b’ for all v, in
such an interval I. fhe bounds that we have derived upon B imply that 0 <
b’ < 1. OQur argument rests upon the following point: the probability of

trade P(b;B) is discontinuous at b = b’. This is true becausé the following

> We can not rule out extremely small bids (e.g., b = -1000) for a

type zero buyer and extremely large bids for a type one buyer. These are
probability zero cases that do not affect the expected utilities of other
traders and therefore do no affect equilibrium calculations.
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events occur simultaneously with positive probability: (i) each buyer’s
reservation value is in I and therefore all buyers bid b’', (ii) at least one
seller’s offer is less than b’, and (iii) at least one seller’s offer is
greater than b’.6 Stipulations (1)-(iii) imply that the market price is b',
the market fails to clear at this price, and the available units are
allocated randomly among the buyers. Raising the selected buyer’s bid from
b’ to b” > b’ ensures that he receives an item with probability one in the
stipulated situation, rather than with some probability less than one under
the random allocation rule. Therefore an ¢ > 0 exists such that P(b";B) >
P(b’';B) + ¢ for all b" > b’.

A buyer whose reservation value is in I has an incentive to raise his
bid above b’. This is seen by computing his gain from increasing his bid
from b’ to b":

(2.08) w(vz,b";B) - w(vz,b’;B)

= VZ(P(b";B) - P(d';B)) + C(b';B) - C(b";B)

> v,ye - (" - b"),
where (b"-b’') is an upper bound on how much expected price can change when
the buyer increases his bid to b”. For b" sufficiently near b’, (2.08) is
positive, which completes the contradiction.

Finally the existence of B’ almost everywhere follows from the
monotonicity of B by a well-known theorem in analysis.7 Q.E.D.

Two points should be emphasized about the monotonicity of the buyers’

strategy in aﬁ[eduilibrium <S,B>. First, it implies that the probability of

ties in the array of bids and offers is zero. Consequently we can ignore

Note that (ii) requires that m = 2.

See RoYden (1968, p. 96).



14 . .
ties and the randomized allocations that they necessitate. Second, the
argument in Theorem 2.2 can be applied to double auctions besides the BBDA
to show that when m > 2 an equilibrium common strategy of either side of the
market must be increasing over all intervals in which the probability of
trade is positive. Equilibrium strategies in the bilateral case may not be
increasing; Leininger, Linhart, and Radner (1986), for instance, have
derived step function equilibria in the bilateral split-the-difference
double auction. Such equilibria, however, do not exist in this double

auction when m = 2.

3. The First Order Approach
In this section we consider a buyer’s first order condition for

maximizing his expected utility conditional on his reservation value»vz, the

use of a common strategy B by the other m-1 buyers, and the use of S by each

seller. If <S,B> is an equilibrium, then this conditional expected utility

is maximized at B(v We interpret the first order condition as a

2)

differential equation that must be satisfied almost everywhere by any

function B that defines an equilibrium <S,B>. Conversely, we show that any

increasing function B defines an equilibrium <S,B> if (i) B satisfies the
differential equation, (ii) B respects the bounds 0 < B(VZ) < V2 for all v2

e (0,1], and (iii) the distribution Fl of each seller’s reservation value
satisfies a monotonicity condition.
The first order condition is formally derived in the Appendix. Here we

state the condition and describe it intuitively. 1In order to state it we

must define three probabilities:
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Km = the probability that bid b lies between s(m-l) and s(ﬁ) in a-
sample of m-1 buyers using strategy B and m-1 sellers using S.
Lm = the probability that bid b lies between s(m-l) and s(m) in a

sample of m-2 buyers using strategy B and m sellers using S.

M = the probability that the bid b lies between S(m) and s(m+12 in a

sample of m-1 buyers using strategy B and m sellers using S.

Recall that S(k) is the kth order statistic in the specified sample of bids

and offers (i.e., the bid/offer that ranks kth from the bottom).

Suppose a type v

5 buyer considers raising his bid by Ab above the value

b, which may or may not equal the value B(v His incremental expected

2)'

utility is

£,(v,)
(3.01) mf. (b)K Ab + (m - 1)=——— L Ab|(v, - b) - M Ab
1 m - m 2 m
B’ (¥,)
2
where v, = B-l(b). The buyer has two considerations in raising his bid.

2

First, it may increase his probability of obtaining an item and, second, it
may increase by Ab the price he pays for an item that he would have received
at price b. These two considerations correspond respectively to the two
terms in (3.01), which we now explain in detail.

The term in brackets represents the probability that raising his bid by
Ab causes the selected buyer to go from not receiving an item to receiving
an item. If initially he does not receive an item, then some buyer or
seller’'s bid/offer above b determines the price p. 1If raising his bid is to
benefit the buyer, then p must be in (b,b+Ab), i.e., p must be just above b
so that he can jump over it and become one of the buyers who purchases an

item.
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Select a seller in addition to the selected buyer. The probability
that this seller’s offer falls in the interval (b,b+ab) is £, (b)ab.
Conditional on it falling in the interval and on the selected buyer bidding
b, the probability that this offer determines the market price is Km. Note
that this probability is calculated on a sample of the remaining m-1 bids
and m-1 offers because the selected buyer’s bid and the selected seller’s
offer are fixed. Any of the m sellers could have been selected, so the
probability that by increasing his bid the selected buyer jumps over a
price-determining seller’s offer is mfl(b)KmAb. A similar argument shows
that (m-l)f2(§2)LmAb/B'(§2) is the probability that the selected buyer jumps
over a price-determining buyer’s offer as he increases his bid. The density

of a buyer’s bids at b is f2(§2)/B'(§2), not f2(§ because the buyer’s

)
distribution of bids is different from the distribution of his reservation
values. Finally, the selected buyer’s expected gain from increasing his bid
and potentially going from being a nonrecipient of an item to being a
recipient is the term in brackets times the gain when this happens. This

gain is v,-p or, in the limit as Ab - 0, v, -b.

2 2

On the other side of the ledger is MmAb. If the buyer is the trader
whose bid determines the price, then raising his bid Ab increases the price
that he pays for the item by Ab. The expected cost of raising his bid is
therefore Ab times the probability Mm that he is in fact the price-

determining trader.

From (3.01) we obtain the formula for the marginal expected utility of

a type v, buyer whose bid is b:
dw(vz,b;B) f2(§2)
(3.02) % - ﬁnfl(b)Km + (m-l)-————~Lm](v2-b) - Mm.

B'({zz)
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If <S,B> is an equilibrium, then B satisfies the first order condition
dw(vz,B(vz);B)/db = 0 at all reservation values v, where B’ exists.
To obtain a differential equation in the strategy B we must define the

probabilities Km, Lm’ and Mm so that their values are functions only of the

point (vz,b):

-1,m-1.2 m-1-1 i i m-1-1

(3.03) K_(v,,b) = z?=o( S)F () (1-F) (0)) Py (v,) T (1-F, (v,)) ,
(3.04) L_(v,,b) = 2 D@ HE, ™ Ta-F o), v ) R v, ) Y
. m: 2’ i=1"i71i-1771 1 2Vv79 . 2\Vo ;

-1, m-1,,m m-1i i i m-1-1

(3.05) M_(v,,b) = = ) (DF (b)Y T(L1-F (b)) F,y(v,) (1-F, (v,)) ,

The probabilities Km, Lm’ and Mm in (3.01-02) are obtained by evaluating

expressions (3.03-05) at v, = B-l(b).

That Km(B-l(b),vz) is the probability that the bid b lies between

s(m-l) and s(m) in a sample of m-1 buyers using strategy B and m-1 sellers

using strategy S can be seen as follows. The statement that b lies between

s and s means that m-1 bids/offers are below b and that the
(m-1) (m)

remaining m-1 bids/offers in the sample are above b. We sum the

probabilities of all possible events in which exactly m-1 bids/offers are
less than b. A total of m-1 bids/offers less than b may be obtained by i
bids and m-1-i offers less than b. For a particular selection of i buyers

and m-1-i sellers, the probability that only their bids/offers are less than

b is Fl(b)m'l'i(l-Fl(b))i % Fz(vz)i(l-yz(vz))m'l'i where v, = 8" Lby . F,(b)

is the probability that a particular seller (using strategy S) offers less

than b, and FZ(VZ) = FZ(B_l(b)) is the probability that a particular buyer

m—l)2 _ (m:l)( m-1

(using.strategy B) bids less than b. The term ( i 3 210

i) is the

number of ways of simultaneously choosing i buyers from m-1 buyers and m-1-1i
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sellers from m-1 sellers. Similar arguments show that Lm and Mm are given
by (3.04) and (3.05).8
A differential equation in the strategy B is obtained by setting (3.02)

equal to zero and regarding Km’ Lm, and Mm as functions of v, and b.

Suppose <S,B> is an equilibrium. Because B is necessarily increasing we can

invert B and regard a buyer’s reservation value v, as a function of his bid

B L(b) and v, = dv,(b)/db = 1/B’(v,). Substituting v

b, i.e., v2 = v2(b)

2 2

into the differential equation and solving gives

Mm(VZ’b) - mfl(b)Km(vz,b)(vz-b)
(3.06) v, =
2 (m-l)fz(b)Lm(vz,b)(vz-b)

(3.07) b

I
=

where the tautology b = db/db = 1 has been added. Written in this form, the

differential equation defines a vector field (62,5).

If <5,B> is an equilibrium, then (3.06-07) hold at every point

(v B(Vz)) at which B'(v2) exists. To establish a converse, we assume that

2 b

the distribution Fl of a seller’s reservation value satisfies the following

monotonicity property:

(3.08) c(vl) = vl + Fl(vl)/fl(vl) is increasing for v, ¢ {0,1].

1

Given (3.08), if a solution curve to (3.06-07) defines an increasing

2), then <5,B> is an equilibrium in the BBDA.

Theorem 3.1: If <S,B> is an equilibrium in the BBDA, then B(v2) =Db

function b = B(v

and v, = 1/B’(v,) satisfy (3.06-07) at every v

9 e {0,1] at which B (v2)

2

exists. Conversely, suppose (3.08) holds and B is a Cl function on

[0,1] such that (i) B'(v2) > 0 and 0 < B(v2) < v, for all v, € (0,1]

2

8 See David (1981, ch. 2) for a discussion of this type of probability

calculation.
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and (ii) B(v =b and v, = 1/B’(v2) satisfy (3.06-07) at every v

2) 2
(0,1]. Then <S,B> is an equilibrium of the BBDA.

€

2

The proof is in the Appendix.

4. The Geometry of Solutions

Theorem 2.2 states that if <S,B> is a equilibrium, then 0 = B(VZ) < v2

< 1. The graph of an equilibrium strategy B therefore lies within the

triangle 0 < b < v, < 1 (see Figure 4.1). Following an approach developed

2
in Satterthwaite and Williams (1987), we describe the vector field (3.06-07)
on this triangle in order to gain insight into the equilibria of the BBDA.

Formula (3.06) defines v. as a real number at every point on the

2

triangle except along the edges XY where b = 0 and XZ where v, = b. At

points X and Z, v, is indeterminate; between X and Y it is negative infinity

2
and between X and Z it is positive infinity. To obtain well-defined values
for the vector field (52,5) everywhere except X and Z we consider the
field's normalization v = (62,5)/|(52,5)]. This normalization does not
affect the solution curves. Note that v is nonsingular at every point on
the triangle except X and Z.

Inspection of the field along the three edges and at the vertices
allows us to identify three sets where solution curves enter the triangle
and one set where they leave the triangle. A solution curve enters at each
point where the field points inward. Multiple solutions may enter through X
where Gziis indeterminate. The field v equals (1,0) and therefore points
into the triangle along the edge XZ. It also points inward along the edge

YZ at points where Fl(b) > fl(b)(l-b). A solution curve exits at any point

where the field points outward. This occurs only on_YZ (perhaps including
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vertex Z) at points where Fl(b) < fl(b)(l-b). Figure 4.2 shows three

solution curves for the case where Fl and F2 are the uniform distribution

and m = 2. Curve 2 enters from the edge XZ, Py enters from the vertex X,
and py enters from the lower half of the edge YZ. All exit along the upper
half of edge YZ.

Curve Py meets the conditions of Theorem 3.1 and therefore defines an
equilibrium <§,B>. Curve py may be a segment of an equilibrium strategy B,
but it is unclear how to complete its definition for reservation values that
lie to the left of the point on XZ where it enters the triangle.9 Finally

curve p, does not determine an equilibrium because it does not define the

buyer’s bid b as an increasing function of v i.e., v, 1s negative along

2’ 2

some segments of Py
The failure of py to determine an equilibrium illustrates an extremely

important property of v Inside the triangle an open region necessarily

9

exists where v, is negative; formally we define this region as

(4.01) Fm(Fl,Fz) = {(v2,b): v, < 0},

where the dependence in (3.06) of v, on (v2,b), F and m is suppressed.

2 l! FZ’

We use T, €O label the upper edge of Fm' Note Fm always contains the edge

XY and some portion of the edge YZ. For the case in which Fl and F2 are

uniform and m = 8, Figure 4.1 shows Pm as the region below the curve T
connecting X and W. The set Pm is important because the graph of any

function B that defines an equilibrium <S,B> must lie outside Fm at every

point where B is differentiable. In the next section we show that as m

Extending B's graph down along the edge XZ towards X does not define
an equilibrium. At each point on this extension B’ exists and yet (3.05) is
not satisfied. This violates Theorem 3.1. It may be possible to extend 2
by jumping to some lower solution curve,
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increases, Fm grows and forces all equilibrium strategies towards edge XZ,
which corresponds to truthful revelation. This is the fundamental insight
that underlies our convergence result.

The set Fm can be interpreted in terms of marginal expected utility.
Choose a point (vz,b) in Fm and suppose an equilibrium <é,B> did exist such’
that B(v2) = b and B is differentiable at v2. Theorem 2.2 states that
B'(vz) > 0. Select a buyer. If the other traders use their equilibrium
strategies, formula (3.02) implies that the selected buyer’s marginal
expected utility 1s necessarily positive at (v2,b) because, by the
definition of Fm, a negative number would be needed in place of B’(vz) in
(3.02) in order to make his marginal expected utility zero. The selected
buyer therefore has an incentive to raise his bid above B(v2) = b, which
contradicts the assumption that <é,B> is an equilibrium.

In the remainder of this section we discuss the relationship between
the shape of Fm and the equilibria of the BBDA. To this end we introduce

property A: a subset A of the triangle 0 < b < v, <1 satisfies property A

2
if a continuous function A(Vz) = b exists such that A = {(vz,b): b < A(vz)},
i.e., A consists of all points within the triangle below the graph of X.
Thus Fm satisfies property X if Tn is the graph of a single-valued function
X(vz) = b. In Figure 4.1 Tn is such a graph and therefore Fm satisfies
property A. Figure 4.3 illustrates a region Pm that fails to satisfy
property A.

Property A is significant for two reasons. If Fm satisfies property A,
then the graph of any equilibrium stfategy B must lie completely outside Fm.

This can be seen by referring to Figure 4.3 and using Theorem 2.2's results

that an equilibrium B is increasing and almost everywhere differentiable.
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Suppose thé graph of an equilibrium strategy B contains point C in Fm. When
property X holds there exists a rectangle within Fm whose bottom edgé is on
XY and whose upper right corner is C. Since the strategy B is increasing
its graph must pass through this rectangle. Because B is differentiable
almost everywhere, it must be differentiable at some point in the rectangle
where 52 is necessarily negative. This contradicts the requirement that B
is increasing. Note that when property A fails to hold the graph of an
equilibrium B could conceivably pass through Fm at an isolated point. This
is illustrated in Figure 4.3 by the graph consisting of the curve from X to
D, the point E, and the curve from F to G.

The second point concerning property A is its role in a theorem on the
existence of equilibria.

Theorem 4.1: For given F and m, if Pm(Fl,F2) satisfies property

1 o s
A, then a Cl function B exists that defines an equilibrium <S,B> for
the BBDA.

The proof is in the Appendix.

The weakness of this theorem is that it does not specify conditions on

Fl, F2, and m under which Fm satisfies condition X. Direct calculation,

however, suggests that property A has some generality. Figure 4.4 graphs

T the upper boundary of Pm, for values of m equal to one, eight, and

sixteen when Fi and F2 are the uniform distribution. Visual inspection

indicates that property A holds in these cases.
Further evidence on existence is provided by the following example of a
linear equilibrium when reservation values are uniformly distributed. The

strategy

m

m+ 1

v

(4.02) B(v2) = 2
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defines an equilibrium <;,B> in this case for the market with m sellers and
m buyers. Proof is by direct substitution in (3.06). Curve Py in Figure
4.2 depicts this solution for m = 2. Substitution cf m =1 in (4.02)
defines the equilibrium that Williams (1987) computed for the bilateral BBDA
in the uniform case. The example is nice because closed form solutions to

(3.06-07) are in general difficult or impossible to obtain.

5. Convergence of All Equilibria to Truthful Revelation

The complement of Fm in the triangle 0 < b < v, = 1 contains the edge

XZ where the buyer’s bid b equals his reservation value v, In this section

we show that as m increases the vertical distance between the boundary Yo

and the edge XZ is 0(l/m). The graph of an equilibrium strategy B must lie

between T and XZ at almost all values of V- This permits us to show that

in equilibrium the difference between a buyer’s reservation value and his

bid is 0(l/m), no matter what his reservation value and no matter which

equilibrium <S,B> is chosen.
Rearrangement of (3.06) gives us an inequality defining the region in

which v, is nonnegative:

2

(5.01) v2 > 0 if and only if v2-b < fl(b)

where Nm is defined as the ratio

Mm(VZ’b)

(5.02) Nm(VZ’b) = W

The left-hand side of the second inequality in (5.01) is the amount by which
the buyer’s bid misrepresents his reservation value. Only the right-hand

side depends on the number of traders. We therefore focus on the behavior
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of Nm as m increases. Two theorems, whose proofs are in the Appendix,
describe this behavior.

Theorem 5.1: For each pair of numbers 0 < b =< v, <1 and all m = 1,

the ratio Nm(VZ’b) is strictly deéreasing in m.
The functions Km, Lm, Mm, and hence‘Nm are well-defined in the m = 1 case,
which permits us to state Theorem 5.1 using m = 1. The statement of Theorem
5.2 uses the notation
F,(v,) (L-F; (b))
F (6) (1-F, (v)))

(5.03) z(v,,b) =

2 ’

Theorem 5.2: If m = 2 and (v2,b) satisfies 0 < b < v, < 1, then

2

2Fl(b)
(5.04) Nm(VZ’b) < — max [ 1, z(vz,b) ].

These theorems have the following interpretation. Consider m’ < m". 1If,

for m', v, is negative at some point (v2,b), then Theorem 5.1 implies that

2

it is also negative for m". The region Fm therefore grows monotonically in

m, i.e., for m’ < n"*, Fm, cr Theorem 5.2 describes the rate at which

these regions grow.

The main result of the paper follows from substituting the inequalities
of Theorem 5.2 into (5.01).

Theorem 5.3: Consider the BBDA when sellers’ reservation values are

drawvn from Fl and seller’s reservation values are drawn from F2. A

continuous function n(vz;Fle) of v, exists such that, for any m = 2

2

and any equilibrium <S,B> in a market of size m,
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k(v.;F,,F.)
(5.05) v, - B(v2) < 271727

2
m

at every v, in the open interval (0,1).

2
Proof. We first show that B satisfies (5.05) at all reservation values v, €
(0,1) where B'(vz) exists. Fix v, and let b denote B(vz). From (5.01) and

Theorem 5.2 we have

N (v,,B) 2 F (D) )
(5.06) v, - b < — < - - max[ 1, z(v2,b) }.
£(B)  m £ (b)
A finite bound on v, - b that does not involve b is obtained by maximizing

the right-hand side of (5.06) over a closed interval that contains b. The

bid b is bounded above by v, and below by zero. The right-hand side,

2

however, may be infinite at b = 0. This complication is sidestepped by

bounding b away from zero. The region I, is an open set that contains the

2

triangle’s lower edge XY. Theorem 5.1 implies that the point (v2,5) lies

above the region T Choose a continuous function g on (0,1) such that the

9
graph of u lies within F2 and u is greater than zero. The bid b therefore
satisfies p(vz) <b < vy Define
2F, (b)
(5.07) k(v,) = max — max[ l, z(v,,b) ].
2 p(v,)<bsv fl(b) 2
2 2
For convenience, we suppress the dependence of < on F, and F,. Note that

1 2

is continuous in v, because p is continuous. With this definition of «,

(5.05) holds at all points where B’ exists.
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We now show that (5.05) also holds at reservation values in (0,1) where
B’ does not exist. Consider the set Dm of reservation values v2 and bids b
that violate (5.05):
(5.08) Dm = {(V2,b)5 0 <b = v, < 1 and vy - n(vz)/m > b}.

The set Dm is open because k is continuous. It also satisfies property A

because its upper boundary is the graph of the function v, - n(vz)/m.

Suppose, contrary to the theorem, that some (V2,B(V2)) (VZ’B) is an
element of Dm' We now repeat an argument from Section 4. A rectangle
within Dm exists whose base is on the edge XY and whose upper right corner
is (VZ,B). Because B is increasing, the graph of B must pass through the
rectangle. Somewhere on this segment of the graph B’ must exist, which
contradicts the above result that (5.05) holds wherever B is differentiable.
Q.E.D.

As an illustration, we follow the proof of Theorem 5.3 to compute the
function « when each trader’s reservation values are uniformly distributed.

The boundary s of ', is complicated. By Theorem 5.1 the boundary 11 of T

2 1
lies within F2. It is easy to compute the function p that describes this
boundary uE Formula (3.06) for 62 implies that
(5.09) U {(vz,b): v, = b + Fl(b)/fl(b)}.

In the uniform case, 71 is the graph of the function b = u(vz) = v2/2. We
now compute x using (5.07). From (5.03), z(vz,b) = vz(l-b)/(l-vz)b. Note

that z(vz,b) > 1 for v2/2 <b = V- Formula (5.07) therefore simplifies to

2bv2(1-b) v2(2-v2)
max =

(5.10) n(vz;Fl,F
v2/25b5v

2) = b
2 (l-vz)b (l-vz)

which means that in the uniform case, the difference between a buyer’s

reservation value v2 and his bid is less than or equal to v2(2-v2)/(l-V2)m.
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It is important to emphasize that the bound on v -B(v2) in Theorem 5.3

2

is loose because it is based on the set Fm. A solution curve p passing
through a point (v2,b) outside Fm may not define an equilibrium <;,B>, for o
may pass through Fm somewhere else (e.g., curve Pq in Figure 4.2). The
graph of an equilibrium strategy B therefore lies outside the set consisting
of all solution curves that pass through Fm, which is a strictly larger set
than Fm. On the other hand, we believe that the rate of convergence 0(l/m)
is sharp because numerical computation of equilibria for various values of m

and the example (4.02) suggest that equilibria converge to truthful

revelation at the same rate as Yo'

6. Additional Comments

1. A simple partial equilibrium calculation provides insight into our
convergence result. It reveals that the driving force behind the 0(1l/m)
rate is the relative rates at which the likelihood of obtaining an item by
increasing one's bid and the likelihood of simply driving up price go to
zero as the number of traders increases. Consider a market with 2m traders
in which F = F, = F2 (with density f) and m is large. Select a buyer with

1

reservation value v, and suppose he believes that in addition to the sellers

all other buyers will truthfully report their reservation values because the

market is large. In the sample of bids and offers from the 2m-1 other

traders, let g be the density of the critical bid/offer s(m) that the
selected buyer must beat with his bid b in order to receive an item. As
before, let Mm be the probability that the bid b lies between s(m) and

S(m+l) in this sample and thus determines the market price. Adapting (3.02)

to this simplified situation, the buyer chooses his bid to satisfy
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(6.01) (vz-b)g(b) = Mm'
When the buyer considers raising his bid, the left-hand side is his marginal
expected gain from increasing his likelihood of receiving an item and the
right-hand side is his marginal expected cost from driving up the price.

Formulas in David (1981, p. 9) give
(6.02) M= 2 HE®)N(1-Fb))™
(6.03)  g(b) = (2m-1)Ed) M HF®™ T A-FE)™ L

Substitution into (6.01) implies

F(b)
(6.04) vy - b = nf (b)Y’

which is the same rate that we obtained in Theorem 5.3.

2. The results of this paper are true for the more general case in
which the number of buyers may differ from the number of sellers. Our proof
of this is not included here because it would substantially complicate the
paper. We do, however, outline the proof and discuss some implications.
Assume that there are n buyers and q sellers where n,q = 2. Our
characterization of the traders’ equilibrium strategies is the same: é is
the dominant strategy of each seller, and an equilibrium, common response B
of the n buyers satisfies the necessary conditions of both Theorems 2.2 and
3.1 (with appropriate changes in (3.06)). The first order condition for
buyers and the tautology b=1 again define a vector field on the triangle O

=b=<wv, <1. A region Fn exists in which v

5 S is negative. The key step in

2

our proof is a demonstration that an is increasing in both n and q, i.e.,

, , €T .- In particular, if m = min(n,q),
a nq P (n,q)

then T cT" . Note that T is identical to I' as defined in (4.01).
mm ngq mm m _

if n' = n and q' < q, then Fn

Theorem 5.3 uses the set Fm to bound the amount of misrepresentation in the
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market with m buyers and m sellers. Because Fm = me c an, this bound also
applies to the market with n buyers and q sellers.

This result has two implications. First, the amount of
misrepresentation converges to zero in any sequence of markets in which both
the number of buyers and the number of sellers increases without bound.
Second, Theorem 5.3's O0(l/m) result generalizes to any sequence of markets
in which the ratio of buyers to sellers is fixed as the market grows.

Specifically, fix n, and , let m, = min(n.,q.), and let r index a sequence
P y 90 0 0’9

0
of markets with 0, buyers and 7d, sellers. The amount of misrepresentation
v,y - B(vz) in this market is O(l/rmo) = 0(1l/7).

It is interesting to apply these results to a sequence of markets in
which the number of buyers, the number of sellers, and the ratio of the
number of sellers to the number of buyers all converge to infinity. As the
sequence progresses the increasing ratio of sellers to buyers implies that
the expected return to each buyer of a given type increases, for it becomes
increasingly likely that there will be sellers available who are willing to
trade at "low" prices. At the same time each buyer has a diminishing
incentive to misrepresent his reservation value. As explained above, this
is true because the marginal expected change in the market price that he
causes by decreasing his bid Ab converges to zero more rapidly than does the
probability that he will be excluded from trade because he changes his bid.
A buyer therefore benefits from the increasing ratio of sellers to buyers,
despite his diminishing "market power”, or ability to influence the market
price.

Another interesting observation is that the strategy (4.02) defines an

equilibrium <S,B> when there are m buyers and F1 and F2 are uniform,
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regardless of the number of sellers. O;r results for markets with unequal
numbers of buyers and sellers only apply when both sides of the market grow
large. This example suggests, however, that in the BBDA it is competition
among the buyers alone that drives the market to efficiency.

3. A basic insight of the literature in social choice theory on
strategy-proofness is that strategic behavior is only avoidable in
mechanisms where individuals can not affect each other’s allocations.1
See, for example, Satterthwaite and Sonnenschein (1981). In the BBDA
traders affect each other’s allocations by affecting the expected price.

The ability to affect price vanishes rapidly as the market grows. The
social choice results therefore suggest that strategic behavior should
vanish as the market grows large. Our result shows that this in fact

happens.

4. For small markets the BBDA and other double auctions are ex post
inefficient, i.e., when the market closes potential gains from trade may be
"left on the table." Equilibrium strategies are fully revealing of traders’
reservation values; consequently when the market closes the traders know if
further gains from trade are possible. Cramton (1984) has criticized one-
shot double auctions on this point. Specifically, he argues that the use of
a one-shot double auction implicitly assumes that traders precommit not to
reopen the market even when it is common knowledge that further gains from
trade exist. Such precommitment may be difficult or impossible to maintain.
Our results suggest that this criticism of one-shot double auctions lacks
force in large markets because the expected value of the unrealized gains

from trade rapidly vanishes as the market grows.

10 . . . . .
The one important exception i1s the family of Groves mechanisms.
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5. The BBDA is one example of the sealed bid k-double auction. The
more general formulation of the k-double auction is to set price as
(l—k)s(m) + ks(m+l) where k is a fixed parameter in the interval {0,1]. The
BBDA is the k-double auction in which k = 1. All the results of this paper
have exact parallels for the seller’s offer double auction in which k = 0.
Our analysis of these two extreme cases is greatly facilitated because in
each case traders on one side of the market truthfully reveal their
reservation values. The analysis becomes more difficult when k is in the
open interval (0,1) because then both sides of the market can affect price;
as a consequence, both sides act strategically. As of this writing we have
been unable to obtain the 0(l/m) convergence result for this more general
case. We conjecture, however, that it 1s true for two reasons. First, in
the general case, regions analogous to Pm exist; as in the BBDA, large
distortions of reservation values by either the buyers or sellers can be
ruled out. The key insight in our analysis of the BBDA thus applies in the
more general case. Second, numerical computation of equilibria in the
general case supports the conjecture that all differentiable equilibria

converge to truthful revelation as 0(l/m).
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Appendix

Proof of Theorem 3.1. To prove the necessary part of the theorem, it

is sufficient here to derive formula (3.02) for dx/db. The result in the
theorem concerning (3.06-07) then follows from the discussion in the text.
We derive the marginal expected utility at bid b of a type vy buyer who is
bidding against m sellers, each using strategy ;, and m-1 buyers, each using
an increasing function B as thelr strategy. Let x = s(m) and y = s(m+1)
where s(k) denotes the kth largest bid/offer in the array of 2m-1
bids/offers received from the other traders, and let e(x,y) denote the joint
density of x and y. Note that e(x,y) = 0 whenever x > y. Table A.l
catalogues the three distinct utility consequences of the bid b. For

example, if b should be greater than y, then the selected buyer receives an

item at price y and has utility v,y

Table A.1

Possible Outcomes of a Bid b

Case No. Case Definition Ex post Utility
I b<x<y 0
II x<b<y v, - b
III x<y<b 'v2 -y

Note: Ties are a probability zero event because all traders use increasing

strategies.



35

The expected utility of bidding b is

B) = |t Y (v -

(A.01) ﬂ(vz,b,B) = ijg (vz-b)e(x,y)dxdy + jgjo (v2 y)e(x,y)drdy

where the first integral is the expected gain from the case II outcomes and
the second integral is the expected gain from the case III outcomes.

Differentiating with respect to b, we obtain
(8.02) T = -|D (v,-ble(x,bydx + [+ (v,-ble(b,y)d
. % = |o (vp-Ple(x, b (Vo-ble(b,y)dy

- J;JB e(x,y)dxdy + Jg (v2-b)e(x,b)dx.

The first and fourth terms cancel, (v2-b) factors out of the second term,
and the remaining integrals have straightforward probability
interpretations:
(A.03) dr/db = (vz-b)g(b) - Pr(x<b<y)
where g(b) 1is the density of the order statistic x evaluated at b. This
density can be shown to equal the term in brackets in (3.02) using the
standard technique in David (1981, p. 9). Similarly, Pr(x<b<y) =
Mm(B-l(b),b). This gives us (3.02) and completes our discussion of the
theorem’s necessary part.

Sufficiency of the first order approach is proven as follows. Given a
function B that meets the theorem’s requirements, we must show that
w(vz,b;B) is maximized at b = B(VZ)' Arguments in the proof of Theorem 2.2

show that we can restrict attention to b ¢ (0,v Two cases must be

2]'
considered: b e (0,B(1)] and b ¢ (B(1l), v2]. Consideration of the first
case 1s facilitated by defining

(A.04) Jm(vz,b;B) = mfl(b)Km(VZ’b> + (m-l)fz(b)Lm(vz,b)/B’(v2).

Formula (3.02) then becomes

(A.05) dﬂ(vz,b;B)/db = Jm(B-l(b),b;B)(vz-b) - Mm(Bcl(b),b)
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and the differential equation (3.06) is equivalent to
(A.06) Jm(vz,B(vz);B)(vz-B(vz)) - Mm(VZ’B(VZ)) =0,
Formula (A.05) can be rewritten as
(A.07) dn(vz,b;B)/db = Jm(B_l(b),b,B)(vZ-B-l(b))

| + Jm(B'l(b),b;B)(B'l(b)-b) - Mm(B'l(b),b).
If we evaluate the differential equation (A.06) at v, = B-l(b), we obtain
the last line in (A.07). We therefore have dn/db equal to the top line.
Note that (i) Jm(B-l(b),b;B) is positive for all 0 < b < B(1), (ii)
dn(vz,b;B)/db is zero at b = B(VZ)’ and (iii) the function B-1 is increasing
since B is increasing. The marginal expected utility dw(vz,b;B)/db
therefore changes from positive to negative at b = B(VZ)’ which establishes
that w(vz,b;B)Ais maximized on (0,B(l)] at b = B(VZ)'

Consider now the remaining case b ¢ (B(1l),v While the marginal

2]'
expected utility dn(vz,b;B)/db is discontinuous at b = B(l), the expected
utility w(vz,b;B) is continuous in b on [0,1] because B is a C1 function.

It is therefore sufficient to prove that dn(vz,b;B)/db is negative over

(B(l),vz]. For a bid b in this interval (A.03) is

dn(vz,b;B)
(4.08) 2= (v,-bImE (K _(1,b) - M (1,b)
= (vz-b)mfl(b)[l-Fl(b)]m-l - mFl(b)[l-Fl(b)]m-l
F. (b)
m. m-1 1
RO [Vz TP E® ]'

Consider the last line of (A.08). The monotonicity property (3.08) implies
that the expression in brackets is decreasing in b and it is also

increasing in v Consequently if some line of (A.08) is negative at v, =1

2° 2

and b = B(l), then each line is negative for any Vo over the entire interval

(B(1),v,].
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We show that the first line is negative at v, =1 and b = B(1l) by

2

considering the solution B at that point. By hypothesis 62 is positive at
all points (VZ’B(VZ))' The numerator of the right-hand side of (3.06)

determines the sign of 62; at (1,B(l)) this numerator is

-(1-B(1)Imf, [B(1)]K_[1,B(1)] + M _[1,B(1)] > O. The negative of this

expression is the first line of (A.08) evaluated at v, = 1 and b = B(l).

2
Q.E.D.

Proof of Theorem 4.1. Theorem 3.1 implies that it is sufficient to

find an increasing function B on [0,1] such that (i) 0 < B(v2) < v, for v, €
(0,1] and (ii) the graph of B is a solution curve to the vector field v that
(3.06-07) defines. Refer to Figure 4.1. Property X guarantees the existence
of a function A that defines the upper boundary of Fm. We first prove the
existence of a solution curve that enters the triangle through the point X,
proceeds through the interior of the triangle, and exits through the edge
YZ.

W is the point (1, A(l)). Solution curves exit the triangle only
through the interval WZ. Solution curves may enter the triangle at X, and
do enter through the points on the open interval XZ and through points along
the open interval YW. Let E, denote the points in WZ that lie on a solution

1

curve that enters through XZ, and let E, denote the points in WZ that lie on

2

a solution curve that enters through YW. Because v is nonsingular and the

intervals XZ and YW are open, both El and E2 are nonempty and open; note

also that E1 and E2 are disjoint. Since the interval WZ is connected, the
set of points in WZ that lie on a solution curve that enters through X must

be nonempty, i.e., there must be a solution curve to the vector field v that

enters through X, proceeds through the interior of the triangle, and exits
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through WZ. Note in particular that any such curve must exit at a point

where v, is positive because the nonempty set E, lies below this exit point.

2

We now show that a solution curve that enters through X necessarily

2

lies within the region where v, is positive. Note this key point: any

2

solution curve that intersects the graph of A must have entered the triangle
along the open interval YW, for as one traces backwards from the graph of A

along the solution curve, b decreases while v, increases. A solution curve

that enters through X cannot intersect the graph of X, and it exits at a
point above the graph of A. It therefore lies above the closure of Fm.
Q.E.D.

In proving Theorems 5.1 and 5.2 we use the following formula for
Nm/Fl(b):

m-1, ,m,_ i
N_(v,,b) MOz

F ()

(A.09) —

i

-1

_ Ti=0
B -1
i=0 (

H® @1zt

The right-hand side has been derived from (5.02) by (i) factoring out Fl

from Mm(VZ’b) and canceling, (ii) dividing the numerator and denominator by
[Fl(b)(l-Fz(vz)]m-l, and (iii) substituting

.10 a®H? = ®H® @5

into the denominator.

Proof of Theorem 5.1. It is sufficient to prove that Nm/Fl is strictly

decreasing in m. Substitute j for 1 as the index of the terms in the
formula for Nm+l/Fl that is given by (A.09). Next, compute the numerator of

(Nm ) Nm+l)/Fl:

-1,m-1, m 1 m, ,m+l ]
(A.11) [z‘;l:O( Dz ][zgf;(,(j)( 5 )(m+1'J)Z]

-1l m-1, ,m L1 m, m+l, j
- [ZLO( D @)z Hzg?:(,(jﬂ iz ]



39

The proof will be completed by showing that all of the coefficients of this
polynomial are nonnegative, and some are strictly positive.
For 0 < k < 2m-1, the coefficient of zk is

m-1, ,m, ,m , m+l, . .
NG I I I GHMPTCI B b
O<i<m-1
0<j=<m

(A.12) =

We now pair terms in this expression with the following formula: the i=u,
j=v term is paired with the i=v-1, j=u+l term. Some terms may be left out
by this pairing; there is no term to pair with the i=k, j=0 term (if such a
term exists for the given value of k), and a term of the form i=u, j=u+l is
paired with itself. It is easy to see from (A.12), however, that a term
with j=0 is positive, and a term with i+l=j is zero. Except for these
special cases, the formula pairs each term in (A.12) with a different term.
Note that this pairing is well-defined, i.e., if i’,j' is assigned to i",j"
by the formuia, then i",j" is assigned to 1',j’.

We now rewrite the sum of i=u, j=v term and the i=v-1, j=u+l term.

Factoring out the i=u, j=v term, we have

m m+1l

m-1,,m, m_, m+l ) (
u+l’ ‘u+l

m-1 m
(A.13) OO + CIDI( ) (v-u-1)

m-1, m, ,m, m+l v |2
- "OHOO ><u+1-v>{1- L—H} }
Note that the signs of the last two terms of the product on the second line
of (A.13) are the same. The expression (A.1l3) 1s therefore positive except

when u+l=v, which is a case that was discussed above. Q.E.D.

Proof of Theorem 5.2. The inequality (5.04 is equivalent to the

following pair of inequalities: (i) if z(vz,b) < 1, then Nm(VZ’b)/Fl(b) <
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2/m, and (ii) if z(vz,b) > 1, then Nm(VZ’b)/Fl(b) < 22(v2,b)/m. We begin by

proving the first inequality. Using (A.09), it is sufficient to show that

TRUNES ST Rl F

is negative for 0 < z < 1. Multiplying through by m, we obtain

a.15) =0 " H O eimat

Note that the coefficient of zi is positive if i > m/2, zero if i = m/2, and
negative if i < m/2. Excluding the i=m/2 term (if it is present) and the
i=0 term (which is clearly negative), we now pair the remaining terms with
the following formula: for 1 < u < m/2, the i=u term is paired with the

i=m-u term. The sum of the i=u and i=m-u terms reduces as follows:

m-1, m u m-1,, m m-u
a.16)  (HO @uemzt + G ) (m-2u)z
- (mgll)(i)(zu-m)z“ [1 - m—‘_‘sz'zu].

Since u < m/2, and z < 1, it is true that (i) (2u-m) < 0, (ii) u/(m-u) < 1,
and (iii) zm-2L1 < 1. The second line of (A.16) is therefore negative, and
it follows that (A.1l5) is also negative. This completes the proof of the
first inequality.

We now turn to the second inequality. Again using (A.09), it is

sufficient to show that

-1 m-1,.. m 1 m
(a.17) = Tz

= DO @t

.2 -1 (
m i=0
is negative when z = 1. After reindexing the right-hand summation by

replacing i with i-1 and then multiplying (A.17) by m, we obtain
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m -1 m-1, m . m-1,, m i
(A.18) m - 2mz + o1 Lm( )( )y - 2(m-1+1)(i_1)(i_1)}z
Since z > 1, m-2mz" is negative. It is thus sufficient to focus on the

remaining summation.

By factoring, this summation can be rewritten as

=1 m-1i

29 .
(A.19) zm L m- 1)(m)[m - 2i—}zl.

.. i, . . .
The coefficient of z~ is negative when i > m/2, zero when i=m/2, and
positive when 1 < m/2. Excluding the i=m/2 term (if it exists), we pair
terms as in the proof of the theorem’s first part: for 1 < u < m/2, the i=u

term is paired with the i=m-u term. The sum of these terms is

2
(A.20) (m l)(m){m____]zu + (m—l)( m )[m 3 2(3 -u) ]Zm u'

m-u m-u

The proof is completed by showing that the sum (A.20) is negative. Since z

> 1 and the i=m-u term is negative, it is sufficient to show that

2 2
m-1 2u m-1 2(m-u)
(A.21) ( u )l:m-—a} + (m_u) [m-———]

m- u

is negative. By factoring out (m;l)/(m-u), this reduces to
(A.22) (m;l)[m(m-u) - 2u? 4 mu - 2(m-u)2]/(m-u).

The expression in brackets equals -(m-2u)2, which shows that (A.20) is

negative. Q.E.D.



Figure 4.1. 1If <S,B> is an equilibrium, then the graph of B lies in the

triangle XYZ defined by the inequalities 0 < b =< Vo < 1. The arrows show

the direction of the vector field (52,5) on the edges and at a point on T



equation (3.06-07) when m

‘Figure 4.2. The curves PLr Pos and py are solutions to the differential

2 and reservation values are distributed
uniformly.

Only Po defines an equilibrium.



Figure 4.3. The boundary Yo does not define b as a function of Vs

therefore property A is not satisfied. This may permit the existence of an

equilibrium strategy whose graph enters Fm at isolated points such as E.
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Figure 4.4, The boundaries T g and T1¢ 2T shown for the uniform case.
The graph of any equilibrium strategy B in a market with 2m traders must lie
above T almost everywhere. The edge XZ corresponds to the strategy of

truthful revelation.



