IMMISEALIZE GROWTH IN DIAMOND'S OVERLAPPING GENERATIONS MODEL: A GEOMETRICAL EXPOSITION

by

Kiminori Matsuyama∗
Northwestern University

March 1986
Revised: July 1987

Abstract

This paper demonstrates, using simple diagrams, that, in Diamond's (1965) overlapping generations model, capital saving technological progress could make all generations (including those which live during the transition period) worse off when the economy is dynamic inefficient. It is also shown that technological progress always makes some generations better off when the economy is dynamic efficient.

∗ I would like to thank A. Caplin and A. Mas-Colell for their helpful comments. All remaining shortcomings are, of course, mine.
1. Introduction

This paper demonstrates, using simple diagrams, that, in Diamond's (1965) overlapping generations model, capital saving technological progress could make all generations (including those which live during the transition period) worse off when the economy is dynamic inefficient. It is also shown that technological progress always makes some generations better off when the economy is dynamic efficient.¹

No one should be surprised at the possibility of immiserizing growth in Diamond's model. As demonstrated in the noted papers by Bhagwati(1958) and Johnson(1967), an expansion of production frontier may reduce the welfare of the representative consumer in the presence of some distortions. Immiserizing growth can occur when the growth is sufficiently biased to increase the existing distortion. Allocations in Diamond's overlapping generations economy are not Pareto-optimal in the dynamic inefficiency region, because high labor income earned by the young consumers generates savings more than enough to maintain the golden rule capital stock. This suggests that capital saving technological progress, which raises the marginal productivity of labor and reduces the marginal productivity of capital, could be immiserizing. The old generation which has the capital stock when the technological progress occurs suffers from a capital loss. The young and all future generations will earn higher wages, which causes an increase in saving and therefore a decline in the interest rate. They could also suffer from technological progress, because a decline in the interest rate, which is a deterioration of their terms of trade since they are net savers in this economy, might be large enough to offset a primary gain of a rise in wages.

Some comments on closely related works are in order. Bhagwati (1958) and
Johnson (1967) developed their arguments in open economy settings. Their examples are incomplete in the sense that they took a terms-of-trade or an offer curve of the rest of the world as exogenous, instead of solving for general equilibrium. Aumann and Peleg (1974) and Dixit and Norman (1980), among others, constructed two country models and demonstrated that an increase in endowments in the home country can make home consumers worse off in a general equilibrium setting. These studies, however, also revealed that foreign consumers will be better off at the expense of home consumers; it is impossible for all consumers to be worse off in a closed economy in the absence of distortion. In Diamond's economy, allocations are not Pareto optimal when the steady state interest rate is lower than the growth rate of economy, i.e., when the economy is dynamic inefficient. Therefore, Diamond's model is a natural framework within which to demonstrate the possibility of imiserizing growth.

Few works have investigated welfare implications of technological progress in an overlapping generations economy. Fried (1980), Galor (1986) and Matsuyama (1986) are the few exceptions. Fried and Matsuyama assume no population growth and therefore, discuss the dynamic efficient case only. They are mainly concerned with intergenerational distributions of the gains from technological progress. Galor examines the steady state welfare implications of Hicks-neutral technological change. Dosi and Polanerchakis (1985) investigated effects of an increase in labor endowment on the steady state welfare in Diamond’s model. They show that, unless the economy is on the golden rule path, a labor endowment increase can reduce the steady state welfare.

To the best of my knowledge, no works have demonstrated an imiserizing
growth (i.e., an expansion of production frontier which reduces everybody's welfare) in a general equilibrium setting.

The paper is organized as follows. Section 2 expounds Diamond's model and introduces four loci, which play a crucial role in what follows. They are the iso-utility locus, the asset market equilibrium locus, the factor price frontier and the iso-savings locus. Section 3 provides a simple proof of the impossibility of impossibly growth in an efficient case, using the first three loci. Section 4 turns to an inefficient case and demonstrates that technological progress could make all generations worse off. The proof is constructive in the sense that a factor price frontier which causes an impossibly growth is drawn using the iso-savings locus.

2. Diamond's Model

The model is based on Diamond's classical contribution. Refer to Diamond (1965) for more details.

(a) Consumers: A consumer lives for two periods, but works only during the first. He supplies one unit of labor inelastically. Thus the labor force at time t, \(L_t \) equals the number of young consumers at this date. It is assumed that the population grows at rate \(n > 0 \), i.e., \(L_t = L_0 (1+n)^t \). A consumer born at period t solves the following maximization problem:

Maximize \(U(c_t, s_{t+1}) \) subject to \(c_t + s_{t+1} / (1+r_{t+1}) = w_t \), where \(c_t \) and \(s_{t+1} \) are his consumptions when young and old. His wage income is \(w_t \), and \(r_{t+1} \) is the rate of return of holding one unit of capital from t to \(t+1 \). The utility function \(U(c_t, c'_t) \) satisfies the standard neoclassical assumptions which guarantee a unique interior solution to the problem. It is
also assumed that consumptions when young and old are normal goods. Let
\(S(w_t, r_t+1) \) denote the optimal savings \(w_t \to w_{t+1} \), given \(w_t \) and \(r_{t+1} \). The normal-
ity assumption implies that \(0 < \xi_1 < 1 \). Let \(H^2(w, r) \) denote the slope of an
iso-saving locus \(S(w, r) = s \) at \((r, w)\) in the \((r, w)\) plane. Then,
\[
H^2(w, r) = -S_2(w, r) / S_1(w, r).
\]

Let \(V(w_t, r_{t+1}) \) denote the indirect utility function, i.e., \(V(w_t, r_{t+1}) = U(w_t = S(w_t, r_{t+1}), (1+r_{t+1})S(w_t, r_{t+1})) \). An increase in wages increases the
utility \((V_1 = \xi_1 > 0) \). An increase in the interest rate also increases utility
(\(V_2 = \xi_2 > 0 \)), because the consumer is a net saver in this economy. This implies
that the iso-utility locus \(V(w, r) \) is downward sloping in the \((r, w)\) plane.
Let \(H^2(w, r) \) denote the slope of an iso-utility locus at \((r, w)\). Using the
envelope theorem,
\[
H^2(w, r) = S(w, r) / (1+r) < 0.
\]

(b) Production: The economy produces one final good, using labor \(L_t \) and the
capital stock \(K_t \). The technology employed satisfies constant returns to
scale: \(F(K_t, L_t) = L_t f(K_t) \), where \(K_t \) is the capital stock per worker. It is
assumed that \(f(k) \) has standard neoclassical properties and that production
using this technology is competitive. Then, \(\xi_t = f'(K_t) \) and \(w_t = f(K_t) - K_t f'(K_t) \).
It is useful to describe the production technology in its dual form. The
cost of producing one unit of output is given by the cost function \(C(w_t, r_t) \),
which is independent of output produced due to the constant returns to scale
assumption. Then, the factor price frontier (FPF) of this economy is
\(C(w, r) = 1 \), which is downward sloping and convex towards the origin in the
\((r, w)\) plane. Let \(H^2(w, r) \) denote the slope of FPF at \((r, w)\). Then,
\[
H^2(w, r) = -\xi - f^{-1}(r) < 0.
\]
later, technological progress is introduced by a shift of \(\theta \).

(c) **Asset Market Equilibrium:** Given \(r_{t+1} \), firms invest so as to equalize the marginal productivity of capital and interest rate: \(k_{t+1} = f^{-1}(r_{t+1}) \). Only the young have an incentive to hold assets in this economy. Therefore, asset market equilibrium locus (AME) is given by \((1+n)f^{-1}(r_{t+1}) = s(w_t, r_{t+1})\). Let \(\Pi^A(w, r) \) denote the slope of this locus at \((r, w)\). Then,

\[
\Pi^A(w, r) = \frac{(1+n)f^{-1}(r_{t+1})s_2(w, r)}{[f''(f^{-1}(r))s_1(w, r)]}.
\]

(d) **Dynamics:** Capital at date zero \((k_0) \) is given by history and the dynamics of the economy are described by:

\[
\begin{align*}
(1+n)f^{-1}(r_{t+1}) &= (1+n)k_{t+1} = s(w_t, r_{t+1}), \\
C(w_t, r_t) &= 1,
\end{align*}
\]

(AME) (FPF)

and

\[r_t = f'(k_0). \]

I also assume that Diamond's stability assumption that AME (5a) and FPF (5b) have a unique intersection \(P^* = (r^*, w^*) \) and that:

\[
\Pi^A(w^*, r^*) > 0.
\]

The dynamic path of the economy, given by equations (5a-c) converges to \(P^* = (r^*, w^*) \). This path is efficient if \(r^* < n \) and inefficient if \(r^* > n \). The steady state capital stock is \(k^* = f^{-1}(r^*) \).

I first show the following lemma, which plays a crucial role in what follows.
Lemma:

\[H^F(w^*, r^*) \leq H^U(w^*, r^*) \text{ as } r^* \geq n. \]

Proof: In the steady state, (5a) holds. Therefore, by (2) and (4),

\[H^U(w^*, r^*) = q(w^*, r^*) = \frac{1}{1+r^*} = \frac{1}{1+n}/(1+r^*) \]

\[H^F(w^*, r^*) < 0 \text{ as } r^* \geq n. \]

Q.E.D.

Figures 1a and 1b show positions of three loci passing through the steady state \(r^* = (r^*, w^*) \). Curve \(UU' \) represents the iso-utility locus \(V(w, r) = V(w^*, r^*) \), curve \(AA' \) the asset market equilibrium locus and curve \(FF' \) the factor price frontier. The stability condition (6) implies that \(AA' \) is (in absolute terms) steeper than \(FF' \). Lemma implies that \(UU' \) is less steep than \(FF' \) when the economy is efficient and steeper than \(FF' \) when the economy is inefficient. Therefore, a decline in wages with a rise in capital income along the \(FFF \) reduces the steady state utility in the efficient case and increase it in the inefficient case. For example, suppose that, in addition to capital stock, there exists assets that bring a real rent, such as land, paintings or jewels, and assume that rents per capita are constant. Then, as shown in Tirole (1985), the economy is efficient. (Otherwise, the present value of assets with rents would be infinite.) Higher rents per capita crowd out more capital stock, shifting \(AA' \) to the right in Figure 1a. A new steady state is given by a point like \(Q \). The economy is farther away from the golden rule and steady state utility is lower.

On the other hand, if the economy is inefficient, steady state utility increases by crowding out the capital stock. For example, suppose that the government issues short term bonds, keeping the debt-labor ratio, \(b \), constant. The government also spends \(q_t = (n-r_t)b \) per capita each period for
Figure Ia: Efficient Case

Figure Ib: Inefficient Case
purposes which do not affect utility, such as foreign aid. A higher debt-labor ratio shifts AA' to the right in Figure 1b. A new steady state is given by a point like 0. The government debt crowds out the capital stock and the economy moves closer to the golden rule and therefore, steady state utility is higher.

In the following sections, I will return to the model with no rents and no government bonds and discuss the possibility of immiserizing growth caused by technological progress.

3. Efficient Case: Impossibility of Immiserizing Growth

Using Figure 1a, I will prove that, when the economy is efficient, technological progress always makes some generations better off. To do so, it is assumed that new technology $G(K,L)=Lg(k)$ is also constant returns to scale and satisfies the standard neoclassical assumptions. Then technological progress can be expressed as an upward shift of FF'.

Proposition 1: Suppose that the economy is initially in the steady state $P^*=(r^*,k^*)$ where $r^*>n$. Then any small technological progress always makes some generations better off.\(^7\)

Proof: Technological progress changes consumption by the old generation from $[1+f'(k^*)](1+n)k^*$ to $[1-g'(k^*)](1+n)k^*$, where $(1+n)k^*$ is the original steady state capital stock per old consumer. To make the old generation strictly worse off, $f'(k^*)$ must be greater than $g'(k^*)$. This implies that, in Figure 1a, AA' must shift leftward in the neighborhood of P^*. Since technological progress shifts FF' upward, the intersection of the two loci moves in the direction indicated by the arrow. The new steady state must lie above UU'.

7
Since the indirect utility function is independent of technology, this proves that any technological progress which make the old generation worse off must increase steady state welfare. Q.E.D.

The logic underlying this result is quite straightforward. When the economy is efficient, the young consumer does not save enough to maintain the golden rule capital stock. Any technological progress, which makes the old consumer worse off increases wages and therefore, savings. It also reduces the golden rule capital stock. The technological progress brings the economy closer to the golden rule, and thereby improves steady state welfare.

4. Inefficient Case: Immerizing Growth

A casual look at Figure 1b suggests that, in an inefficient case, technological progress which makes the old generation worse off (an upward shift of FF' and a leftward shift of AA') could also reduce the steady state welfare, as indicated by the arrow. However, Figure 1b is not appropriate as a tool to demonstrate imimmerizing growth, because a shift of AA' is not independent of a shift of FF'.

In this section, I will demonstrate the possibility of imimmerizing growth in an inefficient case. To do so, the iso-savings locus through $P^*=r^*, w^*$, the SS' curve, is introduced. From equations (1) and (2), the slope of UU' at P^*, $H^2(w^*, r^*)$, is numerically smaller than that of SS' at P^*, $H^2(w^*, r^*)$, when:

$$S_1(w^*, r^*) > S_2(w^*, r^*) = (1+r^*)S_3(w^*, r^*)/S(w^*, r^*) \frac{d\log S}{d\log (1+r)}.$$

holds. This inequality means that the marginal propensity to save is greater than the gross interest rate elasticity of savings at $P^*(r^*, w^*)$. On the
other hand, if $S_1(w^*,r^*)=e(w^*,r^*)$, the slope of UU' at P^r, $H^r(w^*,r^*)$, is numerically greater than that of SS' at P^r, $H^S(w^*,r^*)$.

Proposition 2: Suppose that the economy is initially in the steady state $P^*=(r^*,w^*)$ where $r^*<r_0$. Then, there exists a technological progress which makes all generations worse off.

Proof:

Part 1: First, I will show a proof for the case when inequality (8) holds. The proof is constructive. It is divided into three steps.

Step 1: the construction of a FFF. (See Figure II)

Choose a point $P^{**}=(r^{**},w^{**})$ which lies below UU', above FF' and SS' and to the left of $P^*=(r^*,w^*)$. (This is possible since UU' is steeper than FF' and SS' by equations (7) and (8).) Let $k^{**}=(1+m)\frac{\delta S(w^{**},r^{**})}{\delta w}$. Since P^{**} lies above SS', $S(w^*,r^*)>S(w^*,r^*)$. Therefore, $k^{**}=(1+m)\frac{\delta S(w^{**},r^{**})}{\delta w}$. Draw a line through P^{**}, l_{11}', whose slope is $-k^{**}$. Draw a line through P^{**}, l_{33}', whose slope is $-k$. Next, choose a point $P_0=(r_0,w_0)$ in the interior of the area surrounded by UU', l_{11}', l_{33}', FF' and SS'. By choosing P_0 close enough to P^{**}, it is ensured that line P_0P^{**} (not drawn in Figure II) does not intersect with UU'. Draw a line through P_0, l_{33}', whose slope is $-k$. Finally, draw a downward sloping convex curve, which is tangent to l_{11}' at P^{**} and to l_{33}' at P_0 and lies above FF' everywhere. Denote this convex curve ff'. By construction, ff' lies below UU' in the interval (r^{**},r_0).

Step 2: the construction of an AMT locus. (See Figure III).

Now, let us draw the AMT locus, when the FFF is given by ff'. Call this locus ae'. First, if the interest rate is equal to r^{**}, firms' demand for
capital per worker is equal to \(k^* \) by construction of \(ff' \) and equation (3). Since \((1+n)k^*\=S(w^*,r^*)\), the asset market clears at \(P^*=(r^*,w^*) \). Second, denote the intersection of \(SS' \) and \(rr_0 \) by \(Q_0=(w_0',r_0) \). Then, \(S(w_0',r_0)=S(w^*,r^*) \). If the interest rate is \(r_0 \), the demand for capital per worker is \(k^* \) by construction of \(ff' \). Therefore, \((1+n)k^*\=S(w^*,r_0)=S(w_0',r_0)\) implies that the asset market clears at \(Q_0 \). Hence \(aa' \) can be drawn by connecting \(P^* \) and \(Q_0 \). Note that \(aa' \) lies below \(ff' \) in the interval \((r^*,r_0) \) and therefore, below \(uu' \) in the interval \((r_0,r^*) \). (If \(aa' \) intersects with \(ff' \) in \((r^*,r_0) \), then choose the intersection closest to \(Q_0 \) and relabel it as \(P^{**} \).)

Step 3: proof that technological progress which shifts the FFF from \(FF' \) to \(ff' \) is an imiserizing growth. (See Figure IV)

Suppose that the economy is initially at \(P^* \). The capital stock per worker is \(k^* \). Suppose that technological progress shifts the FFF from \(FF' \) to \(ff' \). Then factor prices jump to the point on \(ff' \) where the slope is \(-k^*, \text{ i.e., } P_0 \) by construction of \(ff' \) (see equation (5c)). The interest rate drops from \(r^* \) to \(r_0 \). Therefore, the old consumer is made worse off. The dynamics of the economy is depicted by sequence of \(P_0, Q_1, P_1, Q_2, P_2, Q_3,\ldots, P^* \) (see equations (5a) and (5b)). The utility of the i-th generation after the technological progress is given by \(Q_i \). By construction of \(ff' \) and \(aa' \), \(Q_i \) lies below \(uu' \). This proves that technological progress can make all generations worse off, when inequality (8) holds.

Part 2: Next, I will give a sketch of a proof for the case when inequality (8) does not hold without figures, since the basic technique is the same as in Part 1.

Choose a point \(P^{**}=(r^{**},w^{**}) \) which lies below \(uu' \), above \(FF' \) and left to \(SS' \). Let \(k^{**}=(1+n)^{-1}S(w^{**},r^{**}) \). Since \(P^{**} \) lies left to \(SS' \), \(S(w^{**},r^{**})<
Therefore, \(k^* = (1+n)^{-1} S(w^*, r^*) < (1+n)^{-1} S(w^*, r^*) = k^* \). Choose a point \(P_0 = (r_0, w_0) \) such that \(P_0 \) lies northwest to \(P^{**} \), the slope of line segment \(P_0 P^{**} \) is numerically greater than \(-k^*\), smaller than \(-k^{**}\), and that the triangle formed by points \(P_0, P^{**} \) and \((r^{**}, w_0) \) lies below \(UU' \) and \(SS' \). Finally, draw a downward sloping convex curve, which passes through \(P_0 \) with slope equal to \(-k^*\) and passes through \(P^{**} \) with the slope equal to \(-k^{**}\) and lies above \(FF' \) everywhere. Then, one can show that technological progress which shifts the \(FF \) from \(FF' \) to this convex curve is an imiserizing growth, by following the same steps as in Step 2 and Step 3 of Part 1.

Combining Part 1 and Part 2, this completes the proof of proposition 2.
References:

1. Technological progress may reduce the steady state welfare even in a dynamic efficient case; see Fried (1980).

2. The non-optimality of overlapping generations model is not due to the "missing trading links" as sometimes suggested. It is due to the "double infinity" of the model; see Shell (1971).

3. Domizan and Polemarchakis call their result "imposing growth" or "disadvantageous growth". This is very misleading. By restricting their analysis to the steady state, they ignore the effect on the generations which live during the transition period. What happens in their model is a transfer of welfare gains from future generations to current generations. In fact, one can easily verify that an increase in labor endowment always increases the welfare of the current old generation, which has the title to the capital stock when the change occurs.

4. S_1 and S_2 denote the derivatives of S with respect to its first and second arguments. All derivatives which appear in this paper assumed to exist and be finite.

5. I do not discuss the case $r = w$. The analysis of this non-generic case needs to be algebraic, utilizing the Balasko and Shell (1980) criterion.

6. In Figures 1a and 1b, AA' is downward sloping, but this need not be the case. AA' could be less steep than BB' in Figure 1b.

7. A large technological progress could make all generations worse off, when it is large enough to drive the economy into the inefficiency region, or when it is large enough to produce a multiple of the steady states.

8. In Figures II, III and IV, S_0' is drawn so that $H^S(r^*, w^*) < H^S(r^*, w^*), w^*), 0$, but this need not be the case. However, the proof can be applied to other cases and need not be altered, as long as $H^S(r^*, w^*) < H^S(r^*, w^*), i.e., when inequality (8) holds.