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In Section 1 we explain some of the definitions and terminology that we use.

In Section 2 we prove several theorems concerning the approximation of upper semi-
continuous correspondences having for range a locally convex space. Theorems 1 and 2
{(and Corollary 1) generalize certain approximation theorems by G. Haddad [16, pp. 1352~
1354], G. Haddad and J. M. Lasry [17, pp. 299-300] and J. P. Aubin and A. Cellina [2, pp.
86-89] (see also F. S. De Blasi (10} and J. M. Lasry and R. Robert [21]). Although some of

the details of the proofs of Theorems 1 and 2 are new, the basic ideas are taken from the



above mentioned papers. Theorem 3 shows that the correspondences in the approximating
families can be chosen so that they are regular (see Section 1). This theorem (see the
remark following its proof) contains a classical result of M. Hukuhara |18, pp. 56-57).
Theorem 3 is proved using Theorem 2 and Propositions 1 and 4. Variants of Propositions
2, 3, and 4 were given in [19].

In Section 3 we give, among others, Theorem 5, which concerns the existence of
equilibriums of generalized games (= abstract economies). The main purpose of this
result is to replace in the W. Shafer-H. Sonnenschein equilibrium theorem for generalized
games the continuity hypothesis by an upper semi-continuity one. The proof of Theorem
5 is based on the results on the approximation of upper semi-continuous correspondences
obtained in Section 2. Theorem 5 is used in Section 4.

In Section 4 we establish Theorems 6 and 7. These theorems show that certain state-
ments concerning the equilibrium of generalized games are equivalent to certain statements
concerning minimax inequalities of Ky Fan type.

Theorems 1, 2, 3, 5, 6 and 7 are the main results of this paper.

1. — Notations and Terminology

Let X and Y be two sets and C a correspondence between X and Y. For every z € X

and y € Y we write

Clz) ={yl(z.y) € C} and C (y) ={z|(z,y) € C}.

Let X and Y be two topological spaces (in this paper we assume, although this is not
always necessary, that all the topological spaces we consider are separated). The filter of

neighborhoods of a point ¢ in a topological space is denoted by V(t).
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A correspondence C, between X and Y, has open lower sections if C (y) is open for

every y € Y. A correspondence having open graph has open lower sections.

A correspondence C, between X and Y, is compact® if for every t € X there is
Vi € V(t) such that C (V) is relatively compact. If Y is compact any correspondence
between X and Y is compact. A correspondence which is compact and has closed graph is
upper semi-continuous. A correspondence which is compact, upper semi-continuous and
has closed upper sections has closed graph.

For every correspondence C, between X and Y, we denote by C the correspondence
which has for graph the adherence of the graph of C. The correspondence C is compact if
and only if C is compact.

A correspondence C, between X and Y, is quasi-regqular if:

(1) it has open lower sections;
(ii) C(z) is non-void and convex for every z € X;

(iii) C(z) = C(z) for every z € X.

If the correspondence C is compact (iii) is equivalent with: The correspondence C!
between X and Y, defined by C!(z) = m for z € X, is upper semi-continuous.

The correspondence C is regular if it is quasi-regular and has open graph.

It is easy to see that C is continuous if the correspondence C is quasi-regular and
compact. Hence, C is continuous if C is quasi-regular and Y is compact.

For every subset A of a vector space we denote by ~v(A) the smallest convex set
containing A.

In this paper, unless we say explicitly the contrary, we denote by E a locally convez
space.

For other notations and terminology used here see the monographs by N. Bourbaki
and the monograph by C. Castaing and M. Valadier, listed among the references at the

end of this paper.



2. — Various approximation theorems.

Let X be a non-void set, Y a non-void subset of E and f a correspondence between
X and Y. A family (f,);es of correspondences between X and Y, indexed by a non-void

filtering? set J (we denote by < the order relation in J) is an upper approzimating family
for fif:
Ajp) f C fj for every j € J,;
Ajy) for every j € J thereis j, € J such that f, C f; if he€ J and 57 < k;

Aqyr) for every t € X and V € Vg/(0) there is j¢ v € J such that

@) C ft)y+V

if h € J and J't,v S h.
Remarks. - 1) We deduce from Ay) - Aj;;) that:

Apy) foreveryt € X and k€ J

fec L= L0ciiciw.

jeJ k<j
It follows that if f(t) is closed for t € X then
10 =1 £
JeJ
for every t € X.
2) Let f be a correspondence between X" and Y and define the correspondence f’

by® f'(t) = f(t) for t € X. An upper approximating family for f’ is also an upper

approximating family for f.

3) Let X be a non-void set and Y a non-void subset of E. Let f be a correspondence

between X and Y and let (f;);es be an upper approximating family for f. Let f’ and
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(f});es be defined by f'(t) = f(t) and f}(t) = f;(t) for every t € X and j € J. Then

(f})jes is an upper approximating family for both f and f'.

If X is a topological space we denote by S(X,Y; E) the set of all correspondences A
between X and Y such that for every t € X
(1) Alt) =) w;(t)4;
JEI
where () er is a partition of unity of X and (A;);¢r is a family of non-void closed convez

parts of Y. We denote by S(¢)(X,Y; E) the set of all A € §(X,Y; E) which can be defined

by (1) with a family (A:i)ier of non-void compact convez parts of Y. Observe that
SE(X,Y;E) = $(X,Y;E)

if Y is compact.

A correspondence f belonging to §(X,Y; F) is lower semi-continuous. To prove this
assertion it is enough to observe that for every t € X and y € f(t) there is a continuous
selection of f which takes the value y at t. A correspondence belonging to S(X,Y;E) is
not necessarily upper semi-continuous. As we shall see later, a correspondence belonging

to $(¢)(X,Y; E) is both lower and upper semi-continuous (whence continuous).

THEOREM 1. - Let X be a non-void paracompact space and Y a non-void closed convex

subset of E. Let f be a correspondence between X and Y such that:

1.1) f is upper semi-continuous on X;

1.2) f(t) is non-void and convex for every t € X.

Then there is an upper approximating family for f, consisting of correspondences

belonging to S(X,Y; E).

Remarks. - 1) The proof of Lemma 1 below shows that f(t) C fu(t) for every t € X and
U € D. It follows that the family (f;);cs constructed in the proof of Theorem 1 is also an

upper approximating family for /', where f'(t) = f(t) for t € X.
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2) Let X be a topological space, Y a uniform space and W the uniform structure of

Y. A correspondence f, between X and Y, is Hausdorff upper semi-continuous if for every
t € X and U € W there is V € V(t) such that

f(z) cU(f(1))
for every z € X. The statement and proof of Theorem 1 remain valid if the hypothesis

1.1) is replaced by: 1.1') f is Hausdorff upper semi-continuous.

The proof of Theorem 1 1s based on three lemmas which we prove first.

Since X is paracompact, there is a uniform structure on X compatible with the topol-

ogy of X. Let D be a basis of this uniform structure, consisting of symmetric sets.

For every U € D we denote:

a) by Uy an element of D such that
U1 o U1 C U,
B) by (Uj)jerw) an open locally finite covering of X, which is a refinement of the

covering (U;(z))zex; (we assume that I(U) does not contain 1);

7) by (Pu,;)ser(v) a partition of unity of X subordinated to the covering (U;);cr(v)-
For every U € D and 7 € I(U) we denote by ty ; an element of X such that
UJ' c U, (ty,j).
For every U € D and z € X we denote by I(U, z) the set

{7 € I(U)\U; > z}

(observe that I(U,z) is finite and that ¥y ;(z) =01if 5 ¢ I(U, 7))
For every U € D we denote by fy the correspondence between X and Y defined by

(2) fulz)= ) ®u,Cu,
JEIU)
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for £ € X, where

(3) Cu,; = (f(U(tv,;)))

for y € I(U).
LEMMA 1. - For every U € D we have f C fy.

PROOF. — Let z € X. If y € I(U,z) then U; 3 z, whence
f(z) € f(U;) € f(U(tv,;)) € Cu,j
If y € f(z) then

y = Z SCU’J'(:I:)yE Z SOU,J‘(:II)CU,J',

JEI(U,z) JjEI(U,z)

whence y € fy(z). Since £ € X and y € f(z) were arbitrary, the lemma is proved.
LEMMA 2. - IfVeD,U€eDandV oV C Uy, then fy C fy.

PROOF. — We observe first that if 1 € I(V,z) and j € I(U, z) then
(*) Cv,i C Cy,;
Indeed, let s € V (ty;); then (tvi,s) € V. Sinces € I(V,z) and j € I(U, )
z€eV;CVi(tvy) and zeU; C Ui(ty,);
hence (z,tv;) € V; and (ty,;,z) € U;. We deduce
(tvj,s) €VoViolU, CcUolU;, CU,
whence s € U(ty ;). Hence
(**) V(tvi) C Ulto,s)-

From (**) and (3) we deduce immediately (*).
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If z € X and y € fv(z), then

y € Z ©vi(z)Cv,: C Cu,;j
i€l(V,z)

for every 7 € I(U,z). We deduce

ye Y %u,(e)Cuy,
J.EI(U!I)

that is, y € fy(z). Since z € X and y € fy(z) were arbitrary, the lemma is proved.

LEMMA 3. - Lett € X, W € D and let M C E be convex and closed. If f(z) C M for
z € W(t) then fy(t) CM iIfU €D andUocU CW.

PROOF. - Let j € I(U,t). Thent € U; C Uy(tyy). If z € U(ty,;) we deduce (t,2) €

UoU,; CW sothat z € W(t). Hence

fUty;)) c fW(t))c M

and hence Cy ; C M for j € I(U,t). We conclude that

fulty= Y. eu;()Cujc M

JEI(U,1)

Therefore, the lemma is proved.

We shall now prove Theorem 1: Let J = D (we write U <V if and only if U D V).
We shall show that (fiy)ues is an upper approximating family for f.
By Lemma 1, Aj) is satisfied.

Now let U € J and let U, € J such that U. oU. C U,;. If H € J and U. < H then
HoHCU,oU, CU;

and hence, by Lemma 2, fy C fy. Hence Ajy) is satisfied.
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Let t € X and V € Vg(0). Let V, be a convex neighborhood of 0 € E

such that V; + V; C V. Since f is upper semi-continuous at ¢, there is W € D such that

flrycf)+Vic fit)+Vic f(t)+V
if z € W(t). Let Uy v € J such that
UyvolUyv CW
If He J and U;v < H then
HocHCUyvolUy CcW

and hence, by Lemma 3,

fu(t)Cc f)+ViCcf(t)+V

Hence Ajj;) is also satisfied.

We conclude that (fu)ves is an upper approximating family for f. Since fyr €

S(X,Y; E) for every U € J the theorem is proved.
Remarks. - 1) It follows from (3) that Cy; C ~(f(X)) for every U and hence that
Ju(X) /(X))

for every U. Hence, if n(f(X)) is relatively compact the correspondences f;(5 € J) con-
structed in the proof of Theorem 1 belong to S()(X Y, E) and NS5 (X)) I relatively
compact for every j € J.

2) The index set of the upper approximating family constructed in Theorem 1 is 0.
Hence the snder set of the family depends on X but not on f. A similar remark is velid
for j* (sce A;;)). Forevery 7 = U in D we may choose 77 = U. where U, is an eleiment of

D such that U. c U. C U,. These remarks will be used in the proof of Theorem 2.
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3) Every A € S$(X,Y;E) obviously has a continuous selection. It follows from
Brouwer’s fixed point theorem (for finite dimensional spaces) that if X = Y and Y is
compact and convex every A € S(X,Y; E) has a fixed point. From this remark and from
Theorem 1 one can easily deduce the Fan-Glicksberg generalization of Kakutani’s fixed

point theorem (see also G. Haddad [16]).

A closed convex part Y of F has the property (K) if for every compact part B of ¥
the set v(B) is relatively compact. Obviously Y has the property (K) if it is compact.

If B is compact, then v(B) is compact if and only if it is complete for 7(E£,E") (M. G.

Krein’s theorem).

To simplify, we assume in the definition of totally bounded correspondences and in
Corollary 1 below that X is a metric space (we denote by d the distance on X.)

A correspondence C, between X and Y, is totally bounded if C(B) is relatively compact
for every ball B (see G. Haddad and J. M. Lasry [17, p. 300]). It is obvious that a totally
bounded correspondence is compact according to the definition adopted in this paper. The
converse, however, is not true (for example, there are X, E, Y and f € S(C)(X, Y; E) such

that f is not totally bounded). Nevertheless:
COROLLARY 1. - Assume that the hypotheses of Theorem 1 are satisfied, that E has the
property (K) and that:

1.1") f is totally bounded.

Then there is an upper approximating family for f, consisting of correspondences

which belong to $(°)(X,Y; E) and are totally bounded.

PROOF. - This result follows from Theorem 1 once we show that, under the hypotheses
of the corollary, we can choose D so that, for every U € D, the correspondence fi; (defined

by (2)) belongs to $)(X,Y; E) and is totally bounded.
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For this purpose, let
D={wW|e>0}

where

W = {z,y) | d(z,y) < €}

for every s > O (we may, instead, take D = {W({/®) | n € N}). If U = W () we choose
U, = wie/2),

Let U = W(¢) be an element of D. Since the correspondence [ is totally bounded and
U(ty,;) is a ball, f(U(tu,;)) is relatively compact; since E has the property (K) we deduce

that

Cu,; = 1(f(U(tvy)))

is compact for every 7 € J. Hence the correspondence fy belongs to S (C)(X,Y; E).
Now let W, (zo) be the ball of center z5 and radius r and let z be an element of this
ball. If j € I(U, z) then z € U; C Uy (tu,;); it follows that if z € U(ty, ;) then d(zo,2) < A

if A =r+¢/2+¢. Hence U(ty,;) C Wx(zo) and hence

Cu,; = 1([(U(tv,))) € (7 (Wa(zo)))

for every j € I(U,z). Since v(f{Wx(zo))) is convex we obtain

fulz)= Y Pu()Cu; C 4(F(Wi(z0))).

JEI(U,z)

Since z € W,(zo) was arbitrary we deduce fy(W,(zo)) C ¥(f(Wi(zo))). Since zo and r
were arbitrary, we conclude that fy is totally bounded.

Let X be a non-void topological space Y a non-void closed subset of £ and A €
S(X,Y;E). It is easy to see that (we recall that the supports of the functions in a

partition of unity form a locally finite family):
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(a) A(t) is compact for everyt € X and A is a compact correspondence.

For completeness we prove that the correspondence A is compact: Indeed, let t € X

and let Vi € V(t) such that
I; = {j|V: N Support ¥, # 0}

is finite. Let

Y= () [0,1]4, | nY
JEL

Since Y; is obviously compact and since A(z) C Y; for every z € V; our assertion is proved.
(b) A has closed graph and ts continuous.

Let ((z:,yt))ter be an arbitrary family of elements belonging to the graph of A,
indexed by a filtering set T and converging to (z,y). By using an ultrafilter U on T, finer
than the filter of sections of T', we show that y is of the form }_..; ¢;(z)a; with a; € 4;
for every j € J. We deduce that (z,y) belongs to the graph of A; since ((z:,y:))ier was
arbitrary we conclude that the graph of A is closed. Since by (a) the correspondence A is
compact it follows that it is upper semi-continuous. Since A is lower semi-continuous we

conclude that (b) is proved.
(c) A has compact graph if X 1s compact.

Assume that Y is convez. Let (A');cr be a family of correspondences belonging to

S{)(X,Y; E) and (a¢)ter a partition of unity of X. Then:

(d) The correspondence A, between X and Y, defined by

Az) =) ou(z)Al(2)

teT
for z € X, belongs to S (X,Y; E).
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Since the set {t | a:(z) # 0} is finite, for every z € X, A is well defined. Since Y is

convex

Alz) =Y oq(2)Alz) C ) eu(z)Y C Y

teT teT

for every z € X. Hence A is a correspondence between X and Y.
By hypothesis for every t € T there is a partition of unity of X (@})jel(t} and a family
(Aj.)jej(t) of non-void compact convex parts of Y such that
t t
At(I) = Z pj'(I)Aj
JEI(t)

for £ € X. Whence

Alz) =D en(@)Al(e) = Y eu(a) | D eh(a)4

teT teT JEI(t)
=3 D (wp))(@) A= Y (cuwh)(x) Al
teT jeI(t) (t,j)eT*

for z € X if T* = U,er({t} x I(t)). Since (4}) (1 jyer~ is 2 partition of unity of X it
follows that A belongs to $(°)(X,Y; E).

We now give the following variant of Theorem 1:

THEOREM 2. - Let X be a non-void paracompact space and Y a non-void closed equili-
brated convex part of E which has the property (K). Let f be a correspondence between
X and Y such that:

2.1) f is compact and upper semi-continuous;

2.2) f(t) is non-void compact and convex for every t € X.

Then there is an upper approximating family for f consisting of correspondences

belonging to $(9(X,Y; E).

PROOF. - Let (Wx)ren be alocally finite open covering of X such that f(W}) is relatively

compact for every h € H. Let (Ux)ren be a locally finite open covering of X such that
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U, C Wy, for every h € H. For every h € H let up be a continuous mapping of X into [0, 1)
such that uy(z) = 1 for z € Uy, and up(z) = 0if 2 ¢ W), (the space X is paracompact,
whence normal). Let (pr)nen be a partition of unity of X subordinated to the covering
(Un)hen-

For every h € H u,f is a correspondence, between X and Y, such that (up f)(X) is

relatively compact; moreover, uy f is upper semi-continuous on X (f is compact-valued)

and (ux f)(z) is non-void and convex for every z € X. Hence, for every h € H, uy, f satisfies
the hypotheses of Theorem 1 and hence there is an upper approximating family (fJ(h))_,-eJ
for upf, consisting of correspondences belonging to $(°)(X,Y;E) (see Remarks 1) and 2)
following the proof of Theorem 1 and observe that since E has the property (K) the set

Y((un f)(X))is compact).
For every 7 € J let f; be the correspondence, between X and Y, defined by

Hi(@) =Y en(@)fM(2)

heH
for z € X; by (d), above, f; belongs to SENX,Y; E).
Observe also that

f(2) =) en(=)f(z) =Y enl(z)(unf)(z),

heH he H

for z € X (by 2.2)the set f(z) is convex).

Since uf C fj(h) for every h € H and j € J, we deduce that f C f, for every y € J.
Hence (f;),eg satisfies Aj).

If e J, 1€ Jandj* <1, then f,-(h) C fJ-(h) for every h € H (see Remark 2)following

the proof of Theorem 1); we deduce f; C f;. Hence (f;);cs satisfies Aj).

Now let t € X, let H(t) = {h | Uy 3>t} (H(t) is finite) and let V be a convex
neighborhood of 0 € E.

For every h € H(t) there is j(t,h) € J such that
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fiom(®) € (n D) +V = 1 (1) + V.
Let j(t) be an element of J superior to j(t,h)* for every h € H(t). Then

Wi +v

for every h € H(t). Hence

Since f(t) + V is convex we obtain

fim(t) C f(t) +V.

We deduce
i) c fit)+Vv

for every ¢ € J such that j;v <11if jiv = j(t)".
Since t € X and the convex neighborhood V were arbitrary, we deduce that (f;)se0

satisfies Ajrr).

Hence the theorem is proved.

Remark. — Let P be a subset of the set of all partitions of unity of X. Denote by
Sp(X,Y; E) the set of all correspondences in $(X,Y; E) defined using partitions of unity
belonging to P; denote by SPC)(X,Y;E) the set of all correspondences in $(¢)(X,Y; E)
defined using partitions of unity to P. Assume that for every open locally finite covering
C of X there exists a partition of unity belonging to P subordinated to C. Then Theorem
1 and Corollary 1 remain valid if in their statements S(X,Y;E) and S()(X,Y;E) are
replaced by Sp(X,Y;E) and S,E)C)(X,Y;E) (the same is true for Remark 1) following the
proof of Theorem 1). Assume in addition that if (e¢)ier and (23);er()(t € T) belong

to P then (awpl)(tyer-, where T™ = ;o ({t} x I(?)), belongs to P. Then Theorem 2
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remains valid if in its statement we replace S(C)(X,Y;E) be S}(,C)(X,Y;E). When X is

metric the set P of all locally Lipschitz partitions of unity satisfies the above conditions.

Let X be a non-void set and Y a non-void subset of E.  For every correspondence
A between X and Y and set U C E we denote by A(U) the correspondence between X
and Y defined by
AU (z) = (A(z)+ U)NY
for every z € X; obviously A ¢ AUV ifU>0. f A€ §(X,Y;E) is given by (1) and if U

is convex, then

A = (Y e+ U) | ny
jeJ

for every t € X.

Denote by B a fundamental system of 0 € E. Then:

PROPOSITION 1. - Let f be a correspondence between X and Y and let (f;);c; be an
upper approximating family for f. Then (f](u))(j,v)e.lxg 1s an upper approximating family
for f.
For every (5,U) € J x B
1 =)
The set J x B is endowed with the usual order relation <: (5',U’) < (5”,U") means

7' <j3”and U' D U".

PROOF. - The conditions A;) and Aj;) are obviously satisfied. To verify A;;;) choose
H € B such that H + H C V and observe that if (h,U) € J x B and (j;, gy, H) < (k,U)
then

) c fat)+UC falt)+ H

Cfit)y +H+HC f(t)+V.

In the next two propositions and the corollary we assume that:
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X is a non-void topological space;
Y is a non-void closed convex subset of E ;

U is a convex open neighborhood of 0 € E.

We do observe that for every compact set L C Y

(L+U)nY =(L+0)nY.

PROPOSITION 2. - Let A be a correspondence, between X and Y, compact and with
closed graph. Then:

2.1) AW) s closed;

2.2) AU)(z) = AW)(z) for every z € X;

2.3) AU) = 40,
PROOF. - Let ((zi,yi))ict be a family of elements of AW) jndexed by a filtering set T
which converges to (z,y). Then (z;);cr converges to z and (y;);cr converges to y. Since
A is compact there is V; € V(z) such that A(V;) is relatively compact. We may and will

assume that z; € Vy for1 € T.

For every 1 € T
Vi = ap U

with a; € A(z,) and u; € U.

Let U be an ultrafilter on T finer than the filter of sections of T. Since A(V) ic

relatively compact lima, = a exists and, since the graph of A is closed, (7,a) € A.
) (+.L) _
Since (y.)ics converges we deduce that (]jlrz?)u, exists and belongs, obvioushy, to U.
Hence
= Jim(a, +uy)=a+u
Y (f,u)( F )
end hence



We deduce that (z,y) € A(U) and hence that AU s closed.

To prove 2.2) of Proposition 2 we observe that

A () = A(m) + U)NY = (Alz) + U)nY = 4A0)(z)

(notice that L = A(z) is a compact part of Y) for every z € X.
To prove 2.3) of Proposition 2 let (z,y) € A, By 2.2) we have y € AU)(z).
Hence there is a family (b;);es of elements of A(Y)(z), indexed by a filtering set J, which

converges to y. Since (z,b;) € AW) for every 5 € J it follows that (z,y) € AV). Hence

AW c 4U), To prove the converse inclusion we observe that A(U) ¢ AW) and that 4@

is closed.

PROPOSITION 3. - Let A be a correspondence, between X and Y, compact, with closed
graph, continuous and such that A(z) is non- void and convex for every z € X. Then A(U)

is regular. If Y is compact AWY) is continuous.

PROOF. - That the graph of A(Y) is open is proved, for instance, {19, p. 7]*. By hypothesis
A(z) is non-void and convex for every z € X, whence the same holds for A(Y)(z) for every

z € X. By 2.2) and 2.3) of Proposition 2

AW (z) = AU (z) = AU ()

for every £ € X. Hence AW) is regular.
The correspondence A{Y) has open graph and hence it is lower semi-continuous; hence
A is lower semi-continuous. If Y is compact the correspondence A(V) is compact; since

it has closed graph it is upper semi-continuous. We conclude that A(Y) is continuous.

Remark. — If E is finite dimensional and if, in addition, U 1s relatively compact, then

AW) s compact and continuous.

Indeed, let ¢ € X and V; € V(i) such that A(V;) is relatively compact; then

AT (2) = (A(z) + D) NY C (A(V) + U)NY
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if z € V;. Since t € X was arbitrary, AW) s compact.
Since A(T) has closed graph, A is upper semi-continuous. Since A) = AW), AD

is lower semi-continuous. Whence AWU) is continuous.

PROPOSITION 4. — Let A € S(c)(X,Y;E). Then AWU) s regular. If Y is compact, AU)

is continuous.
Variants of Propositions 2, 3 and 4 were given in {19, p. 8].

THEOREM 3. - Let X be a paracompact space and Y a non-void closed equilibrated
convex part of E which has the property (K). Let f be a correspondence between X and
Y such that:

3.1) f is compact and upper semi-continuous;

3.2) f(t) is non-void compact and convex for every t € X.

Then there is a family (f;);ey of correspondences between X and Y, indexed by a
filtering set J, such that:

3.3) for every j € J the correspondence f; is regular;

3.4) (f;);es and (f;)jes are upper approximating families for f;

3.5) for every j € J the correspondence f_] is continuous if Y is compact.
PROOF. - Since the hypotheses of Theorem 2 are satisfied there is an upper approximating
family (gk)ker for f comnsisting of correspondences belonging to S(C)(X,Y;E). Let B be

a fundamental system of O € E consisting of open convex neighborhoods of 0 € E and let

J =T x B. For every (k,U) € J let

Feeoy = (gx) ).

By Proposition 1 the family (f;),;es is upper approximating for f. By Proposition 4, for

every j € J, f; is regular.
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Since f; is regular we have

for every z € X; hence (f—j)je_] is also an upper approximating family for f (see Remark
3 following the definition of upper approximating families).
Hence 3.3) and 3.4) of Theorem 3 are proved. By Proposition 4 the correspondence

f; is continuous for every j € J, if Y is compact. Hence Theorem 3 is proved.

Remark. - If E is finite dimensional and if B is a fundamental system of 0 € E consisting
of relatively compact, open convex neighborhoods of 0 € E, we deduce that 7]- 1s compact

and continuous for every j € J (see the remark following the proof of Proposition 3).

Let (X:)ier be a family of sets and let (Y;);e; be a family of subsets of E. For
every 1 € I let f; be a correspondence between X; and Y;, C(7) a set of correspondences
between X; and Y; and (fJ(i))J'e‘](i) an upper approximating family for f; consisting of
correspondences belonging to C(7). It is useful to know that we may assume that the
approximating families have the same set of indices. For completeness we show below how
this can be done: Let J be the set of all pairs (A, (j;)ica) where A is a non-void finite part

of I and j; € J(7) for every 1 € A. Introduce in J the order relation < defined as follows:
(4, (5)ica) < (B, (k:)icn)
if Ac Band j; <k;foric A. Forevery:¢€ I and j =(A, (Js)sca) in J define

o) = O A

_ ff;? if A

(we may assume that J(7) has a smallest element 75.) Then for every 7 € I, (gj(-i))je_] is an

upper approximating family for f; consisting of correspondernces belonging to C(7).
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3. — On the equilibriums of generalized games.

In this section we assume that E 1s locally convez only tn the statement and proof of

Theorem 5.

A generalized game (= abstract economy), as defined in [22]°, is a triple

&= ((X{){e], (Ai)iels (Qi)ie])

where (X;)icr is a non-void family of non-void topological spaces and, for every 7 € I, A;
and Q; are correspondences between® X! and X;.

An equilibrium of € is an outcome z* € X7 satisfying, for every 1 € I:
Er) (z%): € Ai(z*);
E]}) A; N Q,-(I*) = 0.

Assume that, for every 1 € I, X; is a subset of the topological vector space E. For
every 1+ € I denote by C; (see [5] and [19, Section 2]) the set of all correspondences

between X7 and X; such that:

h) ¥(z) is convex for every z € X
hh) ¢ has open lower sections;

hhh) z; ¢ ¢(z) for every z € X'.

A correspondence ¢ between X! and X; is C;-majorized if for every t € X for which

©(t) # 0 there are ¢y € C; and V € V(t) such that
ol2) € vlz)
for every z € V.

The following was proved in [19]":
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THEOREM 4. - The game £ has an equilibrium if, for every s € I:
4.1) X, is a convex compact subset of E;
4.2) A; is quasi-regular;
4.3) z; ¢ v(Q(z;) for every z € X/;
4.4) A; N Q, is C,-majorized;
4.5) the set {z | A; N Q:(z) # B} is open.
Now consider the following properties:
4.2") A, is regular.
4.4") Q. has open lower sections.
4.4")  Q, s lower semi-continuous and C,.~majorized.

COROLLARY 2. - The game £ has an equilibrium if it has, for every 1 € 1, the properties

4.1),4.2), 4.3) and 4.4").

PROOF. - Since Q, has open lower sections, the correspondence ~v(Q), defined by v(Q,)(z) =
7(Q:(z)) for every z € X!, has open lower sections (see |25, Lemma 5.1] or |24, Remark
2.3(b)]). Hence A, n~(Q:) has open lower sections. Since, for every 7 € X7, 4, n~(Q,)(z)

is convex and z; € A; N ~(Q;)(z), it follows that the correspondence A4, ™ ~(Q,) belongs to
C,. Since

Ax N Ql C A1 T W(Qt)

we deduce that A4, N Q, is C,-majorized. Since 4, 7 ~(Q,) has open lower sections,
{z A " Q.(z) # 0}

1s open.
Hence £ has the properties 4.1)-4.5) for every 7 € I and hence Corollary 2 is proved.
Corollary 2 is Theorem 2.5 of S. Toussaint (,24]). In an earlier paper N.C. Yannelis

and N.D. Prabhakar ({25]) proved this result under certain additional hypotheses (for
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example, if E is locally convex and separated, if I is countable and if X; is metrizable for
every © € I). We observe that the method of proof of these authors combined with an

approximation procedure gives the result in Corollary 2 in locally convex spaces.

COROLLARY 3. - The game £ has an equilibrium if it has, for every 1t € I, the properties

4.1), 4.2') and 4.4").

PROOF. - Since A; is open and Q; is lower semi-continuous, A; N Q; is lower semi-

continuous and hence
{z| A: N Q:(z) # 0}

is open. Since Q; is C;-majorized, 4.3) is satisfied and A; N Q; is majorized.
Hence £ has the properties 4.1)—4.5) for every 7 € I and hence Corollary 3 is proved.
That Corollary 3 is valid was stated by S. Toussaint [24, Remark 2.6(b)] (this remark

suggested the formulation of Theorem 4).

We have now arrived at the main result of this section. Using one of the approzimation

theorems obtained in Section 2, we shall prove the:
THEOREM 5. — The game & has an equilibrium if, for every 1 € I:

5.1) X; is a convex compact subset of E;

5.2) A;(z) is non-void closed and convex for every z € E;
5.3) A; is upper semi-continuous;

5.4) Q; is lower semi-continuous and C;-majorized;

5.5) The set {z | A; N Q;(z) # B} is open.

Remarks. — 1) The hypotheses 5.4) and 5.5) are satisfied if, for every 1 € I:
1° A; 1s continuous;
2° Q; is open;
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3° z; ¢ 4(Q:(z)) for every z € X'.

Under these hypotheses the above result is the W. Shafer-H. Sonnenschein theorem
on the equilibriums of generalized games (see [22] and [19, Section 6]).

2) The main purpose of Theorem 5 is to replace, in the W. Shafer-H. Sonnenschein
theorem, the assumption that the correspondences A; are continuous by the assumption
that they are upper semi-continuous. An application of Theorem 5 is given in the next

section.

PROOF. - By the approximation Theorem 3 of Section 2, for every 1 € I, there is a family
(A;j);cs indexed by a filtering set J, consisting of regular correspondences between X!
and X;, such that both (A;;)jes and (A4;;);es are upper approximating families for A;.

The game

£ = ((Xi)ier, (Aij)ier, (Qi)ier)

satisfies the hypotheses of Corollary 3 (or of Theorem 4) for every j € J. Hence £, has an
equilibrium z; for every j € J.

Let U be an ultrafilter on J finer than the filter of sections of J and let

u) z* = lim z7;
then, for every ¢ € J,

w) (=) = Jim(=5):

Since A;; N Qi(x;) =0 and A;; DO A; we deduce
A:NQi(z;) =10

for every 1 € I and j € J. Using 5.5) we obtain
A;NnQi(z7) =10

for every 1 € 1.

Since z; is an equilibrium of &; and since A;; is regular we have

(23)i € 4i;(27) = Aij(2])
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whence

(25, (25)i) € Ay

for every 1 € I and j € J. From u), uu) and property A;;) of upper approximating families

we deduce

(27, (27)i) € Ay

for every 1 € I and j € J. Since (A;;);ey is also an upper approximating family of A; we
conclude

(.’E*, (.’E*),;) € Ay

for every 1 € I.

Hence z* is an equilibrium of £ and hence the theorem is proved.

4. — Generalized games and inequalities of Ky Fan type

In this section we assume that E 1s locally conver only in S;;, S;v, Theorem 7 and

in the remarks concerning these statements.

We begin by introducing a few definitions so that we can shorten some of the state-
ments below.
A generalized game tn functional form (or simply, a game in functional form) is a

triple
F = ((Xi)ier, (Ad)ier, (#i)ier)

where (X;);es is a non-void family of non-void topological spaces and, for every i € I, 4;
is a correspondence between X! and X; and ¢; is a mapping of X! x X; into R.

An equilibrium of 7 is an outcome z° € X7 satisfying, for every i € I:

E1r) pi(z*,y:) <0 for every y; € A;(z7).
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& = ((Xi)ier, (Ad)ier, (@) ier)

is a generalized game and if, for every 1 € I, ©; is a mapping of XT % X; into R such that

Q: = {(z,¥i) | pi(z,yi) > 0} then the equilibrium outcomes of £ and

F = ((Xi)ier, (Ai)ier, (ei)ier)

are the same.
Let (X;);cr be a non-void family of non-void convex subsets of E and ¢; a mapping

of X! x X; into R. We consider below the following properties:

(e') = pi(z,y:) is lower semi-continuous on X! for every y; € X;.
(e") z; & v({v: | pi(z,y:) > 0}) for every z € X1,

Let (X;);cr be a non-void family of non-void topological spaces and, for every 7 € I,
let A; be a correspondence between X! and X; and ¢; a mapping of X! x X; into R. For

every 1 € I let a; be the mapping of X' into R defined by

ai(z) = sup ©i(z,y;).
Y €A (z)

The families (A:)icr and (pi)icr are coherent if {z | a;(z) > 0} is open for every
e .
Observe that
{z | ai(z) >0} = {z | Ai N Qu(z) # O}
if

Qi = {(z,v:) | pi(z,yi) > 0}.

Comnsider now the following four statements:

S;. — A generalized game €& = ((X;):er1,(4:i):icr1,(Q:)icr) has an equilibrium if the

hypothesis 4.1), 4.2), 4.3) and 4.4’) of Corollary 2, Section 3, are satisfied for every 1 € I.
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For the next statement we need the hypothesis:
5.4') Q, has open lower sections and z; ¢ v(Qi(z)) for every z € X'.

Sr1. - A generalized game £ = ((X)ier, (A:)icr,(Qi)icr) has an equilibrium if the
hypotheses 5.1), 5.2), 5.3), 5.5) of Theorem 5, Section 3, and 5.4') above are satisfied for

every 1 € I.

Since the hypothesis 5.4’) is obviously stronger than 5.4) of Theorem 5, Section 3, it

follows that Sy ts true.

Si11. — A game in functional form ¥ = ((X:):er, (Ai)icr, (©i)icr) has an equilibrium

if, for every 1 € I:
1) X; is a convex compact subset of E;
2) A; is quasi-regular;

3) o has the properties (¢’) and (e).

Srv. — A game in functional form ¥ = ((X;)ier,(Ai)ier, (pi)icr) has an equilibrium

if the families (A;)icr and (p;)ics are coherent and if, for every 1 € I:

1) X, is a convex compact subset of E;
2) A;(z) is non-void closed and convex for every z € E;
3) A; is upper semi-continuous;

4) p; has the properties (¢') and (e").
Then:®
THEOREM 6. - The statements S; and Syj; are equivalent.

THEOREM 7. — The statements S;; and Sjy are equivalent.

The proofs of the above theorems are very similar; this is why we shall prove here only

one of them. We shall prove Theorem 7 since its proof requires some additional details.
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PROOF. - Assume first that S is true. Let
7 = ((Xi)ier, (Ai)ier, (vi)ier)

be a game in functional form satisfying the hypotheses of S;y. For every 1 € I let Q; =

{(z,y:) | p:i(z,y:) > 0}. Obviously the generalized game

£ = ((Xi)ier, (Ad)ier, (Qi)ier)

satisfies the hypotheses 5.1), 5.2) and 5.3). Since ¢, has the property (¢'), Q; has open
lower sections; since ¢; has the property (e¢”), z; € ¥(Q:(z)) for every z € X!. Hence
& satisfies the hypotheses 5.4"). Since (A;)ics; and (Qi):c; are coherent, £ satisfies the
hypothesis 5.5) also. Since we assumed that S;; is true, £ has an equilibrium. Hence ¥
has an equilibrium and hence Sjy is true.

Assume now that S;y is true. Let

E = ((Xi)iers (Ad)ier, (Qi)ier)

be a generalized game satisfying the hypotheses of S;;. For every 1 € I let o; be the
characteristic function of Q,; from 5.4') we deduce that ¢, has the properties (¢') and (e”).

Hence

F = ((Xi)ier, (Ai)icr, (91 )ier)

has the property 4) of S;v. Since £ satisfies the hypothesis 5.5), the families (A,);c; and
(p1)ics are coherent. Obviously 7 has the properties 1), 2), 3) of S;y also. Since we
assumed that S;v is true, ¥ has an equilibrium. Hence £ has an equilibrium and hence
Sy is true.

Since S; and S;; are true, we deduce from the above theorems that:

The statements Sy;; and Spv are true.
Remarks. - 1) It is easy to see that a mapping ¢; of X » X, into R has the property
(¢} if and only if: For every z € X' there is a quasi-concave mapping g, of X;into R
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such that p;(z,y:;) < g:(vi) for every y, € X, and g.(z,}) < 0. It follows that the results
in Theorems S;;; and S;v (for I containing only one element) give various forms of the
well-known Ky Fan[1”,13) minimax inequality. It also follows that Theorem Sj;; (for I
containing only one element) gives the non-linear alternative of H. Ben-El-Mechaiekh, P.
Deguire and A. Granas (|3, Theorem 2, pp. 257-258)); when E is locally convex Theorem

Srv also gives this non-linear alternative. Theorem Sy contains the Ky Fan minimax

inequality with constraints as given, for example, in J. P. Aubin [1, pp. 279-282],

2) Let 7 = ((Xi)ie1, (Ai)ies. (#1)ier) be a generalized game in functional form. Under
certain supplementary hypotheses on 7 (stronger than the hypotheses of Sy;; and S;v) we
can deduce “directly” the existence of an equilibrium of 7 from the case when J contains

only one element.
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Footnotes

The reader should observe that the compactness of a correspondence does not imply
the relative compactness of its graph. A correspondence is compact if its graph is
relatively compact; the converse, however, is not true. There are several other defi-
nitions of compactness of correspondences in the literature, and these definitions are
not all equivalent.

Filtering = directed.

Here and in 3) below take the adherences in Y so that the new correspondences are
again correspondences between X and Y.

”»

In the quoted paper, p. 7, line 14 from above: instead of “let b € A(z),” read “let

be Alz) N(a+W)."

See also [4, 5, 11, 14, 15, 19, 20, 22, 23, 24, 25]. The equilibrium of a generalized game
is defined as in [5].

If (X;)ics is a family of sets we denote by X' the cartesian product [lier X1 If

z € X! we denote by z; the coordinate of index 7 of z.

In the paper quoted here we do not always assume that E is locally convex or sep-
arated. For example, Theorem 4 and Corollaries 2 and 3 remain valid if E is an
arbitrary topological vector space and X; is quasi-compact for every ¢+ € I (the ad-
herences are taken in X! x X; and X;, respectively). That some of the equilibrium
theorems remain valid without assuming that E is separated was first observed by S.
Toussaint ([24)).

See the geometric formulation of the minimazr inequality given in Ky Fan [13, Section
2].
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