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The purpose of this paper is to analyze a certain Kind of incentive and
manipulation problem that occurcs most prominently in positional voting. Positional
voting is any election procedure equivalent toc having the tally for N alternatives
given by a voting vector Wik = (Wi,e. WN)y Wi2wys 1, wWidwy=0, where w;
points are assigned to a voter’s jT# ranked alternative.! Already in the 17807s
it was recognized that one of these systems, the Borda Count, (defined by
Bn=(N-1,N~2,..,1,0) and tc be denoted by BC)>, can be manipulatedZ. This weakness
ctill is used ac an argument against it. (See, for example, [9,13).) 0Of course,
because of the Gibbard - Satterthwaite Theorem [3,13] we now know that all positional
voting methods can be manipulated if N23.

1f all systems can be manipulated, then a “second best” approach must be used.
Namely, we should determine the positional voting system that is "least susceptible®
to a successful manipulation of the relative ranking of some two alternatives, This
involves determining which Wy gives a strategic vote the largest impact on the
final tally. For N=3, the answer is B3z = ¢(2,1,0), the BC, Consequently, one might
suspect, and it probably ic true, that the BC ic fairly suspectible to manipulation
cver all poscible coalitions,

There are noteworthy examplec where large coalitions, such ac special interect
bBloce, try to manipulate an election. But quite often, manipulation attempts are due
to the efforte of small coalitions and individuals. What happenc here? To analyze
this iscsue, we need to understand the frequency of opportunitiec where the alterred

1. It is easy to cee that a positive scalar multiple of Wy alwars yields the came
election ranking, sc identify all such multiples. Thus, the plurality method
corresponds to (1,0,..0)0 or to any scalar multiple of it.

2, PBecauce B3z = (2,1,0), a vater with the ranking aj>az*asz wiching to

influence the {a;,az} election outcome could strategically mark the ballct
ayra3ra2 to give ar & two point, rather than a cingle point differential over

az.
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tally actually changes the outcome. In a sense that will be made precise, the
surprising conclusion is that for N=3, the BC is the positional voting system that is
least susceptible to manipulation! In other words, because B3 gives a strategic
voter & stronger impact on the final tally, it is easy to concoct examples where the
BC is the worst method; over all possible examples, the BC is the best. My analysis
of manipulation involves a balance between "the frequency of opportunities to
succescfully manipulate the system” and "the impact of a strategically marked ballot
on the tally®”., The bect system optimizes a combination of these factors.

The B8C is not the best choice for N»>3; for N=4, the unique answer is (2,2,0,0)
(or, equivalently, «1,1,0,0)), and for N=5% it is (2,2,1,0,00, It may appear that a
pattern ic beginning to develop where the answer for N=é should be ¢2,2,2,0,0,0).
There is a pattern, but it isn”t the obvious one because for N=4, the best choice ig,
essentially, (6,6,5,1,0,0)., <{(The precise answer requirec some of the wy“s to be
irrational numbers.) For larger values of N, the optimal choice of Wy is
determined by the zeroc of a set of algebraic equations., From these equations it
appears that if N ie cufficiently large, then the differences between the cuccessive
wy“e in Wy approaches a common value. This is, of cource, a definition for the
BC. My recults alsc chow that for N23, (1,0,0,,.,0) (plurality voting) and
(1y1y,..,1,0 alwayre share the dubiocucs honor of being the most susceptible toc binary
manitpulation.

In addition to positional voting, I analyze multiple voting syetems. (A
multiple svstems iz where each voter selecte how tc tally the bazllot from among
ceveral specified methode.) Some of the better Known multiple syeteme include
cumulative voting, approval voting, and any positional voting procedure that
tolerates "truncated" ballots. A< cone might cuspect, the conclusion is that multiple
cveteme are more susceptible to manipulation than any of the individual systems that
define it. Mcorecver, the mathematical approach developed here extende to run-off

elections, to other classes of sccial choice functions as well as to certain other
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allocation or decision problems that do not admit incentive structures.?

In two interecsting papers Chamberlain [3] and Nitzan [8) consider a similar
voting problem with related assumptions. On the surface, their conclusions appear to
disagree with mine. ] don’t btelieve this is due to the differences in
methodology.4 We differ in conclusions because we address different issues and use
different measures. This icsue is briefly addressed at the end of Section 2.

A measure for manipulability should reflect that the goal is to encourage a
sincere vote. "Telling the truth® must play a central role; we don’t want a system
that penalizes honesty. But, what system satisfies these conditions? To understand
the motivation for my acsumptions, 1711 briefly review some of the incentive
literature,

We Know from the Gibbard - Satterthwaite theorem that there always are
situations where someone can replace a sincere vote with a strategic one to get 2
percsonally better outcome. <(This means, in game theoretic terminology, that telling
the truth is not a dominant strategy.) Because it is impossible to attain our goal
for all poseible profiles, maybe we chould restrict attention to certain *natural’
onecs. In incentive theory, one usually ceeks those mechanisms where a person can’t

do better than telling the truth when everycne elce is sincere, (So, cincere

behavior is a Nash equilibrium.)> This doesn’t mean that such a s»stem can’t be
manipulated, that there aren’t straxtegies equally ac good as being cincere, or that
vou can’t try to manipulate the system; it only means that if everyone else is

cincere, you cannot successfully manipulate the syetem to your advantage.

2. This is by decsign; 1 view positional voting ac an important prototvpe system for
the incentive quection posed here, so my approach has been influenced by this
literature. For an informative survey of incentives, 1 suggect (Grovec and Ledyard
[31.

4, Their conclucsionse are bzcsed on computer experiments; mine are baced on an
analytic approach that permitce precice ctatements. Incidently, Nitzan pointe out that
"..an analytic derivation of the various .. meacurec seemes to be a hopelescly complex
task". In light of hic comment, a contribution of this paper is the development of
the mathematical ctructures that rnow permit such an analyeic,
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Positional voting methods form an important class of mechanisms where this
incentive - manipulation problem isn’t resolved even with the Nash approach, The next
obvious step is to choose a (positional voting) system to minimize the 1ikelihood
that a voter can successfully manipulate the system when everyone else is sincere,
This is the basis of this paper.

To determine which voting system minimizes the likelihood that honesty will be
penalized, we need to measure how succeptible each Wn system is to being
manipulated. Such & measure depends on the distribution of strategic voters, which,
in turn, cseems tc be based on extra information, For instance, if I Know there is &
cloce contecst hetween two candidiates, then 1 may try to manipulate the ocutcome to
favor my preferred candidate; but if 1 have no added information, my unguided efforts
could be counterproductive., Concequently, one approach toward strategic voting

.ires specifying who Kriows what, and who is saying what to whom.

2 architect of & voting system for a "one time only" vote can use thic extra
information toc cselect a method to encourage sincere voting. For example, suppose it
ic Known that of the candidates (a,b,c?, a and b will closely contest the top
position. Suppose the architect also knows either that nobody ranke c in top

position, or that all votere with ¢ a= & top ranked candidate vote sincerely, 1t ic

eacy to see that in this situation, plurality voting, ¢1,0,0), encourages sincere
voting while (1,1,03 ics the worst choice. On the other hand, if the architect Knows
that nobody» ranks c in bottom place, then the answer is just the opposite: (1,0,0) is
the woret eyetem while ©¢1,1,0) encourages a sincere vote. The theme of thic example
generalizec. In Section 2, Thecrem 3 ascerts that for any choice of a positicnal
voting system, Wy, there are dictributions of the voters” preferencec where Wy

minimizes the cucceptibility to manipulation., In other words, with the appropriate

zeeumptions, with the correctly concetructed scenaric, any svetem can be jucstified as

being strategically the best. Such added information isn’t available when an

inetitutional voting syetem ie chosen. Such a eyetem ic uced far a1l votes on all
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issues, It is used independent of changes in the organization. So, when choosing a
Wy for an institution, we don’t know which alternatives will be the target of a
manipulation attempt, we don’t Know who is going to vote strategically, and we don‘t
Know how the preferences of the voters are split. Thus, a neutral approach is
required. Therefore, my basic assumptions are: for any given set of three or more
alternatives, it ic equally likely for any pair of alternatives to be the target of a
manipulation attempt, any profile or distribution of voters’ types is equally likely,
and it ic equally liKely that a ctrategic voter is of any particular type. In thic

sense, our recults hold.

My emphasis is on how to minimize the likelihood that a pair of alternatives is
manipulated. For other icssues, such ac the manipulation of a triplet, etc., the

answers change, Thece questione are briefly xddresced in the next section, and they

can be analyzed with the mathematical techniques developed here,

2. Mzain Results.

The N alternatives {&y,..,an) definme N! typec of votere where each type
correcspondes to one of the N! strict rankings; that is, the voters are not indifferent
between any two alternatives., Let py be the fraction of voters of the JjTH type,
J=1,..,N!, and let p={(pi,y..,pNn . Each p;20 and ..ps=1, ¢0o p is a point on
the unit simplex, Si¢N!'), in the positive crthant of the W! dimencicnal Euclidean
space. For a specified voting vector, Wn, let Fip;Wys be the obvious function
that givee the tally of the ballot. More precicsely, compute the vote tally for ay
(as determined by p and Wn). Let this number be the JTH comporent of an N-vector
for the Euclidean espace RN, j=1,.. N, In thie way, Flp;Wn> defines & vector in
ReNjs 1.6,

2.1 Fl-qlbid s STANTY —==3  R4N,

whiere R4M is the positive crthant of RN,
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The election ranking admits a geometric interpretation. If the vector F(p;Wn)
is closer to the axis defined by ey than the one defined by ex (this means that
ay received a higher vote than ax), then the election ranking has a; preferred
to ak. Consequently, if the coordinates of RN are (x(,..,xn>, then the plane
xj=xx is the set of outcomes corresponding to indifference between a; and ax
in the election cutcome. Call this plane the "indifference surface between ajy and
ag."

I1f p represents the sincere rankings of the voteres, the cincere outcome i
F(pj;Wn>. 14 a voter, or a small group of voters, votes strategically, then the
actual election tally is given by F(p’ijWw) where p° = p + v and where v represents
the strategic change in voting. If F(p;Wn) and Fip+v;Wy) are not on the same
side of csome indifference surface, then the manipulation, v, affected the outcome.
Whether this effect is successful or counterproductive depends on the sincere
rankings of the manipulatore. To start the analycice, I will formalize my earlier
assumptions.

Assume that

1. any p in Si(N!) is equally liKely;

2, each pair of alternatives is equally likely to be the target of an attempted
manipulation,

To determine the "cuccesce" of an attempt to manipulate, ] follow the lead of the
Nash equilibrium by analvzing the situation where a strategic voter, (or a small
group of strategic voters) tries to reverce the relative ranking of & particular pair
while all other voters vote sincerely. Assume without loss of generality that the
strategic voter{e) attempt to influence the relative election rankKings of a; and
az in the direction ayraz., Obviouely, this means that the voters have the
relative ranking &j?az.

To motivate the definition of v, let N=2 and let the voter types be labelled ac:
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Type RankKing Type Ranking
1 ajrazras é azrairas
2 ajlazdaz S azlazraj
3 azra|laz 4 aarazlai

A strategic voter ic of type 1,2, or 3. The most successful way this voter can
manipulate the cystem is to mark the ballot as a type 2 voter, and a type 2 voter
votes sincerely. Any other choice either isn’t strategically maximal, or it is
counterproductive., But, when a trpe 1 voter pretends to be type 2, the profile
changes. For instance, suppose for 20 voters that the sincere profile is
(6/20,3/20,2/20,2/20,3/720,4/205., With the ctategic vote, the new profile is

(5/20,4/20,2/20,2720,3/20,4-20), so the change due to the attempted manipulation ic

=

1/20 times ¢(-1,1,0,0,0,0>. Likewise, a change of a type 3 voter tc & type 2 voter ic

given by a multiple <(1/m) of (0,1,-1,0,0,0) where m is the total number of voters.

Following our theme of neutrality, assume that:

3. it is equally likely for a manipulating voter to be of any type; such a
voter assumes 2 strategy (voter type) to maximize the effect of the manipulation. 14
there are several maximal strategies, the voter selects the one most consistent with
the voter‘s actual type. (Consistency is understoed to imply that a maximal number
of the relative rankings of pairs is preserved.)

The csecond part of thic acsumption has meaning only when N>4,

Example. If a manipulating voter is of the trype ai>az’az>as, then a
maximal strategy would be to assume either the type ajrazlasaz or
ajrastazraz. Of these two strategies, the first one is more consistent with
the voter’s true type.

The first part of Assumption 3 means that for N=2, it is equally Tikely for the

manipulating voter to be of type 1 or type 2. Therefore, the expected manipulation

ic a scalar multiple of (-1.s2,1,-1/2,0,0,0,), In general, v, the expected

manipulation vector (EMV)Y, is determined in this manner by Assumptions 1-3. The

scalar multiple of the EMV depends on whether there ic one manipulating voter or a
small group of manipulating voters, and on the total number of voters. For instance
with 20 voters, the multiple ic g/20 where q is the number of manipulating voterc,
Evervthing that follows holde if the magnitude of the EMY, [yl, ic sufficiently

emall., Concequently, thece recsulte hold for & single voter in & cufficiently large
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population (say, N»>20), or for a small coalition within a large group.

Definition, Let m>2 and an EMV v be given, Define udWin,m), the m voter measure
of (binary) susceptibility of W, to be the number of p“s in Si(N!) with a common
denominator m such that F(p+y,Wn) has the (relative) ranking ar>az while

F(p,Wn)> has the ranking aza:.

This meazure indicates, for m voters, what fraction of all poccsible profilec
admit a situation where the relative ranking of a, and a2z could be alterred.
Clearly, a smaller measure of susceptibility means there are fewer opportunitiec to
successfully manipulate the outcome, so an optimal system, Wn, minimizes this
measure. Unfortunately, each m admite a continuum of optimal cheoices of Wn’s, and
this continuum of answers changes with the value of m, But, this is what we should
expect; if two choices of Wy are ecsentially the same, then the election outcomes
always agree if there are only a few voters., For instance, if m<10, then an election
tallied with ¢1,0,0) always agrees with the outcome when tallied with (1,e,0), e40.1.
Az a result, the "optimal choice for m" inciudec several vectors Wn where the
election outcomes always are the came for m voter profiles. Distinctions in the
election outcomes for these systems do arice when the number of voters increasec;
this means that some Ww’s no longer are coptimal.,

This dependence on the number of voters, m, can be remcved by keeping only thoce
Wy that are optimal for &all cufficiently large values of m, This motivates the
next definition.
Definition. A voling system Wn’ is susceptibility efficient if
2.2 RN m) < pCUn,m)

for all choices of Wn and for all cufficiently large values of m. The voting
system Wn’ is susceptibility inefficient if the ineguality 2.2 is reversed.

A straightforward argument proves that Wy is cusceptibility efficient if WH
ie the minimum point for the next meacsure.

Definition., Let the EMVY v be cuch that Iyl ic sufficiently small. Define plln),
the measure of (binary) susceptibility of Wn, to be the volume of {p’s in Si(N!)|
F(p+v,Udn) gives the (relative) ranking a;>&z while F(p,Wn) corresponds to the
ranking az>al.
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Theorem 1., For all choices of N>3, the systems (1,0,0,,.,0) and ¢(1,1,..,1,0) are
susceptibility inefficient and p((1,0,..0)) = pC(1,1,..,1,0)),

For N=3, the unique susceptibility efficient system (USES) is the BC. For N=4,3,
the USES are, respectively, (2,2,0,0) and (2,2,1,0,0). Also, the following ratios
hold:

2.3 u((1,0,0))/p(B3) = 1.027
m(¢1,0,0,03)/p¢C1,1,0,0)
(€2,1,1,0))/u(¢1,1,0,0)

}{(gq)/g((l +1,0,0)) = 2.014

p(<1,0,0,0,0>)/u¢¢2,2,1,0,0) = 2254.003

‘R(§5>4q((2,2,1,0,0>) = 13.914

4.4064
3.358

Theorem § can be extended to all valuec of N by using Eq. 3.23; this equation
gives the measure of susceptibility for any Wn.

The ratios in Eg. 2.3 compare the vuinerability of the different syctems. 1
found it surpricsing that the ratios are so close to unity if N=3. This suggest that
manipulability may not be a significant dictinguishing factor among positicnal voting
systems for N=3, so other criteria about the various systems may dictate the final
choice of the voting system. On the other hand, our results for N=4,5 serve ac a
strong argument against using (1,0,..,0) or (1,..,1,0). Here, the BC doesn’t fare
too badly, so it might be adopted should it satisfy other criteria; e.g., see
[10,11,141,

The fact that R, 0,..,000 = M1, 1,..,1,00) reflects an important symmetry
admitted by voting systems; a symmetry that plarvs a Key role in the proofs. To
deccribe the symmetry, R will dencte an invcluticn, or & "reversing mapping" in 3
different settings. First, let R be a map that reverses the ranking of a profile.
For instance, for N=3, if p ic of type 1, thern R{p) is of type 4; if p is of twvpe 2,
then R(p) ic of type 35; etc. Next, let R be the mapping that revercecs a rankirg.
For inctance, Rfaz*a ;*a3z) = asdajraz. With thece related definitions of
Ry, it is obviocus that
2.4 FCRCpY MWu) = ROF(p,WRYY.

The next use of R is to reverce a voting vector., Thic takes some explanation.
Let EN = ¢1,1,..,1). Such a vector isn’t a voting vector because it doesn’t

distinquish among the candidates. However, if a0, then an election tallied with
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Wn and with aWn + bEn always agree, so we can identify all such vectors,
Define R{Wn) to be the class of voting vectors -al’n + bEn where W'n is the
vector (ww,wWwn-14..,w;). For example, R((1,0,0)) = (1,1,0) because (1,1,0) =
-{1,0,0>" ¢+ (1,1,1> = -¢0,0,1> 4 ¢1,1,1), Thece three involution operators are
related.
Proposition. For N23, R(F(p,Wn>) = F(R(p),RCN)),

Proof. The ranking given by R(F(p,Wn)) always agrees with the ranking given
by bEn - F(p,Wn)> = bEn + F(p,-Wn) (even though -Wyx isn’t a voting vector,

this can be computed) = F(R(p),R(Wx)>.

Coroltary. For any N23, fug.n = }((R(Qu)).

This corollary generalizes the assertion that H((],O,..,O) = M, ,1,00.

Theorem 1 concerns the sccial welfare ranking of some two alternatives, but they
need not be the two top ranked ones. What happens if we restrict attention only to
thoce profiles of voters where &y and az are contesting the top position?

Because of symmetry considerations, the answer remaince the same.

Theorem 2. The systems that least susceptible to & binary manipulation of the top
two ranked alternatives are B3 for N=3, (1,1,0,0) for N=4, and (2,2,1,0,0) for
N=5.

Theorems 1 and 2 are based on certain neutrality accumpticone motivated by the
requirements of an institutional mechanism. These conclusions need not hold for a
"one-chot” decicion process where we have additicnal information about the
organization., This extra information concerning the profiles changes the definition
of the EMY, v. For instance, suppose it ie not equally likely for a strategic voter
to be of type 3 or of type 1. Instead, suppoce with probability ¢ a strategic voter
ic of the firct type and with probablity 1-c the voter is of the third type. Then
the EMV, ve, ts & multiple of ¢(-¢,1,-¢1-¢>;0,0,0) rather than (-1/2,1,-1/2;0,0,0),
The choice of the optimal voting method now requires finding the Wy that minimizes

the volume of {p’s in Si(N'>| F{ptv¢,Wn) gives the (relative) ranking ar>az
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while F(p,Wn> corresponds to the ranking az>a;}. The answer depends upon the

choice of ¢. In what follows, Tet c denote the organization’s manipulation

characteristic.

Theorem 3. Let Wy be given. There exists a value for an organization’s
manipulation characteristic, c, so that W3 is the USES.

This statement extends to all values of N ac well ac to multiple systems such ac
approval or cumulative voting.

Detinition {12). A simple voting system for N alternatives is where all ballots are
tallied with a specified Wn. A multiple voting system for N alternatives is where
1) there is a specified set of at least two voting vectors, {Win}, where the
difference between any two of them is not a scalar multiple of (1,1,..,i1}, and
2) each voter selects any one of the voting vectors to tally his ballot.

Examples. The cet of vectors for cumulative voting, as used in Il1linois
(15,121, i¢ (¢2,0,..0), (2,1,0,.,,,0), (3/2,372,G,,.,0), <(1,1,1,0,..,072

The set of vectors for approval voting is (¢(1,0,...0), <¢1,1,0,..,00,
ceey (1,001,003,

The csimple system defined by Wi admite a truncated ballct if alternative
voting vectors are admitted to tally ballots where not all candidates are listed and
if Wn and the alternative vectors define a multiple system. For instance, w--
Bn ic used to tally the ballots, each voter needs to rank of all N candidates.
tally a ballot where only K of the candidatec are ranked, suppose Bk is used,
(Alternatively, the vector Bx¢: or (N-1,..,N-(k+1>,0,..,) could be used.) This
defines a multiple system.

Our next thecrem accerts that multiple systems are more susceptible to
manipulation than any of the component simple systems that define it. This conclusion
ie reasconable; after all, each simple system provides certain strategies and
opportunites to manipulate the system. We should suspect that a multiple syetem
mzkes available all of thece opportunities and strategiecs. Thus, becausze there are
added opportunitiec to successfully change the cutcome of an election, a multiple
exctem chould be more cucceptible to manipulation. The actuxl argument ic more
complicated, but this intuition serves us well,

Theorem 4, Let WX>3, If Wy is one of the voting vectors from a cpecified multiple

voting system, then the multiple system is more susceptible to binary manipulation
than the system given by W.
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Corollary. For any N33, both cumulative and approval voting are more susceptible to
binary manipulation than plurality voting. Therefore, both cumulative and approval
voting are more susceptible to binary manipulation than any simple voting system. A
system that admits truncated ballots is more susceptible to binary manipulation than
the original system.

Niemi [7) contends that when certain assumptions are relaxed, approval voting
begs to be manipulated. We’re using different arguments and & different approach,
but Theorem 4 and the corollary show that this is true not only for approval voting,
but alsc for any multiple system admitting multiples of (1,0,..0) or (1,,.,1,0).
Concequentiy, this is true for cumulative voting, cardinal voting, and a simple
syctem that admits truncated ballots. On the surface, these statements appear to
contradict the many resulte supporting approval voting. They don’t because the
conclusione supporting approval voting are based on particular organizational
assumptions such as dicotomoucs preferences; therefore, the differences in conclusions
are partially explained by Theorem 3. If fact, it follows from Theorem 1 that
approval voting has to be more susceptible to manipulation tham many cther multiple
systems.

There is an interesting difference between the manipulaticon of a multiple and &
simple syctem. In a simple system, a strategic voter has to misrepresent his
rankings of the alternatives. In a multiple cystem, a strategic voter can do this,
or he can remain true to hic ranking while strategically chocoesing one of the other
admitted tallying methods. 1In other words, multiple methode not only provide
additional strategiec to manipulate the system, but these added strategies are even
canctioned! {(For an analyeics of truncated ballote that captures come of thic spirit,
see Brams and Fichburn [2]. For an analysis of the "completely indeterminate”
properties of multiple cycteme, cee Saari and Van Newenhizen [121.)

My emphacsis has been on manipulating the relative ranking of a pair cof
tandidatec, There are other interecsting Kinds of manipulaticon that 1 haven’t
considered, For instance, a voter may wish to mantpulate the outcomes of N-1 of the

N candiates, or to manipulate the cutcome of some cubcet. A more interesting problem
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is to determine which W minimizes the probability of a voter successfully
manipulating the outcome of any subset of candidates, While I haven’t completely
analyzed this question, the symmetry considerations that are crop up in Section 3 and
elecewhere [10) lead me to suspect that the optimal answer for this more general
problem either is Bn, the BC, or it approaches this vector for larger values of N.

Symmetry considerations also provide incight intoc why my conclusione appear to
differ from thoce in [3,8). For instance, with my measure and with N=3, T find that
the BC is the best, but Chamberlain [3] finds that when the BC i< compared with the
plurality vote, it ien’t the best. This isn’t overly surprising because we use
different meacures, and <c we should expect different conclusions. But much more is
involved. An important variable seems to be the number and kinds of paradoxes a
voting system admits. Common sence suggests that the more paradoxes, or unexpected
outcomes there are, the more opportunites a stategic voter has to direct the final
autcome. This suggests we should determine which systems admit the fewect paradoxec.
A< shown in [10,111, the unique answer is the BC, and this is compatible with our
conclucions.

There is a way to understand why the different measures can give radically
different conclusions. A profile is identified with an election outcome, and,
conversely, each election outcome defines & cet of profiles., But, how are thece
profiles arranged? The geometry of these regions is developed in [10] and partly
deccribed in Section ®. Rather than giving a technical description, 1 will cutline
the basic conclusions by using an analogy with the geometry of rectangles. 0Of all
the rectanglecs with the came perimeter, the cquare has the maximum volume, while the
degenerate rectangle has the minimum volume of zero. Of all rectanglec with the came
volume, the csquare has the minimum perimeter while the degenerate rectangle has the
largest, The "minimum configuration” changes depending on whether the measure tc be
minimized is volume or perimeter length. In both cases, the maximum and minimum

configuration is either the rectangle with the most symmetry — the cquare, or the
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rectangle with the least symmetry, -~ the degenerate one.

A similar situation occurs with the geometry of the distribution of profiles.
Should a measure of manipulation allow any coalition to manipulate the results, the
emphacis i< on the "volume®” of the distribution of profiles. This ic related to some
of the measures used in [3]1, By analogy with the rectangles, we might expect the
more symmetrical regione to fare poorly with this measure, while the leacst
symmetrical fare better., This happens. On the other hand, by considering small
groups of manipulating votere, as I do, the emphasis is on how many profiles are near
the boundary between election rankings. 8o, my measure involves the “"surface area"®
or "the perimeter* of the region. Here we might expect the more symmetrical regions
to fare better, and they do.

The symmetry of the regions of profiles is determined by the symmetry propertiec
of the voting vector Wy, Because only pairs of alternatives are analyzed, this
symmetry is partly captured by the operator(s) R, For example, the BC hac
"cymmetrical regions" because B3 is the only vector satisfying R{Wad=Ws. In
general, for each N, the optimal Wy catisfiec thic cymmetry condition., On the
other hand, if W(u) = ¢1,u,0), then the "least symmetrical" choice is given by the
extreme valuee for u; thece valuec define the voting vectore <1,0,00 and (1,1,0),

This again supports our conclusion.

3. Frecofe

The number of cubcscripts needed for the proofse grows rapidiy with the value of
N, and this proliferation of notation tends to obscure the bacic ideas. Therefore, I
first prove the theoreme for N=3 before giving the general proof,

Ascume that the election for {(a,;,az,az’ is tallied with
W3=C(wy w2 ,w3), Using the notation introduced in Section 2z, the tally for

ay 1s pywy + pzw; + pawz + psw3y + pswy + pgwz while that
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for az is piwz + pawz + paws + pewz + pswy + pgwy. Thus,

the cet of points, p, leading to a tie vote between a; and az is
3.1 {Eg,p> = 1,

3.2 N,p> = 0,

where N = (w)-wz2,Ww)-W3,Wz-W3 ,W3-Wz2,Ww3~wW) ,Wz-w;), Eg =

(1,..,1>, and <-,-> is the usual Euclidean scalar product.

The election rankings remain the same whether a profile is tallied with
alWs+bEs, a>0, or with W3z. So, choose a and b so that the new vector is
(1,u1,-1) where ~14u;<1. With this notation, the BC corresponds to u,=0, the
plurality vote corresponds tc u;=-1!, and (1,1,0) corresponds to u;=!. Also,
3.3 W= (I-u),2,ui+f,-Ci+uy),-2,-C(1-uy2).

It follows from the symmetry proposition that the answers are the same for
(I4uy,-12 and ¢(1,-u,,-1), ¢ we can and do assume that u;, is in the interval
{0,171,

The goal ie to find the volume cof the p’c that are close enough to the

hyperplane defined by Ege. 3.1 and 3.2 so that p+v will crose the hyperplane.

v ie the appropriately smal) pocitive multiple of (-1/2,1,-1/2,0,0,0). I‘m only

Here,

interected in the ratios of maeasures, s0 1 will supress this and all other common

multiples., If & precice formula for a measure is needed, thece multiples need to be

restored.) This is the volume defined by the hrperplane and the length of the

compenent of v that is orthogonal to the hyperplane. Sao, for any choice of uy,

measure is given by

d.4a (Wa) = Miuy) ie a commen scalar multiple of <N/INT,vd{curface veol. of
the hyperplane defined by Eqs. 3.1, 2.2) where INI is the length of N.

It t¢ & «imple computation to chow that

3,45 (NAIND,uY = 3/2(34u 23172,

the

(When more complicated incentive or cusceptibillity iccues are invectigated,

such as assuming that the number of strategic voters varies with types and with the
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number of each type, this same formulation holds. The main difference is that Eg.

3.4b now becomes a function of p. This means that the formulation, Eq 3.4a, can be
identified with a higher dimensional "flux" or "fluid flow" problem where the flow

ic defined by Eq. 3.4b.)

The hypersurface in Eq. 3.4a ic four dimensional surface in six dimensional
space, To find the surface volume, we use two different parametric representations
to reduce the problem to an integration problem over a region in a four dimensional
space. The first change of variables is obtained by solving Eg. 3.1 for ps.

3.5 pi=yi, P2evz, PI=y3, Pa=v4, Pe=vs, ps=l-Loyi.

The common integrating factor, 6!'72, for this change of variables is
independent of us;, and sc we supress it., The pew domain is
3.6 yi20, j=1,..,5, and <Es,y>!.

The equation {N,p>=0 becomes
3.7 N7, y> = 2,

where N’={(3-u;,4,u(+3,1~u;,1+uy),

The lzet parametric representation ic cbtained by solving Eq. 3.7 for »

(]
-

thic ic the other variable with & coefficient independent of u,.

2.8 yy=xy, ¥3=x2, Y4=X3, rys5=%a, and ¥z ic obtaxined from Egq. 3.7
and the x3°¢s,

Far thie change of variables, the integrating factor ic
{424(3-u ) 24{3+u 2240 -y ) 2414y 223172, which is a scalar
multiple of
3.9 {9 + uy23trsz,
Ueing this change of variables with <(Es,»>{1 and with the concstraint y220, the
geometry of the domain i< given by
2.10 Nayx?> 42, j=1,2, and x320
where Ny=¢1+uy,1-u;,3+u;,3~u 2 and Na=(3-u,u(+3,1-uy, 1+uy)d,

There is & symmetry between Ny and Nz2; each is a permutation of the other.
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(This results from the a;>az and az>a; symmetry.) But their symmetry

relationship is even stronger., 1f we allow u, to range over its natural domain of
(-1,11, rather than [0,11, then the pairs (x,,x4) and (xz2,x3) exchange roles

and coefficients as u, thanges sign. (This can be used to prove the proposition.)

The variables x only define the domain, so the volume is determined by
elementary geometric arguments, Let e; be the unit vector with unity in the jTH
component. Then the four vertices defined by the bounding hyperplane <N;,x> = 2
are 2e,/(1+u1), Ze2/Cl-uy), 2e3/(34+uy), 2e47¢(3-ui), and the region
defined by {N|,x>{2 is defined by these four points and 8. Correspondingly, the
region defined by (N2,x>{2 is given by the five points 0, 2e,./(3~uy),
2e2/(3+uy), 2e3/(1-u;), 2e4/Cl4+ud, The feasible region, or the domain,
ic given by the intercection of these two reqgions. By cymmetry (of Ny and Nz
this defines two congruent regions where one of them is defined by the five points
0, 2e,/¢3-uy), Zes/(3+u>, (1/2,0,0,1/2), and (0,1/2,1/2,0). Thus, the
total volume is twice the volume of each of these congruent regions. The volume of
thic object ic a fixed scalar multiple of 1/7(3-u 1)(3+u ) = 1/(%-u;2),

From Eqe. 3.9, 3.4 and the above, it follows that
2.11 .H(u;) = {EF/CS-u2)3{(9+u 1 2)/(34u 2) 3172
where SF ic the "scalar factor" determined by the cupprecsed common concstants.
Obvicusly, this function has its minimum at uy=0 - the Borda Count - and its
maximum at lu;l=1 - at (1,0,0)> and <1,1,08>. This proves the first part of Theorem
I for N=3. The cecond part is obtained by computing R(O){u(]) =/u(0){pr-l).

To prove Theorem 2 for N=3, Eq. 3.4a ic integrated over the region
corresponding to aj=agz>aa. Eecauce of the symmetry, the curface volume
corresponding to a;=agzdaz equals that corresponding to asda;=az.

Therefere, the value of the new integral ic 172 the volume computed in Eq. 3.1.
This means the measure of succeptibility ie half that for the general ranking.

Concequently, the cptimal answer of the Borda Count and the woret choices of
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(1,0,0), ¢(1,1,0) remain.

To prove Theorem 3, the only difference is that v is replaced with v¢ =
(~c,1,-(1-¢2,0,0,0), so N,vc¢> = 2 + c(l-uy) + (1-c)(1+u;), Therefore,
HC(U') becomes {SF{N,v¢>/(9-u;2)3{(F+u,2)/C(3+u,; 233172, The minimum
point for c=1 is the boundary value uy=1, for c=1/2 it is u;=0, and for c=0 it
is the other boundary point u;=-1. Furthermore, the minimum point, u;, is a
continuous function of c. Therefore, it follows from the intermediate value theorem
that any value of u, ic the optimal choice for some choice of ¢ in [0,1], (The
extension of this result for larger values of N requires introducing additional
variables to decscribe the strategic behavior and/or the numbers of each type of
voter. For multiple voting systems, we need still more variables to describe how a
voter choocec among the voting vectors,)

For N>3 alternatives {aj,..,an?, normalize the voting vector so that
Wy=(t,uy uz,.. ,Uun-2,-1) where uslussi, 12uy, and un-22-1. The first
condition on the p‘e corresponds to Eq. 3.1 and it asserte that the domain is the
simplex.
3.12 {En ,p> = 1.

Eq. 2.2 is determined by by the difference between the tallies for a; and
az. So, if pj corresponds to the jTH type of voter, Jj=1,..,N!, then the
coefficient for py is determined by how thie voter ranks a; and a2. The
coefficient equals the difference between the weights ascsigned to a, and to az.
{See the definition of N in terme of the wy’s.d The following vector licsts all of
these possibilities where a; is ranked abave az. The firet cseries is where aj
ie top 1unked, the cecond ite where 3| is second ranked, etc,
2.13 M= (I~ui,l-uz,..1-C-1),u-Uz,.. ,Uun-2-¢=12)

I1¥ &y and &z are interchanged in & ranking, then the coefficient changee
sign. Therefore, -M captures all of the possibilities for azda;. For each

fixed ranking of &y &nd az, there are (N-2>' rankinge cof the remaining (N-2)
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alternatives. This means that with an appropriate labeling of the types of voters,
Eq 3.2 is replaced with

3.14 {N,p> = 0 where N=(M,..,M,M,..,-M).

(Both M and -M are repeated (N-2)! times.)

To determine v, note that there are NIN-1)/2 ways to rank the : VES &y
and az. For each ranking, there are (N-2)! ways to rank the remaining
alternatives. According to the consistency assumption (3}, a strategic voter
selects a voter type where the relative rankings of {as,..,an? is sincere, but
where a; is ranked first and a2z is ranked last. This means the expected change
in p due to a strategic voter is a scalar multiple of
y=(=1,,.,-1,{N{N-1)/23-1,-1,..,-1) where the one positive value is in the same
component as the value 2 in M. By the neutrality assumpticn, the EMV is a scalar
multiple of U=(y,..,v,0,..,0).

The generalization of Eq. 3.4b is now immediate.

3.15 {NAINTL,YY i a scalar multiple of
((N=2Y(N=-1)- ug(N=-2j-1)2/(4+42I{N-2+ Z_quJHZ.(UJ—ux)?}'/?
J 3 JLR

Eqs. 3.12, 3.14 define & N!'-2 dimencional surface in a N' dimensional space,
To find the value of Eq 3.4a, two parametric representations are ucsed to reduce the
problem to an integration over a domain in a N!~2 dimensional space. The first
parametric reprecentation ie much the came ae Eq. 3.9 where we cclve for a p; that
has coefficient -2. <(Thus, az is top ranked and a; is bottom ranked.) The
cendition that py20 defines the extension of Eq. 2.6,

3.14 {Ew -1,y> £ 1.
The integrating factor from this change of variazbles depends only on the number of
alternatives, co it is supressed,

Im <N,p>=0, -2py = -2¢1-<En -1,y*), so the generalization cf Eq. 3.7

becomes=

3,17 N’ ,x> = 2 where N’ = ZEn - +N" and where N" is obtained from N by dropping
the ccordinate direction corresponding to ps.



Page 20

The last parametric representation is determined from Eq. 3.17. In the same
way the transformation Eq. 3.8 was determined, use the yx term that has a; top
ranked, az bottom ranked, and the remaining alternatives ranked in the same way as
given by the type for ps. Solve for yx; for this change of variables, the
integrating factor is a scalar multiple of
3.18 {2(N-2)(4(N-3)!+N+2)+2§:u:2+i;(uj—ux)2)'/2

3 WEX
The constraint the yx20 provides one of the extensions of Eq. 3.10, or

2.19 {Nz,x> £ 2.

Because thies equation results from Eq. 3.17, it ic immediate that Nz ic obtained
from N’ by dropping the component corresponding to yk. Now, either by direct
algebraic substitution, or by symmetry arguments baced on interchanging the order in

which these two transformations are obtained, it follows that the extension of Eq.

3.1¢ i<

3.20 Niyx» £ 2

where Ny is obtained from N2 by directly interchanging the first and the lact
(N'-2)/2 components.

It remaine to compute the region defined by the volume of the regicn defined by
xx2>0 and Eqs. 3.19, 3.20. The regions defined by Eq. 3.19 and Eq. 3.20 are each
defined by 0 and the N'-Z vertices resulting from <Ny,x*=2. The intercecticon
gives two geometrically congruent regions where the appropriate vertex on a
coordinate axic ic the esmaller of the two values computed above. This meane that
each of these regions has 0 and (N!-2)/2 defining points on certain coordinate axes.
The remaining N'-2)/2 defining points are given by the intercection of the two
surfaces, and, by symmetry, they are points where two symmetric coordinates are 1/2
znd &1) othere are zero. «The symmetric ccordinates are the ones trancferred into
each other in the constructicn of W, and Nz.> The important fact is that these

intercection points are independent of the choice of Wn., Therefore, the volume of



Page 21

each region is a common scalar multiple of the volume defined by the points on the
coordinate axes. This is a scalar multiple of

3.21 1/ (B (9-us ) P us~-ux+3) Ib-28
JLX
Therefore, the measure of binary susceptibility is given by

3,22 u(Wn) =

SF((N"?)(N‘l)'EUJ(N‘ZJ'I)}{Z(N‘Z)(q(N‘a)!+N+2)+22UJ2+Z.(UJ‘UK)2}|/2
ueR

(HCI-us ) T Cug-ux+3) P-BZING Ty 214 (L (uy-ux) 23172
Je

or
3.23 DSF<(N-2>(N-1)~EuJ(N—2J-1>}/<ﬂ(?-u;zal‘(u,—uua)}lﬂ-z)"
where D = {”1*[[2(N-2)(4(N—3)f+N+2)‘ZNJ/[2N+2E:UJ2*}E£UJ'UK>21]}'/2. From
thic, the rest of Theaorem ! fcllows by uce of elementary (but mescy) calculus
techniques. In determining the minimum values by gradient techniques, it follows
from the proposition that we can ascsume u;20. Some of the minimum pointe occur on
the boundary tujl=1. Thic happens for N=4 where u;=-uz=1, or Ws=(1,1,0,0),
By uce of the csymmetry, i1t follows for odd values of N that at a critical point, the
middle term uy, j=(N-1)/2, always equals zero. This is a consequence of the more
general ctatement vy=-un-3-1., For inctance, N=5 invclves both facte;
ui=-uz=t, uz=0, so Ws=¢(2,2,1,0,0>. For NX&, the critical point begine to
involve interior values of uy. In particular, when N=¢&, uz ic a pocitive
irrational number. Therefore we get (1,1,uz,-uz,-1,-1) or
We=(2,2,14uz,1~u2,0,0>., The value cspecified in the introductory cection ic &
rational approximation of this vector.

For larger values of N, the term D in Eq. 2.23 playe only & minor role in
determining the optimal point. It follows from the symmetry of the remaining terms
that for &11 Jj, ujs-us4s tende to a fixed value as the value of N becomes larger,
(The boundary conditione complicates the issve somewhat.) Thic is, of cource, the
Borda Count. Thic completec the proof of Thecrem 1.

To complete the proof of Theorem 2, note that the integration of the generalized
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form of Eq. 3.4a is over the region a;=az where all other alternatives are ranked
below these two alternatives. On the hypersurface a;=az, there are (N-i)!

different rankings {(without admitting ties between any other alternatives) and, by
symmetry, each definec the same surface volume. O0Of these (N-1)! regions, (N-2)! of
them have aj=az top ranked. Therefore the problem concerning the manipulation of

the top two ranked alternatives givee a surface volume (and hence a susceptibility
measure) 1/(N-1) the size of the original one. Thus, all relative results remain the
same. (By ignoring regions where there are still other indifferences, I‘m ignoring a
finite number of regions of lower dimension, and hence a finite number of regions of

zera (N'-2) dimencicnal volume. Thue, thics doeesn’t effect the answer.)

To prove Theorem 4, we need a different space. Assume a multiple system ic
given by the voting vectore (Wn',..,WnKk3., That is, each voter has K waye to have
the ballot tallied. Let qs5, s=1,..,k, be the fraction of voters of the jTH type
that choose toc have the ballot tallied with WyS. This defines a point gy in
Si<k). Therefore, the point p={pi,..,pn? is replaced by
Q= pi1QtyesypPNQu) . That ic, psqss describes the fraction of all voters
that are of the JTH type and that choose Wns. This defines a vector of dimension
KN')., So, thic can be viewed ac being a fiber space SIC(N!IX(SI(KIN where the
fiber describes how each type of voters split in their choice of tallying methods.

The indifference curface between a; and &2 ic a hyperplane in thic fiber
space, In describing this equaticn, the coefficient for the pygss variable ic
the difference between the weighte zcscigned to ay and az (ac determined by the
JTH type of voter) by WnS. The meacure of susceptibility is given by the number
cf profiles that are close enough to thice indifference curface to effect the cutcome
with a scalar multiple of v. Thus, thic is given by the projection of this
hyperplane in the fiber space intc the base space SitN')., Trivially, thic projection

contains as a proper subset the indifference surface in Si{N') defined by the simple
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system WnS. As a result, it follows that Theorem 4 is true.
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