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Abstract

In this paper we develop and analyze a tractable dynamic general
equilibrium model in which innovative entrepreneurs have temporary price-
setting powers. We show that their pursuit of the temporary rents may lead to
fluctuations in per capita investment, output and consumption. This occurs
despite the fact that the environment displays neither random nor
deterministic variability. In our model, temporary rents exist because
innovators enjoy temporary market power due to imitiation lags in
innovation. 1In all other respects, we adhere to the assumptions of perfect
coupetition and flexible prices.

Our model possesses a unique equilibrium, which may be convergent, but
often is cyclical or even chaotic. These fluctuations do not arise because of
multiple rational expectations equilibria, and hence are not sunspot
equilibria. We derive precise conditions on preferences and technology under
which each of these regimes occurs. We also do not rely upon small discount
factors, the main driving force behind recent results on cyclicity and chaos
in capital theoretic models.

The uniqueness of equilibrium in our economy allows us to perform
meaningful comparative dynamics exercises, such as the effect of alternative
stabilization programs. In particular, we examine the desirability of

procyclical, stabilizing fiscal policy.



1. Introduction

The most vexing question in macroeconomics is the issue of why economic
activity fluctuates. Our belief as to why economies fluctuate largely
determines our attitudes towards social efforts to stabilize economic
activity. Therefore, for both positive and normative reasons, macroeconomists
have an intense interest in determining the cause of fluctuations.

This paper presents a formalization of a Schumpeterian view as to why
fluctuations naturally occur. In a model with no exogenous disturbances,
random or deterministic, we show that fluctuations may arise because
innovative entrepreneurs pursue temporary rents. There will be times when
valuable investment opportunities will appear, but the pursuit of those
opportunities in one perjiod often eliminates them in later periods. Booms in
investment thus naturally lead to busts. However, natural economic forces
make investment profitable again at a later date, leading to another boom and
bust cycle of investment.

We will use a simple model adapted from Judd's (1985) examination of
patents and the evolution of innovation. Within a similar model we will
elaborate on the nature of the instabilities that arise and the value of
stabilizing such an economy with standard macroeconomic fiscal policy tools.
The model is one in which investment takes the form of inventing and
introducing a new product. 1In the short run, a firm will be safe from
imitation and will reap monopoly rents from the new product. However, this
monopoly rent will persist only until imitation occurs. The model is
therefore one in which markets are often noncompetitive. The instabilities
are due to these market failures since a first-best allocation would display
no such fluctuations. It is very natural to assume this kind of imperfection

given the substantial product differentiation present in the economy.



The instabilities of our model arise from a simple mechanism. If there
are few goods currently available, then the demand for any particular good,
existing or potential, is high {(since we assume that all goods are
substitutes), and the incentive to invent a new good is also substantial.

Even if many new goods are invented today, the demand for one more new good is
not reduced much since new, temporarily monopolized, goods are all sold at
high monopolistic prices.

However, when these goods are imitated in later periods they will sell at
marginal cost. This low price, together with the abundance of goods, reduces
and possibly eliminates the incentive to innovate. This bust in investment
will continue until other natural economic forces, such as population growth,
productivity growth, or obsolescence of existing goods, revives the demand for
new goods.

The basic mechanism generating our dynamics is somewhat reminiscent of
the early work by Goodwin (1951) on trade cycle theory. Goodwin modified
Samuelson's (1939) multiplier—accelerator model by making the accelerator
nonlinear. This allowed him to obtain self-sustained bounded oscillations in
economic variables that are asymmetric over the cycle, whereas Samuelson's
model was linear, could only exhibit either damped or explosive oscillations,
and had symmetric sinusoidal motions over the cycle, In Goodwin's theory, as
in ours, investment eventually creates its own bust, and a significant period
of investment inactivity renders capital accumulation profitable again. Like
most of his contemporary writers, however, Goodwin relied on agent
expectations that are repeatedly and sytematically fooled along the solution
path of the economy. Needless to say, our paper uses the modern approach of
agent maximization and ratiomal expectations.

Our analysis also bears some resemblance to more recent papers. Hart



(1982) and Roberts (1986) both use imperfectly competitive markets to produce
interesting models, but their analyses are static. Schleifer (1985) generates
erratic dynamics, as would a repeated game version of Roberts (1986), but such
instabilities are primarily due to multiplicity of equilibria. In contrast,
our model has a unique perfect foresight equilibrium. This allows us to do
precise comparative dynamics exercises concerning the impact and desirability
of stabilization. Since the Schleifer model is the most similar, we will
discuss it more below.

Other recent work has demonstrated the possibility of erratic dynamics,
but has generally had to rely on unappealing assumptions concerning tastes
and/or preferences. Grandmont (1985) obtains choatic equilibrium paths in
overlapping generations models, but only when saving is a decreasing function
of the interest rate near the steady state. The optimal growth models in
Boldrin and Montrucchio (1986) and Deneckere and Pelikan (1986) display chaos
but, at least in the one dimensional case, seem to require heavy discounting
by agents. The chaos in Boldrin and Deneckere (1987) relies on factor
intensity reversals as well as high discount rates. Woodford (1987) shows
that capital market imperfections may lead to complicated dynamics but needs
low factor substitutability.

This paper demonstrates that chaos may arise even when preferences are
CES and agents do not discount the future, assumptions which generally
preclude complicated dynamics in optimal growth models. It therefore shows
that elements of market power may be important sources of erratic economic
dynamics.

Normative questions cannot fruitfully be examined in most of the papers
mentioned above. 1In Grandmont (1985) stabilizing fiscal policies only have a

redistributive impact on social welfare since the equilibria are Pareto



efficient.1 Pareto efficiency also characterizes the chaotic equilibrium
paths displayed in the capital theoretic models of Boldrin and Montrucchio
(1986) and Deneckere and Pelikan (1986). No such efficiency can be presumed
here because of the elements of market power we introduce. We determine the
value of some possible stabilization schemes within our model. These
normative exercises are highly model-specific and admittedly not as robust as
its positive aspects. However, carrying out normative exercises will allow us
to test some standard arguments about the desirability of "stabilization”

within a fully elaborated economy.

2. The Model
We will use the discrete-time version of Judd (1985). At any point in
time, the preferences of the representative agent over a continuum of possible

goods 1is
U = [julx(v))dv

where x(v) is the consumption of the good of variety v per period and u(x) is
the utility flow from consuming a good at rate x. We will assume a CES

specification of tastes:
u(x) = x%, 0< c< 1.

This specification was chosen mainly for its tractability. Alternatively, a
quadratic functional form would have been equally tractable. We focus on the
CES utility only in order to economize on space.

At the beginning of each period, the set of goods already in existence

has Lebesgue measure V,. These goods are sold competitively at their marginal



cost of 1. Labor is the sole factor of production and is supplied

inelastically, with total supply normalized at unity. New goods cost F units
of labor to invent per measure one set of goods, and are sold exclusively by
their inventor for one period of time. The set of new goods has measure Vp.

If we let x_ represent the consumption of a competitively priced good and x

n P

be that of a monopolized good, then the social budget constraint is given by

(2.1) XV +xV +F =1

nn PP P
since all competitive goods enter the economy symmetrically, as do all
monopolized goods.

In order to allow the possibility of fluctuations in output, V, of the
goods will be leisure goods. They "sell” at marginal cost since they are not
monopolized. Therefore, labor supply and measured output equal 1 - XHVZ'
Note that this approach to introducing leisure goods would be equivalent to
adding the term v2€ to our utility function, where 2 represents time spent on
leisure, and v is a weighting factor.

The one-period monopoly enjoyed by inventors of new goods represents
imitation lags. These may occur for legal reasons, such as patent laws, or
for technical reasons which force imitators to take time to succeed. 1In our
model we take this imitation lag as exogenously determined, not affected by
the evolution of the economy nor by economic policies. While this is not
strictly realistic, it abstracts from elements which are not essential to the
results below.

In order to keep innovation from ending, we assume that some of the
nonleisure goods become obsolete. Speéifically, we assume that of the

vo(t) + Vp(t) goods marketed at the end of period t, only



(Vn(t) - Vi + Vp(t)) (1 + 5)—1 retain their marketability in period t + 1.
This represents shocks to demand--people lose interest in some goods each
period. Such shocks are assumed independent, and independent of past
consumption. If a good ever becomes obsolete, it remains so forever. This
presents no problem since we assume an infinite number of potential goods.

The variety of goods therefore obeys
(2.2) Vale + 1) = (V(£) = vy + v (£))/ (1 + 5) + V,.

We assume that innovators are profit-maximizers. The CES specification
of utility implies that the demand for each good has a price elasticity of
demand equal to -y = (¢ - D71, The monopoly price is therefore equal to L.

If there are V, goods selling at 1 and Vp goods selling at c_l, then the

profits gross of innovation costs to a monopoly seller of a new good equal

-1
(2.3) ,l-=(c___‘_c1_)_‘i
V +dv
n p

- J
where d = ¢’

We assume that innovators can enter freely. They choose to innovate
products which have not yet become obsolete, paying only the initial cost of
innovation, F. Therefore, innovation will continue until profits net of

innovation costs are zero. Hence, V_ is given by

P

1 - ¢ Vn(t)
(2.4) V (t) = max{0, - 1
p L F dc J

Putting (2.2) together with (2.4) yields a first-order difference equation for

Vn:



l-c¢ Vn(t)
+ max{0, - —D + v, = h(v_(£))
d

(2.5) Ve+1D) =0+ 9@ -v
n n

L F

It is this dynamic equation which we examine.
(Insert Figure 1 About Here)

Figure 1 represents equation (2.5). Note the nonlinear structure. If
Vn(t) < d%(1 - ¢)/F, then Vn(t + 1) is a decreasing function of Vn(t). This
is somewhat surprising. For, while innovation investment is decreasing in
current beginning-of-period variety, the number of goods which become obsolete
is also decreasing in current variety. Equation (2.5) implies that the net
effect of an increase in current end-of-period variety and the increase in
subsequent obsolescence is a decrease in the next period's terminal variety.

At vV, = d®(1 - ¢)/F, the system changes character. For greater vV, no
innovation occurs. The equation of motion is then governed only by the
obsolescence factor. Hence, an increase in current variety increases the next
period's variety.

For V, < d®(1 - ¢)/F, the steady-state level of vV, is

(1 - c)/F + cv2

§+d ¢

There are a variety of interesting features to this model. First, direct

computations show that for V <V = d®(1-¢)/F

x, = d"°F/(1 - ¢)

U=1



whereas, for V > Q,
xn(Vn) < xn(V), xn(vn) <0
ov.) >uo(v), s (v.) >0
n n

In particular note that consumption of any good selling at marginal cost,
leisure or nonleisure, is constant during any period with innovation, as is
the utility flow realized in that period. 1In periods with substantial variety

and no innovation investment, x_, falls with variety——an increase in variety

n
causes agents to spread labor resources uniformly over all goods--and utility
rises with variety. Measured output, 1 — xnvl rises with V, since x, falls.
Measured output is lowest during periods of innovation.

The dependence of the equation of motion on the number of leisure goods
is particularly simple. From (2.5) we see that the number of leisureAgoods is
just an additive element of h. In Figure 1, the lower example of h has no
leisure goods; this implies that the right arm goes through the origin. The
higher example models an economy with leisure goods, and the right arm has a
positive intercept on the vertical axis equal to the number of leisure

goods. This indicates that the presence of leisure will not affect the

dynamics of our model by much.

3. Dynamic Behavior

Figure 1 displays a graph depicting the first—order difference equation
governing this economy. The equation of motion has two distinct regioms. 1If
the measure of existing goods at the beginning of the period exceeds V, then

profits from innovation are not sufficient to encourage innovation.



Therefore, no innovation occurs and variety falls because of obsolescence. If
there are fewer than G goods, innovation will occur. 1In fact, as the number
of goods at the beginning of the period falls, the profits to innovation rise
so much that the total number of goods at the beginning of the next period
increases.

The critical feature for our purposes is the nature of the steady state,
V*. Note that it can easily be unstable. Because the right arm of h(.) lies
below the 45° line, the dynamics of the system is confined to a compact
region. Nevertheless the steady state at V* may be unstable, implying
oscillations around V*. The dynamics of our model can be quite complex as we
see below. We will examine them more precisely for the case Vy = 0. The
general case offers no difference in character, just notation.

Recall from Section 2 that the difference equation governing the dynamic
behavior of the economy when Vg = 0 is given by:

Vv (t)

n -
) = ()0 + )

-9 _
F

(1 + 6)Vn(t + 1) = Vn(t) + max(0,

-c
—Si—iliil—— to be unstable, i.e., d -1 > 1
("¢ + &)F L+

we obtain the following picture:

*
Assuming the steady state V =

Cl/(l - C))’ 2

(where 4 =
(Insert Figure 2 About Here)

Let A be the square with side length n, enclosed by dashed lines in
figure 2. A is a trapping region; all points that follow the difference
equation h(e¢) end up in this square after a finite number of iterations, and
remain there forever after. 1In order to analyze the dynamics of the system,

we may restrict attention to region A. In fact, it will be convenient to turn
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this figure 180 degrees clockwise, and to normalize conditions such that

n = 1.3 We then obtain figure 3:

(Insert Figure 3 About Here)

Defining a = d ¢ - 1 and b = (1 + §), we obtain

1 - b/a

R
]

1+ 1/a - 1/b

w
It

We may also show that a < 6,4 implying that the interval I; = [0,a] maps into
the interval I, = [a,l]. Observe also that the interval I, maps onto

I v Ip. Letting the symbol ---> indicate "map into,” and —> "map onto,” we

obtain the following diagram:

~

I, > 1,

This diagram makes it clear that any cycle must spend at least as much time in
I, as in I;. 1In fact, the same reasoning is true for any path x, = h™(x) in
A. Since the map g: [0,1] > [0,1] in figure 3 is just a (rescaled) rotation
of the map h in figure 2, we will, in the sequel, refer to it as h as well.
This should not lead to confusion. |

The above observation allows us to derive a condition under which all
noncritical cycles (cycles not containing the critical point a) are

unstable. Let [x] denote the orbit through x, then [x] is unstable if

' -1 '
(h“)'(x)| > 1. But |(h“) (x)| = nn |h (hk(x))|, and
=0
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1] ]
h is either equal to h

]
or h if x is noncritical. Thus,
Bl L

n,' ' k ' 2
oo = o[ [0 |

where k + £ = n, with k » £, and

Hence ,(hn)'(x)‘ > [-‘3‘5]k > 1 if b < Ya. It is easily seen that when

b < Ya, then any critical orbit must be unstable as well (expand

h™(x) - h™(a)). Thus, if b < fz_gll_cycles are unstable. 1In particular, for
all but a countable set of initial points x, the iterates of x, hn(x), will
not display any periodic behavior, even if one iterates long enough.5 They
will continually jump around from I; to I,, in an apparently unpredictable

fashion. Under this condition, then, we may say that the map h displays

chaotic dynamics. We summarize these results in Theorem 1:

Theorem 1: If Ya < b < a, then for all but a countable set of initial
conditions x in {0,1] the trajectories generated by h from x, {hn(x)};;o, are
completely aperiodic. That is, trajectories are neither cyclic nor asymptotic

to any periodic orbit.
In fact, one may also prove the following, somewhat stronger theorem:

Theorem 2: If b < Ya, then h(+) has an absolutely continuous invariant
measure that is ergodic. This measure is unique, and has a density which is

of class C°. Moreover, the support of the measure is [0,1].

Proof: For piecewise ¢2 functions h: fo,11 + [0,1] that satisfy the



- 12 -

expansiveness condition infl(hn)'l > 1 for some positive integer n, Lasota and
Yorke [1974, Theorem 3] prove the existence of absolutely continuous invariant
measures. Observe that our map satisfies this condition with n = 2. For the
same class of functions, Li and Yorke (1978) prove that if h and its
derivative exhibits a total of m discontinuifies, there can be at most m
invariant measures. Since our map h has one such discontinuity point, its
invariant measure is unique, and also has full support. The invariant measure
is absolutely continuous, and thus ergodic. Finally, Szewc (1985, Theorem
7.2) shows that if the map h can be extended to a map of class ¢t on the

closure of every component of continuity, then the density is of class

Cr—l‘ U

Let us explain why Theorem 2 is somewhat stronger than Theorem 1. The
ergodicity of the h-invariant measure p implies that the empirical
distributions u™(x) (generated by the iterates n(x), j = 0,1,...,n - 1, and
assigning probability 1/n to each hj(x)) converge weakly to p for p-almost
every x. Thus, for a set of initial conditions x of full p-measure (and here
also of full Lebesgue measure), trajectories starting at x will look rather

erratic since they eventually fill the whole support.6

In particular, as
claimed in Theorem 1, trajectories will be completely aperiodic. Observe,
however, that there is also some regularity to the way in which these
trajectories jump around in the unit interval. 1Indeed, the fraction of time
that a randomly chosen trajectory must spend in any interval A c [0,1]
approaches p(A) as n goes to infinity! This long term predictability stands
in sharp contrast to the short term erratic bghavior that most trajectories
display.

We now turn to the case: va < b < a.
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Theorem 3: If va < b < a, then h has an attractive period-2 cycle. Moreover,
all points in [0,1] (except for the fixed point of h), are attracted to this

stable orbit.

Proof: When Ya < b < a, we have r = ab—1 > 1, s = b—1 <1 and rs < 1. The

set of turning points for hZ is:
2 k
T(h") = {x € (0,1): h (x) = o for some 0 < k < 2}

where a is the critical point of h (see, e.g., Preston, Proposition 2.l., p.
320). Thus, T(hz) = {a, h_l(a)}, where h—l(a) is a singleton in I, (this
follows from B > a). h? is a piecewise linear function connecting the points
(0, 1h2(0)), (a,0), (h"1(a), 1) and (1, n(0)). Furthermore, the slope of h2

equals -rs on Jl sz [0,a), s2 on J, = (a,h—l(a)) and -rs on

2
S (b Ya), 1). 12 is illustrated in figure 4.

(Insert Figure 4 About Here)

Since the graph of h2 cuts the 45° line somewhere in the interval (0,a) and

since n? has a slope of rs in absolute value, [xf] is a stable orbit.8

In
fact, every point in [0,a] is attracted to this fixed point of h2, i.e.,
2yn * ; . -1 . *
(h*)"(x) » %], and every point in [h”"(a), 1] is attracted to x,.
* , .
Furthermore, all points in (a,V ) are mapped into 3 after one iteration, and

all points in (a, h—l(a)) are mapped into J, after one iteration (i.e., two

iterations of h). 0
We now treat the hairline case rs = 1.

Theorem 4: When a = b2, all points in [0,1] except the fixed point of h gets
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mapped into an unstable period 4 cycle. Furthermore, there is a continuum of

period-4 cycles.

Proof: Recall that

ab_1 - ab—lx on I

B + b-lx on I

h(x) = {

Note that since h(B) = a, the orbit 0 > 8 + a + 1 represents a period-4

cycle. Hence, we obtain the following picture (figure 5):

(Insert Figure 5 About Here)

Let us compute the set of turning points of n*:

T(h4) = {x € (0,1): hn(x) = o for some 0 < n < 4}

By the previous argument, it follows that
4 -1
T(h") = {a,8} v {z, h "(2)}

where z is the unique element in I, s.t. h(z) = B. Observe that
0<a<zX hfl(z) < g < 1.

Since any element in [0,a] must traverse I, and I, twice, the slope of h4
on [0,a) is (rs)2 = 1., Similarly, any element in [8,1] spends an equal
fraction of time in I, and I, and h4 has slope 1 on (8,1]. This proves the
existence of a continuum of period 4 points. Some further computations yield

(hA)'(x) = —r35 = - a3b—4 on (a,z) U (h_l(z), B), and
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1 -
(h4) (x) = a4b4 on (z, h l(z)). We illustrate h* in figure 5. It immediately
follows that each point in [0,1] except for v* = h(V*) gets attracted to a

period 4 cycle. a

Only one case remains to be treated, namely where a = b (when b > a,
vE = h(V*) is stable and all points are attracted to it). But this remaining

case is trivial, as our map then becomes:
(Insert Figure 6 About Here)

Thus, there are a continuum of unstable period two cycles, and every initial
point gets attracted to one of them. As b crosses a, a flip bifurcation
occurs: the steady state loses stability and gives birth to period-2 cycles.

Summarizing, we obtain the following scenario when we vary b (or §) and
a> 1 (or ¢ > 1/2). When b is large, there is a damped oscillation, and all
initial points are attracted to the steady state. As b crosses a, the steady
state becomes unstable and a continuum of unstable period-two cycles appears,
to which all trajectories not starting at the steady state are attracted.
when va < b < a, there is a unique stable period-two cycle to which all
trajectories are asymptotic. As b crosses fg, the period-two cycle loses
stability and a continuum of unstable period-4 cycles is created. All points
except for the fixed point of h (and its inverse images outside the trapping
region) are attracted to one of these period-4 cycles. When 1 < b < /2, chaos
obtains., Finally, when b = 1 a continuum of unstable steady states is
present.

At this point it will be valuable to summarize our results in Theorem 5.

Theorem 5: If b > a, then the steady state is stable. If b = a, there is a

continuum of two-cycles. If va < b < a, there is a unique stable two-cycle.



If b = /Ya, there is a continuum of unstable four-cycles. If 1 < b < Va, the
system is chaotic, i.e., it is completely aperiodic and h(s+) has an absolutely

continuous invariant measure which is ergodic.

Theorem 5 states that there are three distinct types of dynamic behavior,
ignoring the knife-edge cases. If goods are poor substitutes or the rate of
obsolescence is high, the system converges to the steady state level of
variety and innovation. As goods become more substitutable and obsolescence
slows, we find the emergence of stable two-cycles. In this regime, the
economy oscillates between periods of high and low rates of investment.
Finally, as goods become highly substitutable, the system breaks into a
chaotic dynamic. It oscillates between periods of high investment and no
investment, but according to no regular pattern.

While the analysis above was done for the case of Vy = 0, Theorem 4 also
applies to the case Vz > 0, as long as Vg < (1 - ¢)d®/rF. Indeed, as can be
seen from figure 1, the only thing that changes when V, > 0 is the size of the
trapping region.9 After rescaling such that n = 1, the same analysis as above
applies.lO

| The nature of the cycle is roughly similar to that typically observed.
In our model periods of high investment relative to trend (corresponding to Va
below the steady state) do lead to periods of consumption above trend, whereas
the periods of consumption above trend may not lead immediately to periods of
high investment and low consumption. Therefore, in this limited sense,
investment booms tend to lead to periods of high consumption.

Labor supply movements are also easily determined if the amount of
leisure goods is not too large. Since consumption of nonmonopolized goods,
including leisure time, is falling in variety during innovation periods, labor

supply and measured output is smallest when variety is smallest. In our



simple first—order model, investment and consumption are negatively correlated
with labor supply and output.

Since we have only a first-order difference system, our model cannot
display a realistically rich autoregressive structure. However, in the more
general (and far less tractable) continuous time model, one does find, for
example, investment leading consumption (see Judd (1985)). Therefore, the
dynamic behavior induced by this kind of model is generally qualitatively
similar to actual business cycles, indicating that the mechanisms we study
here cannot be written off as implausible on comovement grounds. We next show
that these effects are also quantitatively significant by business cycle
standards.

We should compare our analysis in some detail to that of Schleifer. His
is a model of cost-reducing innovation as opposed to product innovation. He
also assumes that a firm which innovates has only one period before imitation
eliminates rents from innovation. At that point, any resemblance ends. 1In
Schleifer, ideas for innovation arrive exogenously and at no cost to the
innovator; also, there is no imitation of an idea until it is used. 1In his
model, firms with innovative ideas have an interest in all using their ideas
at the same time since that is when the present value of profits is highest.
In contrast, our innovators have no such timing preferences since there is an
endogenous amount of innovation, the profitability of the marginal innovation
is zero in equilibrium, and the dynamic market structure elements become the
dominant consideration.

As is typical in such coordination models, there are many equilibria;
given the multiplicity of equilibria, Schleifer's model also has sunspot
equilibria which model the Keynesian view that investment is sensitive to

self-fulfilling expectations on the part of firms. Such sunspot constructions



have been used often to "explain” the excess volatility of economic life. The
approach to the excess sensitivity problem taken here is quite different in
spirit, following the chaotic dynamics literature. Our model is one in which

elements of innovation and imperfect competition necessarily generate (for

some values of the parameters) dynamics which are "too"” volatilve, not just
include such a possibility in an infinite set of equilibria. This model shows
that we can generate chaotic dynamics with standard and simple classes of
tastes and technology, an improvement over much of the chaotic dynamics
literature which relies on strong income effects, high discount rates, and/or
capital intensity reversals.

Even in cases where chaos does not arise, the dynamic behavior of the
economy differs substantially from the optimal solution. Since the equation
of motion is always downwardly sloped at the steady state, as in Figure 2, the
convergence to the steady state will always be oscillatory; if the economy
were run optimally, convergence to the steady state would be monotonic.
Furthermore, any shock to the economy, such as an unexpectedly large amount of
obsolescence would start a damped oscillation. Therefore, in all cases, our
equilibrium with imperfect competition will have substantially different
qualitative dynamic behavior.

The importance of imperfect competition for understanding macroeconomic
observations has been argued before. 1In particular, Hall (1986) has argued
that models of monopolistic competition (where price does not equal marginal
cost) help us understand price movements in response to business cycle
shocks. This analysis goes one step further by arguing that the market
structure itself generates dynamics similar to business cycles.

Above we showed that imperfect competition can be a source of

macroeconomic fluctuations. Next, we investigate whether these effects can be



nontrivial. We also pursue the implications for typical macroeconomic policy.

4. Volatility and Stabilization

Once we have a model with volatility in investment, we should address two
questions. First, we should determine whether the volatility is
quantitatively significant. Second, we should ask ourselves whether standard
macroeconomic policies can be used to improve the economy's performance. To
address these issues we resort to numerical simulation, as many of the cases
will generate chaotic dynamics which cannot be described in a tractable closed
form. In these simulations we allow c to vary between 1/2 and 1 since ¢ < 1/2
implies stability. Also, § will vary between .05 and .5. If § < .05, then
there is practically no obsolescence and the system will usually be stable; if
§ > .5, then over one-half the goods become obsolete during their monopolized
stage. Keeping § € [.05, .5] focusses on the cases that are most sensible and
most likely to genefate interesting dymnamics.

The volatility in investment is significant in our model, When the
economy converges to a two-cycle, alternating between periods of no investment
and positive investment, the coefficient of variation in investment is 1.

This is because the mean and the standard deviation of investment then both
are equal to one-half of the positive investment level. One surprising result
of our simulations is that even when the economy does not settle down to a
stable cycle, the coefficient of variation is indistinguishable from 1. More
precisely, we allowed the equilibrium difference equation to run for 300
periods and used the final 200 as a sample of the ergodic distribution.
Coefficients of variation for the chaotic cases varied between .95 and 1.05.
This volatility is substantial and exceeds observed volatility in national
income accounts. Therefore, if our mechanism is at work at all, it will

contribute significantly to fluctuations in investment.
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It is common in macroeconomics to ask if government policy can be
usefully manipulated to reduce undesirable fluctuations. This question must
have a negative answer if one confines attention to Pareto optimal paths, as
in Grandmont (1985). 1In our model there is no presumption of efficiency since
some markets are monopolized. Thus, the desirability of stabilization then
becomes an open question.

First. observe that any dynamic allocation can be achieved by an
appropriate system of innovation subsidies financed by lump-sum taxes. 1In
particular, the first-best optimal allocation can. be so achieved. Second,
note that the first-best allocation is globally asymptotically stable,
converging to the unique steady state from any initial condition.}! The
optimal allocation can thus be achieved by appropriate instruments.
Furthermore, it is convergent.

It is not surprising that an intervention which directly attacks the
market failure will enhance economic performance. However, if we do not have
the appropriate instruments, or choose not to use them, it is not clear that
stabilization remains a desirable objective. 1In standard macroeconomic
analyses where the government is assumed to have a mean-variance objective
(often unrelated to the preferences of the individual agents), stabilization
is often found to be desirable. Here, on the other hand, we have a structural
model, Social welfare is given by an explicit welfare function which displays
an aversion to excessive fluctuations, rather than a simple mean-variance
criterion.

Another interpretation of our analysis below is that the mean-variability
tradeoff implicit in stabilization schemes is sensitive to the tools used.

The subsidy scheme discussed above implicitly has a low sacrifice in the

"mean” performance relative to the stabilization gains. 1In fact, there is a



gain in the mean because of the subsidy's correction of the undersupply of
variety.

We next consider a simple form of stabilization which is more
characteristic of standard macroeconomic policies: the government can levy
lump-sum taxes on agents and discard the real resources so acquired. Such
"expenditures” are allowed to be conditioned on the current state of the
economy, V, (t). They act essentially to reduce the labor resources available
to the private sector. Therefore, if we let G to represent these
expenditures, our difference equation becomes

(1 -e@-6t) V()

+ max{O, = i }) +V

-1
(4.1) Vn(t +1) = (1 +98) (Vn(t) -V

2 2

G(t) = g(v (1), ©)

where g(+,¢) represents governmeht expenditure expressed as a function of
total current variety and calendar time.
One particular form of stabilization policy would be
* *

y(v - Vn), if Vn <V
(4.2) G(v ) = {

0 , otherwise
where V* is the steady-state level of V, without any government expenditure.
Note that government expenditure is high in those states where investment is
greatest and output smallest, i.e., when Vi < V*. Also note that the steady
state is unaltered; we do this since we want to focus on a policy that is
stabilizing only, not one that alters the mean as well. For any y, the above
policy is stabilizing, in the sense that government expenditure is greatest

when output is lowest. The correlation with investment is admittedly not
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realistic, but that is an unfortunate consequence of using a first-order
difference system.

The resulting equation of motion for the economy is represented in Figure
7. The dynamic system is unchanged except when Vn(t) is less than V*. In
that region the response of V,(t + 1) to V_(t) is reduced. This produces a
kink at V*, as represented in Figure 2 with the broken left piece. The result
is a continuous equation of motion, even at.the kink at V*. It is
straightforward to show that if y is sufficiently large the resulting system
converges to the steady state. In general, if the product of the left and
right derivatives of the equation of motion at V* is less than one, the system
is stable.

In order to keep the analysis tractable, we assume that individuals do
not discount the future. This is done since it yields a particularly sharp

result for our model.

Theorem 6: Complete stabilization is possible, but never desirable, if the

discount factor is one.

Proof: Such stabilization can be implemented by a policy which increases
government spending as investment increases above the steady-state level, as
in the case when one combines (4.1) and (4.2) with y large. This changes h(.)
to ﬁ(-) in Figure 7, making the steady state stable. 1In this steady state, no
actual government expenditure occurs. Hence, average long-run utility is
given by utility at V*.

Recall that utility is invariant to variety if innovation occurs, and is
rising in variety if there is no investment. Since the steady state is at a
level of variety where continuous investment occurs, it is better to have some

periods with no investment. 0



_23_

Theorem 6 shows that we would never want to completely stabilize the
economy at its steady state if the future is not discounted. Allowing
discounting would, of course, be more realistic. However, since the results
are clearly continuous in the discount rate, Theorem 5 implies that for large
discount factors, complete stabilization will be worse than no stabilization
at all. Since this result is demonstrated only for our CES specification, it
is obviously of limited application. On the other hand, CES utility is
generally regarded as quite reasonable and is often used in econometric
analyses. It cannot be said that Theorem 6 relies on an implausible
specification of tastes.

This analysis is offered here primarily as an example of a fluctuating
economy which does not want stabilization, even though the first best involves
no fluctuations. While the fluctuations do not reflect a first best
allocation, the use of tools which eliminate the fluctuations but do not
address the market imperfections that cause them will further reduce
utility. Policies imposed on an economy afflicted with distortions may have
unintended effects, even when they are trying to address one of the symptoms
of the imperfection. Appropriate selection of policies depends crucially on
the exact nature of the market imperfection supposedly addressed. These are
standard lessons from second-best analysis which are rarely applied in
macroeconomic policy analysis.

Theorem 6 addressed the choice between no stabilization and complete
stabilization. Surely small amounts of stabilization are also possible. To
model such alternatives, we next consider the same specification of government
policy, but with y chosen to be small. Since solutions of the equilibrium are
not tractable in the chaotic cases, which would be the most interesting, we

use numerical solutions to calculate the welfare impacts of this goverment
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policy.

We first assumed that government expenditure had no social value. In
this case we found no case in which any stabilization was desirable. It is
not surprising that stabilization is not desirable if the stabilization policy
wastes resources. This was not a problem when we completely stabilized the
economy since government expenditure, and waste, is zero at the steady
state. To determine whether our negative results on small stabilization
policies were due to the waste element we next assumed that the social
marginal utility of government expenditure equalled some fixed fraction of the
marginal utility of consumption. In these cases stabilization was often
desired. 1In fact, when ¢ = .88 and § = .1, a small amount of stabilization
was valuable as long as the marginal utility of government consumption
exceeded 1/10 of the marginal utility of private consumption. In particular,
we found that it was beneficial to increase y as long as this did not cause
the system to completely stabilize at the steady state. As y is increased the
economy passes from being chaotic to having a stable two-cycle and long-run
average utility rose. However, as soon as y was made large enough to
stabilize the system completely, average utility fell below the y = 0 level,
as implied by Theorem 6. This pattern of increased government spending being
desirable until the system completely stabilized held true in every case where
stabilization had any value at all. Furthermore, when stabilization did have
value, its effect was equivalent to a .5 percent to 1 percent increase in
labor endowment. This amount may appear small, but is of the same order of
magnitude as the standard deviation of output over the business cycle.

These examples are not to be taken literally. However, they do indicate
that the effects we are discussing are not of negligible importance. They

show that the market forces associated with imperfect competition and the
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pursuit of temporary economic rents can contribute significantly to volatility
in macroeconomic indices. While the model presented here is too stylized,
abstracting from many critical elements of a real economy, it indicates
strongly that imperfect competition can have a nontrivial effect on the

dynamic behavior of an economy.

5. Conclusion

This essay has examined a model of investment, consumption, and labor
supply which possessed unique, but possibly erratic, perfect foresight
equilibria. The instabilities arose because of standard market imperfections
and the presence of temporary monopoly power. While the model abstracted from
many elements, such as uncertainty, capital formation, etc,, it did provide a
laboratory where we could study the interactions of individual investment
decisions and the dynamic macroeconomic equilibrium. The pursuit of temporary
rents arising from temporary monopoly power is a common activity in our
economy, particularly in important "hi-tech” sectors and sectors where firms
introduce highly differentiated products which are later imitated by their
competitors. While the quantitative importance of the effects studied here
can only be determined empirically, our analysis does indicate a possible
source of excessive volatility in economic activity. 1In particular, we were
surprised to find that chaotic equilibria naturally arise, even though the
framework is simple and the taste specification is one of the simplest and
most heavily used ones in econometric analyses of demand.

Given that we have a simple model with fluctuations, one can address
issues in stabilization policies which use standard fiscal tools. We showed
that complete stabilization was never desired in our model and that slightly
stabilizing policies were desirable under some conditions. 1In general, we

found that it was unlikely that stabilization would be beneficial in this
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economy where the fluctuations were driven by the pursuit of temporary rents
by investors. However, such welfare calculations must be viewed carefully
since they are surely sensitive to alternative specifications of tastes,
technology, and market structure.

We conclude from this preliminary study that the pursuit of temporary
rents may contribute to volatility in economic activity even when the first-
best allocation converges, and that these effects can be quantitatively
significant. Further work incorporating a less stylized intertemporal
stucture and more elements of reality is needed to make the arguments more
compelling. However, the simple version above indicates that such efforts
will be valuable in understanding the dynamics of a modern economy with

substantial elements of monopolistic competition.
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Figure l: The dynamics of per capita variety, V, (t)
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Figure 2: The difference equation V. (t + 1) = n(v,(t))
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Figure 3: The restriction of the map h to the trapping region
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Figure 5:



...32_

Figure 6: The graph of h when b = a
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Figure 7: An example of a completely stabilizing, but
undesirable, stabilization scheme
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Notes

l1n contrast, nondegenerate sunspot equilibria are necessarily
inefficient, and hence there may be room for stabilization policy in such

models (see, e.g., Grandmont (1986)).

2A necessary condition for V* to be unstable is ¢ > 1/2. 1Indeed, V* is
unstable if and only if ¢ < f£(¢) -~ 2, where f(c) = d"¢. oObserve that f is
monotone on (0,1) with £(0) = 0, and lim f(x) = e. Since 1/2 is the unique

x+1
value of ¢ for which f(¢) = 2, we obtain the desired result.

3This normalization is innocuous as it affects only the amplitude and not
the qualitative nature of the dynamics. To obtain the correct scaling, one

only needs to multiply by

_ 8- o0 - d9)
F(1 + 5)2

44 is less than B whenever b(l + b) > a, a condition which may be
rewritten as d S - 1 < (1 + 8)(2 + 8). But since d° € < e < 3, our claim

follows.

5The condition b < va implies that h™ can have at most finitely many
(2n - 1, to be precise) fixed points. Thus h has at most a countable number
of cycles. Since the set of preimages of any given cycle is countable, and
since there are only countably many cycles, all but a countable set of

trajectories will be completely aperiodic.

6It should be emphasized that this version of chaos (which might be
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termed "ergodic chaos™) is observable, in contrast to the weaker notion of
topological chaos (also often referred to as chaos in the sense of Li and
Yorke (1975)), for which the chaotic set may have Lebesgue measure zero, and
thus essentially be unobservable. For a further discussion of this issue, we
urge the reader to consult Grandmont (1984, p. 15) or Melese and Transue

(1986).

/1n addition, it can be shown that the function of h has a positive
Lyapounov exponent, and hence exhibits sensitive dependence on initial
conditions. For a simple explanation of this concept see Deneckere and

Pelikan (1986) and Grandmont (1984).

8XT can be calculated to be xt = ga/(a + b2) = (a - b)/(a + b2).

9The size of the trapping region can be shown to equal

_8(1 - ¢) c 8
————2(1—5)-

= (1 + d—c)Vz.
(1 + 8°F (1 +8)

2

lOOf course, when the fraction of leisure goods becomes too large

(VQ > (1 - c)dC/F), the unique fixed point of h will lie on the right arm of
figure 1. All points will then be mapped onto the stable branch after at most
one iteration, and converge to the stable steady state. In this steady state,

only leisure goods are consumed.

Hhe proof of this is standard and hence omitted. 1If individuals
discount the future, this result is trivial. 1In our analysis we will assume

no discounting to avoid inessential complications which would arise in those



- 36 -

cases where chaos arises. Even then the result holds. Using the overtaking
criterion one derives a pair of equations governing the vector (X, Vt—l)'
That system is saddle-point stable, and the convergent path overtakes

nonconvergent paths.
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